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([Parts of ] Exercises marked with “*” are additional exercises.)

Problem 1 (BV functions, cf. Def. 1.1.1). (3 Points)

The definition of bounded variation (short: BV) may seem a bit technical at first. A helpful in-
tuition might be as follows: consider the graph of a function as the profile of a mountain. Loosely,
a function is BV if a hiker will travel only a finite total vertical elevation in finite time along this
profile. The following exercise provides a characterization of BV functions in one dimension.

Prove: A function f : [0,∞) → R is of bounded variation if and only if f can be written as
f = f1 − f2 for two positive, increasing functions fi, i ∈ {1, 2}.

Such a decomposition is not unique, since if f = f1 − f2 for fi as in the assertion, then also f = (f1 + g)− (f2 + g) for any positive and

increasing g.

Hint: For " =⇒ ", you may try f1(t) := vartf .

Problem 2 (Quadratic variation of Brownian motion, cf. Thm. 1.1.4). (3 Points)

The notion of the quadratic variation of a function or a process will be essential throughout this
lecture. Note that for a partition τn with sufficiently small mesh such that |Xtni+1

− Xtni
| < 1,∑

tni ∈τn
|Xtni+1

−Xtni
|p is decreasing in p. Hence, if X is not BV (p = 1), it might still be of finite

quadratic variation (p = 2). In this sense, the quadratic variation is a refined measurement of the
total vertical displacement of a path. The next exercise deals with an important technical claim
about the quadratic variation of Brownian paths.

Prove Theorem 1.1.4. (ii).

Problem 3. (4 Points)

Under the assumptions stated at the beginning of Sect. 1.2. of the notes, prove the claim about
the existence of the "α−integral"α−

∫ t
0
f(Xs)dXs as well as identity (1.2.8).

Problem 4 (You might need Itô’s product rule, which you will cover in the lecture on Oct 19).
(4 Points)

It is usually not favorable to work with integrals of type
∫
Ys dXs or quadratic variations by their

plain definition as a limit of sums subject to partitions τn with mesh converging to 0 (similarly,
in classical Analysis nobody wants to work with Riemann integrals via their definition as the limit
of Riemann sums!). Instead, one uses Itô’s formula, product rule and elementary properties of the
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quadratic variation as a toolbox for calculations. This toolbox can be seen as the stochastic analogue
to classical analysis-tools as the chain rule. This analogy coins the term stochastic analysis. You
should use these tools in the following exercise.

Let B : R+ × Ω→ R be a continuous Brownian motion with B0 = 0.

(i) Compute
∫ t
0
Bs dBs pathwise.

(ii) Let g(t) := tBt and h(t) := e−Bt . Compute 〈g〉t and 〈h〉t pathwise (i.e. more precisely,
compute 〈g(ω)〉t and 〈h(ω)〉t for g(ω)(t) := tBt(ω) and h(ω)(t) := e−Bt(ω)).

Hint: You may use that any C1-function is BV.

Problem* 5 (Paley-Wiener integrals, cf. Exa. 1.3.20). (2+2 Points)

One central goal of this lecture is to give meaning to integrals
∫
Ys dXs, where X, Y : R+×Ω→ R

are stochastic processes. The most important case is that of X being a continuous Brownian motion.
In this, as well as most other cases, such integrals cannot be defined as pathwise Lebesgue-Stieltjes
integrals

∫
Ys(ω)dXs(ω), since typical paths of X will not be BV. A way out is the construction of

stochastic integrals, cf. Ch.2. For now, we want to study special cases of pairs (X, Y ) for which the
integral can be defined pathwise. One such case arises from Itô’s formula: if the paths of X satisfy
the assumptions from the beginning of Sect. 1.2. and f ∈ C1(R), then the integral is pathwisely
defined for the pair (X, f(X)), see Rem. 1.2.10. The case X = continuous Brownian motion is
included. In this exercise, we will study another special case, where X = continuous Brownian
motion and Y is a deterministic function, i.e. it does not depend on ω.

Let B be a continuous Brownian motion on (Ω,F ,P) with B0(ω) = 0 P−a.s.

(i) Let h ∈ C([0, 1],R) with bounded variation and h(1) = 0. Then, by Itô’s product rule, we
have P-a.s. ∫ 1

0

h(s)dBs(ω) = −
∫ 1

0

Bs(ω)dh(s).

Prove

E
[ ∫ 1

0

h(s)dBs

]
= 0

and

E
[(∫ 1

0

h(s)dBs

)2]
=

∫ 1

0

h(s)2ds. (1)

Pay specific attention where you use properties of Brownian motion.

(ii) Work out the details of the end of Exa. 1.3.20: How and between which spaces does (1) yield
an isometry? How does one use this isometry to extend the definition of

∫ 1

0
h(s)dBs to a

larger class of integrands h, and what is this larger class?
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