Exercises to Probability Theory I

Sheet 11

Submission before: Friday, 21.01.2022, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem* 42. (with Corollary 1.10.7 and hint¹) (4 points) Consider the probability measures μ_n, μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with associated cumulative distribution functions (CDFs) F_n, F . Show: if $(\mu_n)_{n \in \mathbb{N}}$ converges weakly to μ and F is continuous, then $(F_n)_{n \in \mathbb{N}}$ converges uniformly to F on \mathbb{R} .

Problem* 43. (CLP and weak law of large numbers) (1,5 + 1,5 + 1 points)Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent, square integrable random variables with variances $\sigma_n^2 := \operatorname{var}(X_n) > 0$, which have the CLP. Let $\varepsilon > 0$ and

$$s_n := \left(\sum_{k=1}^n \sigma_k^2\right)^{1/2}, \quad \alpha_n := \frac{\varepsilon n}{s_n}.$$

(a) Show that

$$P\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(X_{k}-\mathbb{E}[X_{k}]\right)\right|<\varepsilon\right]-\frac{1}{\sqrt{2\pi}}\int_{-\alpha_{n}}^{\alpha_{n}}\exp\left(-\frac{x^{2}}{2}\right)dx$$

converges to 0 for $n \to \infty$ (even uniformly in ε).

- (b) Conclude that $(X_n)_{n \in \mathbb{N}}$ does not satisfy the **weak law of large numbers** when the sequence $\left(\frac{n}{s_n}\right)_{n \in \mathbb{N}}$ is bounded.
- (c) Apply the result of (b) to the situation of Problem 35 in the case $\lambda \ge \frac{1}{2}$.

Problem* 44. (Corollary 3.1.8, Proposition 3.1.19, Remark 3.1.16/17) (4 points) For every absolutely continuous distribution μ on \mathbb{R} , we define (in analogy to the discrete case of Definition 3.1.1) the entropy

$$H(\mu) := -\int_{\mathbb{R}} f(x) \log f(x) dx,$$

where f denotes the density of μ . Prove the following statement: Of all absolutely continuous distributions μ on \mathbb{R} that have variance 1, the standard normal distribution N(0, 1) has the greatest entropy².

¹Show first that for every $\varepsilon > 0$ there are finitely many points $x_0 < x_1 < \ldots < x_k$ such that F changes by less than ε on each of the intervals $] - \infty, x_0],]x_i, x_{i+1}], [x_k, \infty[$.

²Consider first the case of an absolutely continuous distribution μ with variance 1 and expectation 0.

Problem* 45. (Definition 3.1.5, Proposition 3.2.7) (4 points) Determine the probability distribution ν on \mathbb{R} that minimises $H(\nu|N(0,1))$ under the constraint/side condition

$$\int x d\nu(x) = m.$$

Problem* 46. (A very recent proof of the strong law of large numbers) (3 points) Read the following preprint by P. J. Fitzsimmons and reformulate the proof in your own words.

URL: https://arxiv.org/abs/2111.05766

Problem* 47. (Further notions of convergence of measures besides weak convergence) (2+2 points) In this exercise we want to study how different notions of convergence of measures are related, and in which sense weak convergence is "weak". Let (S, \mathcal{S}) be a metric space with Borel σ -Algebra \mathcal{S} . Consider the following three forms of convergence of probability measures:

- (i) $\mu_n \to \mu$ weakly, if $\int f d\mu_n \to \int f d\mu \ \forall f \in C_b(S);$
- (ii) $\mu_n \to \mu$ strongly (or setwise), if $\mu_n(A) \to \mu(A) \ \forall A \in \mathcal{S}$;
- (iii) $\mu_n \to \mu$ in total variation, if $\|\mu_n \mu\|_{\text{TV}} := \sup_{A \in \mathcal{S}} |\mu_n(A) \mu(A)| \to 0.$

Show that

- (a) The implications (iii) \Rightarrow (ii) \Rightarrow (i) hold, i.e. convergence in total variation implies strong convergence, which implies weak convergence.
- (b) Investigate both examples of Example 1.10.2, i.e. $\mu_n = \delta_{1/n}$ and $\nu_n = N(0, 1/n)$, and $\mu = \nu = \delta_0$. Which of the forms of convergence hold in these examples?

We wish you happy holidays!