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([Parts of ] Exercises marked with “*” are additional exercises.)

Problem 1 (Path measures). (2+2+3* Points)

Measures on spaces of paths are, at least implicitly, present everywhere in stochastic analysis, since
every stochastic process is associated with such a path measure, namely its law. Many features of a
process can be studied via its law. An important feature of such path measures is that even though
they are measures on a ”huge” space of paths, they are already uniquely determined by their family
of finite-dimensional distributions, as we learn in this exercise.

Let (S,S) be a measurable space and Ω ⊆ S[0,∞) a subset of the space of all maps y : [0,∞)→ S.

Usual cases are Ω = C([0,∞), S) or Ω = space of càdlàg paths, if S is a topological space, or Ω = S[0,∞).

Consider probability measures P, P̃ on the measurable space (Ω,F), F := σ(πt, t > 0), where
πt : Ω→ S, πt(y) := y(t) for y ∈ Ω denotes the canonical projection from Ω at t.

(i) Prove: If P and P̃ have the same finite-dimensional marginals, i.e. if

P ◦ (πt0 , . . . , πtn)−1 = P̃ ◦ (πt0 , . . . , πtn)−1, ∀n ∈ N0, 0 6 t0 < · · · < tn

(also called finite-dimensional distributions), then P = P̃ on F .

Measures P on (Ω,F) are also called path measures or path laws, since Ω can be thought of (as a
subset of) the space of paths y : [0,∞)→ S. An important special case of such path measures are
laws of stochastic processes:

(ii) Let X be an (At)-adapted S-valued [continuous] stochastic process on a filtered probability
space (Ω̃,A, (At)t>0,P), then it can be considered as a map X : Ω̃→ Ω, X(ω) = (t 7→ Xt(ω))
with Ω = S[0,∞) [with Ω = C([0,∞), S)].

Prove that X is A/F -measurable. Then consider the law of X, i.e. the image measure P◦X−1

on (Ω,F), and deduce that it is uniquely determined by the distributions of the random
vectors (Xt0 , . . . , Xtn), n ∈ N0, 0 6 t0 < · · · < tn.

(iii)* Prove that if (S, d) is a separable metric space such that S = B(S) and Ω = C([0,∞), S) is
equipped with the topology of locally uniform convergence, then B(Ω) = F .

You may use: since (S, d) is separable, Ω with the top. of loc. unif. conv. can be metrized by a metric d̃ so that (Ω, d̃) is separable.

Hence F is not some strange artificial σ-algebra, but also the natural one if one studies the
path space Ω from a topological point of view. Furthermore, note that F is obviously also
equal to B(Ω) if Ω is considered with the topology of pointwise convergence.
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Problem 2 (The canonical model). (1,5+1,5 Points)

Markov processes are families of probability measures Px. The usual case is that one has a stochastic
process Xx on a common probability space for each x ∈ S, and Px is the law of Xx (see ex.1). The
Markov property is not concerned with pathwise properties of Xx (such as path regularity), but
only with its law and finite-dimensional distributions. These information can be read off from Px,
and the paths t 7→ Xx(ω) can be neglected. Since the laws Px are measures on (Ω,F) (Ω ⊆ S[0,∞)

and see the previous ex. for the def. of F), it is reasonable to choose this pair as the measurable
space in the definition of the Markov process. Choosing Xt = πt on Ω, clearly Px ◦X−1 = Px for
all x, and we arrive at the canonical model. Note that we have replaced the process Xx for all x by
a common process X, and ”all information is stored in the laws Px”!

(i) Consider the situation of the ”canonical model’ in Section 3.1. Prove that the shift operator
ϑt (cf. Def.3.1.5) is F̂0

t /F -measurable, and ϑ−1
t (F) = F̂0

t for all t > 0.

(ii) Prove Lemma 3.1.6 (i).

