Exercises to Introduction to Stochastic Partial Differential Equations II

Sheet 4 Total points: 10 Submission before: Friday, 10.11.2023, 12:00 noon

The aim of this exercise sheet is to repeat the most important facts about Markov processes.

Problem 1.

(2 Points)

We are in the situation of Proposition 4.3.5. Let μ be an invariant measure. Show that we have

$$X_0 \sim \mu \implies X_t \sim \mu, \quad \forall t > 0,$$

i.e., if the initial condition is distributed according to μ the law of the solution is μ at every point in time.

Definition. Let *E* be a polish space. A tuple $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (\mathbb{P}_x)_{x \in E}, (X_t)_{t \in \mathbb{R}_+})$ (with state space $(E, \mathcal{B}(E))$ is called a *Markov process* if

- $(X_t)_{t \in \mathbb{R}_+}$ is an (\mathcal{F}_t) -adapted stochastic process.
- For all $A \in \mathcal{F}$ we have that $x \mapsto \mathbb{P}_x(A)$ is measurable,
- For all $x \in E$ we have $\mathbb{P}_x(X_0 = x) = 1$,
- For all $s, t \in \mathbb{R}_+$ we have $\mathbb{P}_x(X_{s+t} \in B | \mathcal{F}_s) = \mathbb{P}_{X_s}(X_t \in B) \mathbb{P}_x$ -a.s.

Problem 2.

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (\mathbb{P}_x)_{x \in E}, (X_t)_{t \in \mathbb{R}_+})$ be a Markov process. Show that

$$p_t(x,B) := \mathbb{P}_x(X_t \in B)$$

defines a normal (*normal* just means that $p_0(x, \cdot) = \delta_x \ \forall x \in E$) Markov semigroup and show that the finite-time marginal distributions of $(X_t)_{t \in \mathbb{R}_+}$ are given by

$$\mathbb{P}_{x}(X_{t_{1}} \in B_{1}, ..., X_{t_{n}} \in B_{n}) = \int_{B_{1}} ... \int_{B_{n}} p_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n}) ... p_{t_{1}}(x, dx_{1})$$

for all $t_1 < ... < t_n, B_i \in \mathcal{F}_{t_i}, x \in E$. (See also the last exercise sheet.)

Problem 3.

Show that for every normal Markov semigroup $(p_t)_{t \in \mathbb{R}_+}$ there exists a Markov process $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (\mathbb{P}_x)_{x \in E}, (X_t)_{t \in \mathbb{R}_+})$ such that

$$p_t(x,B) = \mathbb{P}_x(X_t \in B)$$

for all $x \in E, t \in \mathbb{R}_+$.

Hint: Use Kolmogorov's consistency theorem.

(2 Points)

(3 Points)

Problem 4.

(3 Points)

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (\mathbb{P}_x)_{x \in E}, (X_t)_{t \in \mathbb{R}_+})$, $(\tilde{\Omega}, \tilde{\mathcal{F}}, (\tilde{\mathcal{F}}_t)_{t \in \mathbb{R}_+}, (\tilde{\mathbb{P}}_x)_{x \in E}, (\tilde{X}_t)_{t \in \mathbb{R}_+})$ be two Markov processes. Assume that the finite-time marginal laws of *both* Markov processes are given by the *same* normal Markov semigroup $(p_t)_{t \in \mathbb{R}_+}$, i.e.

$$p_t(x,B) = \mathbb{P}_x(X_t \in B) = \tilde{\mathbb{P}}_x(\tilde{X}_t \in B),$$

for all $t \in \mathbb{R}_+$ and $x \in E$. For an initial distribution μ define \mathbb{P}^{μ} and $\tilde{\mathbb{P}}^{\mu}$ by

$$\mathbb{P}^{\mu}(B) := \int_{E} \mathbb{P}_{x}(B)\mu(dx)$$

and

$$\tilde{\mathbb{P}}^{\mu}(B) := \int_{E} \tilde{\mathbb{P}}_{x}(B)\mu(dx).$$

Show that $\mathbb{P}^{\mu} \circ X^{-1} = \tilde{\mathbb{P}}^{\mu} \circ \tilde{X}^{-1}$ (on $(E, \mathcal{B}(E))$).