Exercises to Probability Theory I

Sheet 12

Submission before: Friday, 21.01.2022, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem 48. (for " \Leftarrow ", use Problem 27) (4 points) Let X be a real-valued random variable on a probability space (Ω, \mathcal{A}, P) . The **Laplace transform** $Z: \mathbb{R} \to (0, \infty]$ of X is defined by

$$Z(\lambda) := \mathbb{E}\left[\exp(\lambda X)\right], \quad \lambda \in \mathbb{R}.$$

Show that the following statements are equivalent:

- (i) Z is finite in a neighbourhood of 0 (i.e. on an interval $[-\varepsilon, \varepsilon]$).
- (ii) There exist $a < \infty$, b > 0 such that

$$P[|X| \ge t] \le a \exp(-bt), \quad t \ge 0.$$

Problem 49. (Proposition 3.3.1 — calculate rate functions) (1 + 1, 5 + 1, 5 points)Let U(x) = x. In the situation of Proposition 3.3.1, we know that

$$\lim_{n \to \infty} \frac{1}{n} \log P\left[\frac{1}{n} \sum_{i=1}^{n} X_i \ge m\right] = -H(\mu_{\lambda(m)}|\mu) = -I(m)$$

for the **rate function** $I: \mathbb{R} \to [0, \infty]$. From Proposition 3.2.7 (ii) we know furthermore that for $m \in m(\Lambda)$, we have the representation

$$I(m) = H(\mu_{\lambda(m)}|\mu) = \max_{\tilde{\lambda} \in \Lambda} \left(\tilde{\lambda}m(\lambda(m)) - \log Z(\tilde{\lambda}) \right) = \max_{\tilde{\lambda} \in \Lambda} \left(\tilde{\lambda}m - \log Z(\tilde{\lambda}) \right)$$

More generally, it holds (so that we can also have $I(m) = \infty$) that I is the **Legendre transform** of $\log Z(\lambda)$:

$$I(m) = \sup_{\lambda \in \mathbb{R}} (\lambda m - \log Z(\lambda)).$$

Use this formula to calculate the rate function for the following distributions:

- (a) Dirac distribution $\varepsilon_a, a \in \mathbb{R}$;
- (b) $\text{Exp}(\alpha)$, the exponential distribution with parameter $\alpha > 0$.
- (c) $N(m_0, \sigma^2)$.

Moreover, check that in each of these cases the following properties are satisfied:

- $I(m) = 0 \Leftrightarrow m = \mathbb{E}X_1;$
- On the set $\{I < \infty\}^\circ$, I is infinitely differentiable;
- If $\{I < \infty\}^{\circ} \neq \emptyset$, then $I''(\mathbb{E}X_1) = \frac{1}{\sigma^2}$.

(d)* Investigate the above questions also for the Poisson distribution with parameter α .

Problem 50.

Let S be a separable metric space with metric d. Consider random variables X_1, X_2, \ldots, X_n on a probability space (Ω, \mathcal{A}, P) with values in S.

(a) Show that

$$d_n((x_1,\ldots,x_n),(y_1,\ldots,y_n)) := \sup_{1 \le i \le n} d(x_i,y_i)$$

(1+3 points)

is a metric on S^n .

(b) Show that the map

$$\varphi \colon \Omega \to S^n$$
$$\omega \mapsto \varphi(\omega) := (X_1(\omega), \dots, X_n(\omega))$$

is measurable with respect to the Borel σ -Algebra $\mathcal{B}(S^n)$ on S^n that is induced by the metric d_n .

Problem 51. (with Problem 50, Remark 3.5.2) (3+1 points) Let S be a separable metric space with metric d. Consider random variables X_1, X_2, \ldots, X_n on a probability space (Ω, \mathcal{A}, P) with values in S.

(c) Show that the map

$$\chi_n \colon S^n \to \mathcal{M}_1(S)$$
$$(x_1, \dots, x_n) \mapsto \chi_n(x_1, \dots, x_n) := \frac{1}{n} \sum_{i=1}^n \varepsilon_{x_i}$$

is continuous.

(d) Conclude using parts (b) and (c) that

$$\omega \mapsto \xi_n(\omega) := \frac{1}{n} \sum_{i=1}^n \varepsilon_{X_i(\omega)}$$

is measurable with respect to the Borel σ -Algebra $\mathcal{B}(S^n)$ on S^n that is induced by the metric d_n .