Winter term 2023/2024 Lecture: Prof. Dr. Michael Röckner Exercises: Dr. Sebastian Grube

Exercises to Introduction to Stochastic Partial Differential Equations II

Sheet 9 Total points: 13 Submission before: Friday, 15.12.2023, 12:00 noon

Problem 1.

Use Lemma 5.1.7 to prove assertion (3) of Lemma 5.1.6 in the lecture notes.

Problem 2 (Semilinear SPDE).

Let $A_q: V \to V^*$ be defined by

as in Example 5.1.8. Prove that the operator A_g is hemicontinuous, i.e. it satisfies (H1).

Problem 3 (Interpolation inequality).

Let $q \in [1, \infty], p \in [1, \infty], \lambda \in (0, 1)$. Let $p' := \frac{p}{p-1} (\in [1, \infty])$. Prove that for all measurable functions $u : \mathbb{R}^d \to \mathbb{R}$ we have

 $||u||_{L^q} \leq ||u||_{L^{\lambda_{qp}}}^{\lambda} ||u||_{L^{(1-\lambda)}qp'}^{(1-\lambda)}.$

 $A_a(u) = A(u) + g(u)$

Problem 4 (Stochastic 2D Navier–Stokes equation).

Consider the setting of Example 5.1.10: Let $\Lambda \subset \mathbb{R}^2$ be a bounded domain with smooth boundary. We set

 $V := \{ v \in H_0^{1,2}(\Lambda; \mathbb{R}^2) : \nabla \cdot v = 0 \text{ a.e. in } V \}.$

 $V \subset H \cong H^* \subset V^*$.

 $A: H^{2,2}(\Lambda; \mathbb{R}^2) \cap V \to H, \quad u \mapsto \nu P_H \Delta u,$

Let H be the closure of V in $L^2(\Lambda; \mathbb{R}^2)$. We have the Gelfand triple

We define the Stokes operator A with viscosity constant ν through

where $P_H: L^2(\Lambda; \mathbb{R}^2) \to H$ denotes the Helmholtz–Leray projection.

(i) Show that the Stokes operator extends by continuity to a continuous map $A: V \to V^*$, so that for some $C \in (0, \infty)$, $||Au||_{V^*} \leq C||u||_V, u \in V$, and that (via integration by parts) $_{V^*}\langle Au, u \rangle_V = -\nu ||u||_V^2$.

Furthermore, the external force $F: V \times V \to V^*$ is defined as follows. For $u, v \in V$ we set

$$_{V^*}\langle F(u,v),w\rangle_V := \int_{\Lambda} ((u\cdot\nabla)v)\cdot wd\xi, \ w\in V.$$

(ii) Show that F is indeed well-defined and continuous Hint: Use Lemma 5.1.6 (0).

(3 Points)

(2+2 Points)

(3 Points)