Exercises to Probability Theory I

Sheet 1 Abgabe: Friday, 22.10.2021, 12:00 Digital submission in the tutorial's "Lernraum"

((Exercises marked with "*" are additional exercises.)

Problem 1.

- (a) Let $\Omega = \{1, 2, 3\}$. List all elements of the smallest σ -algebra on Ω that contains $\{1\}$.
- (b) Give all possible σ -algebras of the set $\Omega = \{1, 2, 3\}$.

Problem 2.

Let $\Omega \neq \emptyset$ and $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\Omega)$ be σ -algebras. Are then the following sets σ -algebras as well?

- (a) $\mathcal{A} \cup \mathcal{B}$,
- (b) $\mathcal{A} \cap \mathcal{B}$.

Problem 3.

Let Ω be a countably infinite set.

 $\mathcal{A} = \{ A \subset \Omega \mid A \text{ is finite or } A^c \text{ is finite} \}.$

Check whether \mathcal{A} is a σ -algebra. If not, give a counter example.

Problem 4.

Let $\Omega \neq \emptyset$, $\mathcal{A} \subset \mathcal{P}(\Omega)$ be an arbitrary σ -algebra, $\Omega_0 \subset \Omega$ a finite or countably infinite subset of Ω , $f: \Omega_0 \to [0, \infty]$ an arbitrary function and

$$\mu \colon \mathcal{A} \to [0,\infty] \quad \text{with} \quad A \mapsto \sum_{\omega \in A \cap \Omega_0} f(\omega).$$

Show that μ is a measure on (Ω, \mathcal{A}) . (A measure of this form is called a *discrete measure*.) <u>Remark:</u> In the first tutorial we will show that a discrete measure μ on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ exists with $\mu(A) > 0$ for all open subsets $A \neq \emptyset$ of \mathbb{R} .

Problem^{*} 5.

If Ω be a finite set, then the measure given by $f(\omega) = \frac{1}{|\Omega|}$, $\omega \in \Omega$ is a probability measure on $(\Omega, \mathcal{P}(\Omega))$, called *uniform distribution* on Ω . Explain how the classic lottery drawing "6 aus 49" ¹ can be described by such a probability measure (and probability space). What is the probability that in a drawing the numbers 12, 24, 36, 48 are drawn?

(4 points)

(4 points)

(4 points)

(4 points)

(4 points)

¹Where six numbered balls are drawn without replacement from a set of 49 balls numbered from 1 to 49, similar to the UK National Lottery drawings before 2015.