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Problem 1 (Completion of probability space). (2+2 Points)

Let (Ω,F ,P) be a probability space. On the previous sheet we particularly discussed the augmen-
tation of a sub-σ-algebra A ⊆ F , which is σ(A,N ), where N = {N ∈ F : P(N) = 0}. This
augmentation is not to be confused with the completion of the basic σ-algebra F and with the
corresponding completion of the space (Ω,F ,P). These terms are investigated in this exercise.

Consider the system of subsets of zero sets N⊆ := {M ⊆ N : N ∈ N}. In general, it is not
true that N⊆ ⊆ F , i.e. there are subsets of zero sets which are not measurable. However, by the
monotonicity of P intuitively it seems plausible that one should have ”P(M) = 0” for M ∈ N⊆.
Also for technical reasons it might be useful to know that any subset of a zero set is a zero set (i.e.
measurable) itself. For instance, if a property P holds for P-a.a. paths of a stochastic process, then the set of paths which violate

P is a (possibly proper) subset of a zero set. To achieve this, one considers the completion F̄ of F , i.e.

F̄ := σ(F ,N⊆).

(i) Prove F̄ = {F ∪M |F ∈ F ,M ∈ N⊆}.
Recall: in general for two set systems C,D σ(C,D) = {C ∪D|C ∈ C, D ∈ D} is wrong, even if C and D are σ-algebras!

It seems reasonable to define P̄ on F̄ by P̄(F ∪M) := P(F ).

(ii) Prove that P̄ is well-defined and a probability measure on F̄ which extends P on F .

The probability space (Ω, F̄ , P̄) is called the completion of (Ω,F ,P) and by construction: if N ∈ F̄
with P̄(N) = 0 and M ⊆ N , then M ∈ F̄ and P̄(M) = 0. Sometimes one assumes to work on
a complete probability space. If one considers a filtration (Ft)t>0 on such a complete space and
considers its augmentation, then it is of course true that every subset of any zero set belongs to the
augmented filtration. So far, we have never explicitly assumed to work on a complete probability
space in this lecture, but we will, for instance, do so in next semester’s lecture.

Problem 2 (Deterministic motion without memory as example of Markov process). (4 Points)

The main feature of a Markov process can be described as "the future evolution of the process after
time t0 > 0 only depends on its state at time t0, and not on its past [0, t0)”. Typically, Markov
processes are stochastic processes. However, for deterministic systems, the concept of ’ independence
of the future from the past, given the present’ is a causality principle that applies to large parts
of classical physics, described by ODEs as in the exercise below: here the change of a curve y at t0
depends only on its current position (via b(y(t0))), but not on y|[0,t0). Hence, it seems plausible that
solutions to such an ODE form a Markov process or, strictly speaking, not the curves themselves,
but their path laws (which in the deterministic case are just the Dirac measures over the paths) are
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expected to be Markov (because by def. a Markov process is a family of probability measures Px. In
this exercise, you prove that this is indeed the case if the ODE is well-posed.

Let b : Rd → Rd be a vector field such that the ODE on [0,∞)× Rd

d

dt
y(t) = b(y(t)), y(0) = x

is well-posed, i.e. for every x ∈ Rd there is a unique C1 solution yx : [0,∞)→ Rd with yx(0) = x,
and x 7→ yx ∈ C(R+,Rd) is continuous wrt. the locally uniform topology on C(R+,Rd).
A sufficient condition for this is that b is locally Lipschitz and satisfies the one-sided growth condition 〈b(x), x〉 6 C(1 + |x|) for all

x ∈ Rd and some C > 0, where 〈·, ·〉 denotes the standard inner product on Rd.

Consider the probability measures Px(·) := δyx(·) on (Ω,F), where

Ω = C(R+,Rd), F = σ(πt, t > 0), πt : Ω→ Rd, πt(f) = f(t).

DenotingXt := πt (i.e. we consider the canonical model of Section 3.1.), prove that (Ω,F , (Px)x∈Rd , (Xt)t>0)
is a Markov process wrt. (Ft)t>0 = (σ(Xs, 0 6 s 6 t))t>0.

Problem 3 (Basics on Markov processes). (2+1+2+3 Points)

Markov processes are one of the most important classes of stochastic processes used in pure sto-
chastic analysis and its applications in e.g. finance and physics. It is therefore important that you
develop an intuition for the features of these processes. The following exercise shall help you to
develop an intuitive understanding.

(i) Let n = 3. Write out equation (3.1.1.) in full length and simplify as much as possible for a)
the general case and b) for f(x0, x1, x2, x3) = 1A0(x0) · 1A1(x1) · 1A2(x2) · 1A3(x3), Ai ∈ S.

(ii) Show that in the situation of Thm.3.1.4 (i)(a) one has Px ◦X−1t = pt(x, ·) for all t > 0
(that this is true in 3.1.4. (i)(b) is clear by (3.1.2.). Hence, altogether one sees that for a Markov process ((Px)x∈S , (Xt)t>0),

one always has that pt(x, ·) equals Px ◦X−1
t .)

(iii) Use (ii) to note that the right-hand side of (M2) is equal to pt(Xs, B) (where pt(x, dy)
denotes the Markovian kernel of the given Markov process). Then show that (M2) implies
for all t, s > 0, B ∈ S and x ∈ S

Ex[Xt+s ∈ B] =

∫
S

Py(Xt ∈ B) ps(x, dy)

and interpret this equality in the case that the Markov process is normal, i.e. Px(X0 = x) = 1
for all x ∈ S.

(iv) Prove (3.1.1) in the situation of Thm.3.1.4(i)(b) explicitly for the case n = 0, n = 1 and
n = 2, i.e. first prove it for n = 0 (you can use (ii)) and then iteratively for the other cases.
In other words, this proves the first three iterates of the inductive argument used in the proof of (3.1.1.) in Thm.3.1.4(i)(b).

You can first use functions of tensor type and then argue (in detail!) by a monotone class-
argument, as indicated in the proof of Thm.3.1.4(i)(b).
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