Winter term 2021/22
Prof. Dr. Michael Röckner and Dr. Andre Schenke

Exercises to Probability Theory I

Sheet 12
Submission before: Friday, 21.01.2022, 12:00
Digital submission in the tutorial's "Lernraum"

> (Exercises marked with "*" are additional exercises.)

Problem 48. (for " \Leftarrow ", use Problem 27)

Let X be a real-valued random variable on a probability space (Ω, \mathcal{A}, P). The Laplace transform $Z: \mathbb{R} \rightarrow(0, \infty]$ of X is defined by

$$
Z(\lambda):=\mathbb{E}[\exp (\lambda X)], \quad \lambda \in \mathbb{R} .
$$

Show that the following statements are equivalent:
(i) Z is finite in a neighbourhood of 0 (i.e. on an interval $[-\varepsilon, \varepsilon]]$).
(ii) There exist $a<\infty, b>0$ such that

$$
P[|X| \geqslant t] \leqslant a \exp (-b t), \quad t \geqslant 0
$$

Problem 49. (Proposition 3.3.1 - calculate rate functions)
Let $U(x)=x$. In the situation of Proposition 3.3.1, we know that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left[\frac{1}{n} \sum_{i=1}^{n} X_{i} \geqslant m\right]=-H\left(\mu_{\lambda(m)} \mid \mu\right)=-I(m)
$$

for the rate function $I: \mathbb{R} \rightarrow[0, \infty]$. From Proposition 3.2.7 (ii) we know furthermore that for $m \in m(\Lambda)$, we have the representation

$$
I(m)=H\left(\mu_{\lambda(m)} \mid \mu\right)=\max _{\tilde{\lambda} \in \tilde{\Lambda}}(\tilde{\lambda} m(\lambda(m))-\log Z(\tilde{\lambda}))=\max _{\tilde{\lambda} \in \tilde{\Lambda}}(\tilde{\lambda} m-\log Z(\tilde{\lambda})) .
$$

More generally, it holds (so that we can also have $I(m)=\infty$) that I is the Legendre transform of $\log Z(\lambda)$:

$$
I(m)=\sup _{\lambda \in \mathbb{R}}(\lambda m-\log Z(\lambda)) .
$$

Use this formula to calculate the rate function for the following distributions:
(a) Dirac distribution $\varepsilon_{a}, a \in \mathbb{R}$;
(b) $\operatorname{Exp}(\alpha)$, the exponential distribution with parameter $\alpha>0$.
(c) $N\left(m_{0}, \sigma^{2}\right)$.

Moreover, check that in each of these cases the following properties are satisfied:

- $I(m)=0 \Leftrightarrow m=\mathbb{E} X_{1}$;
- On the set $\{I<\infty\}^{\circ}, I$ is infinitely differentiable;
- If $\{I<\infty\}^{\circ} \neq \emptyset$, then $I^{\prime \prime}\left(\mathbb{E} X_{1}\right)=\frac{1}{\sigma^{2}}$.
(d)* Investigate the above questions also for the Poisson distribution with parameter α.

Problem 50.

Let S be a separable metric space with metric d. Consider random variables $X_{1}, X_{2}, \ldots, X_{n}$ on a probability space (Ω, \mathcal{A}, P) with values in S.
(a) Show that

$$
d_{n}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right):=\sup _{1 \leqslant i \leqslant n} d\left(x_{i}, y_{i}\right)
$$

is a metric on S^{n}.
(b) Show that the map

$$
\begin{aligned}
\varphi: \Omega & \rightarrow S^{n} \\
\omega & \mapsto \varphi(\omega):=\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right)
\end{aligned}
$$

is measurable with respect to the Borel σ-Algebra $\mathcal{B}\left(S^{n}\right)$ on S^{n} that is induced by the metric d_{n}.

Problem 51. (with Problem 50, Remark 3.5.2)
Let S be a separable metric space with metric d. Consider random variables $X_{1}, X_{2}, \ldots, X_{n}$ on a probability space (Ω, \mathcal{A}, P) with values in S.
(c) Show that the map

$$
\begin{aligned}
\chi_{n}: S^{n} & \rightarrow \mathcal{M}_{1}(S) \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto \chi_{n}\left(x_{1}, \ldots, x_{n}\right):=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{x_{i}}
\end{aligned}
$$

is continuous.
(d) Conclude using parts (b) and (c) that

$$
\omega \mapsto \xi_{n}(\omega):=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{X_{i}(\omega)}
$$

is measurable with respect to the Borel σ-Algebra $\mathcal{B}\left(S^{n}\right)$ on S^{n} that is induced by the metric d_{n}.

