
Winter term 2022/2023
Prof. Dr. Michael Röckner and Dr. Marco Rehmeier

Exercises to Stochastic Analysis

Sheet14
Total points: 8+8*

Submission before: Thursday, 02.02.2023, 12:00 noon

([Parts of ] Exercises marked with “*” are additional exercises.)

Problem 1 (Strong well-posedness of an SDE). (2+1+1 Points)

(i) Let α, σ > 0, β ∈ R, and prove, using general theory from Ch.6, that the SDE

dXt = −α(Xt − β)dt+ σdBt, t > 0, (1.1)

has a unique strong solution. Why can this result not be obtained by the Zvonkin transfor-
mation as stated in Thm.6.2.6?

(ii) Now assume α, σ : R+ → R+ and β : R+ → R are functions of t ∈ R+. Which assumptions
do you have to make on the t-dependence of α, β and σ such that - based on the theory of
Ch.6 - the strong well-posedness from (i) remains true?

(iii) Based on the interpretation that (1.1) roughly means

Xt+h −Xt ≈ −α(Xt − β)h+ σ(Bt+h −Bt)

for t > 0 and 0 < h� 1, interpret the meaning of the parameters σ, α and β.

The assertions of Problem 2 and 3 are also true for Rd, d > 2, instead of R, but since
we treated only one-dimensional SDEs in this lecture, we restrict to the case d = 1.

Problem 2 (Solutions of weakly well-posed time-homogeneous SDEs form Markov process).
(4 Points)

A very important class of Markov processes arises as solutions to SDEs. Remarkably, even if an
SDE is not well-posed, i.e. if there is more than one solution for a given initial condition, it is
(under certain assumptions on the coefficients of the SDE) possible to select one particular solution
for each initial condition such that the family of these selected solutions forms a Markov process.
However, the ’classical’ situation is that the SDE is (at least weakly) well-posed, and in this case
it is always true that the family of its (weakly unique) solutions constitutes a Markov process, as
you will show in this exercise.

Consider the SDE with time-independent (also called time-homogeneous) coefficients b, σ : R→ R

dXt = b(Xt)dt+ σ(Xt)dBt, t > 0, (2.1)

and assume that for every initial condition X0 = x, x ∈ R, there exists a unique weak solution,
and denote by Px the path law on (Ω,F) := (C(R+,R), σ(πt, t > 0)) of the unique weak solution
with start in x (where, as usual, πt denotes the canonical projection from Ω to R at t).
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Prove that (Ω,F , (πt)t>0, {Px)x∈R} is a Markov process wrt. (Ft)t>0,Ft := σ(πs, 0 6 s 6 t).

Hint: You may use the following: For each Px as above and s > 0, the regular conditional probability
kernel p of Px[ · |Fs] from (Ω,Fs) to (Ω,F) is of the form p(ω,A) = q(πs(ω), A) for ω ∈ Ω, A ∈ F
and an (up to zero sets) uniquely determined map q : R×F → R, and for Px ◦ π−1

s -a.e. z ∈ R, the
probability measure q(z, ·) on F is the path law of a weak solution to (2.1) with initial condition z.

Problem* 3 (From solutions to SDEs to solutions to FPKEs). (4* Points)

Fokker–Planck–Kolmogorov equations (FPKEs) are differential equations for measures, which are
closely related to stochastic analysis and SDEs. For instance, one can show: For every weakly conti-
nuous solution t 7→ µt to (FPKE) as below, there is a weak solution process X to the corresponding
(SDE) such that P◦X−1

t = µt for all t > 0. This remarkable result is called superposition principle.
The converse implication is much easier to prove and is treated in this exercise.

Let ν be a Borel probability measure on R, let (X,B) be a weak solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = ξ0, t > 0, (SDE)

on a filtered probability space (Ω,F , (Ft)t>0,P), where ξ0 is an F0-measurable random variable on
Ω such that P ◦ ξ−1 = ν, and assume E[

∫ t
0
|b|(s,Xs)ds] + E[

∫ t
0
|σ2|(s,Xs)ds] <∞ for all t > 0.

First, show that the curve of probability measures on B(R) given by t 7→ µt := P◦X−1
t (also called

one-dimensional time marginals of X) is weakly continuous (in the sense of measures). Then,
using Itô’s formula, prove that t 7→ µt is a distributional solution to the so-called Fokker–Planck–
Kolmogorov equation

∂tµt = ∂2
x(aµt)− ∂x(bµt), t > 0, µ0 = ν (FPKE)

(where a := σ2), which means that

(i)
∫ t

0

∫
R |b|(s, x) + |a|(s, x)| dµs(x)ds <∞ for all t > 0,

(ii)
∫
R ϕdµt −

∫
R ϕdν =

∫ t
0

∫
R a(s, x)ϕ′′(x) + b(s, x)ϕ′(x) dµs(x)ds for all ϕ ∈ C2

c (R).

Problem* 4 (Approximation of stochastic integrals by ’Riemannian sums’). (4* Points)

Let B = (Bt)t>0 be an (Ft)-Brownian motion on a filtered probability space (Ω,F , (Ft)t>0,P), and
let H : R+ × Ω → R be product measurable and (Ft)-adapted such that E[

∫∞
0
|H|2dt] < ∞ (where

E[·] denotes expectation wrt. P). Then we know that the stochastic integral
∫ ·

0
HsdBs is well defined

on [0,∞) × Ω, and that it can be approximated by a sequence of stochastic integrals
∫ ·

0
H

(n)
s dBs,

n ∈ N, where H(n) are elementary functions as in Def.2.3.19. However, it is not clear whether one
can also approximate it by stochastic integrals with integrands of type

H(n)(t, ω) = Htni
(ω) ∀t ∈ (tni , t

n
i+1] for some 0 = tn0 < · · · < tnkn <∞.

In other words, the question is whether
∫ ·

0
HsdBs can be approximated by ”Riemannian sums”. This

exercise gives a positive answer to this question.

Let B and H be as above, let n ∈ N, and prove the following: There is a partition 0 = tn0 < · · · <
tnkn = n of [0,∞) such that max06i6kn−1 |tni+1 − tni | 6 1

n
, and

E
[ ∫ ∞

0

|H̄(n)
s −Hs|2ds

]
n→∞−−−→ 0,

where H̄(n)
t := Htni

for t ∈ (tni , t
n
i+1], and H̄(n)

t := 0 for t > n. By showing that H̄(n) is predictable,
conclude that

∫ t
0
H̄

(n)
s dBs

n→∞−−−→
∫ t

0
HsdBs in L2(P) for all t > 0.
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