Problem 3 (Construction of a Poisson process). (1+2*+3*+2 Points)

Poisson processes are key examples of stochastic processes with càdlàg paths. In this and the followi-
ng exercises, we want to study these processes and see that - to a certain degree - among the càdlàg
processes they play a role as central as the Brownian motion in the class of continuous processes.
Recall that Brownian motion B can be defined by independence of Bt − Bs from σ(Br, 0 6 r 6 s)
and the distribution of Bt − Bs being N(0, t − s). Similarly, a Poisson process N (with intensity
λ > 0) is characterized as follows: Nt − Ns is independent of σ(Nr, 0 6 r 6 s) and Nt − Ns is
Poisson distributed with parameter λ(t− s) for all 0 6 s < t.

Let Ti, i ∈ N, be a sequence of independent exponentially distributed random variables with
parameter λ > 0 on a probability space (Ω,F ,P), i.e. P(Ti 6 t) = 1 − exp(−λt), t > 0. Let
Sn :=

∑n
i=1 Ti,

Nt :=
∞∑
i=1

1Si6t,

and Ft := σ(Ns, 0 6 s 6 t).

Intuition: Each Ti represents a ticking clock that rings some time after it is started (and is ”dead”
afterwards), and Ti denotes the duration between its start and the moment it rings. Ti+1 is started
when Ti rings.

(i) Based on this intuition, what is the meaning of Sn and Nt? Draw a ”typical’ path t 7→ Nt(ω).

Moreover, prove the following:

(ii)* For A ∈ σ(T1, . . . , Tn) and s < t

P(Sn+1 > t,Ns = n,A) = exp(−λ(t− s))P(Ns = n,A).

Now you may assume the following identify for A ∈ σ(T1, . . . , Tn) and s < t :

P(Nt −Ns 6 k,Ns = n,A) = exp(−λ(t− s))
k∑
j=0

(λ(t− s))j

j!
P(Ns = n,A).

(iii)* P(Nt −Ns = k,A) = exp(−λ(t− s)) (λ(t−s))k
k!

P(A) for s < t, k > 0 and all A ∈ Fs.
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Argue why this implies that Nt − Ns is Poisson distributed with parameter λ(t − s) and
independent of Fs, i.e. N is a Poisson process with intensity λ.

Hint: Show first that for each A ∈ Fs there is A′ ∈ σ(T1, . . . , Tn) such that A ∩ {Ns = n} =
A′ ∩ {Ns = n}. Dynkin-system!

(iv) (Nt − λt)t>0 and ((Nt − λt)2 − λt)t>0 are (Ft)-martingales, where Ft := σ(Ns, 0 6 s 6 t).

Consequently, Nt− λt is an important example of a discontinuous martingale with respect to
which stochastic integrals are defined!

Problem 4 (Characterization of Poisson processes). (2 Points)

Note the analogy to Lévy’s characterization of Brownian motion!

A process N is called a jump process with jumps of height +1, if P-a.e. path is piecewise constant,
and limε→0(Nt −Nt−ε) ∈ {0, 1} for all t > 0 P−a.s.

Let N = (Nt)t>0 be a monotonically non-decreasing stochastic process with càdlàg paths and
N0 = 0 and let Ft := σ(Ns, 0 6 s 6 t). Consider the following statements:

(i) N is a right-continuous jump process with jumps of height +1 such that (Nt − λt)t>0 is a
(Ft)-martingale.

(ii) N is a Poisson process with intensity λ > 0 (see the text before the previous exercise for the
definition).

Prove ’ii) =⇒ i)’.

As a matter of fact, (i) and (ii) are even equivalent, which can be proven similarly to Lévy’s
characterization of Brownian motion.

Problem 5. (2+2 Points)

(i) Let λ > 0. Does there exist a stochastic process (Xt)t>0 with continuous paths such that
for 0 6 s 6 t the increments Xt − Xs are independent of σ(Xr, 0 6 r 6 s) and Poisson
distributed with parameter λ(t− s)?

(ii) Does there exist a stochastic process (Xt)t>0 with continuous paths such that Xt − λt is a
martingale wrt. (σ(Xr, 0 6 r 6 t))t>0?

We wish you a merry christmas and a healthy and happy transition to 2023!
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