Exercises to Probability Theory I

Sheet 2 Abgabe: Friday, 29.10.2021, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem 6. (Sylvester's formula / Inclusion-exclusion principle) Let (Ω, \mathcal{A}, P) be a probability space, I a finite index set and $A_i \in \mathcal{A}$, $i \in I$ a family of sets from \mathcal{A} .

(a) Show that

$$P\left(\bigcup_{i\in I}A_i\right) = \sum_{J\subset I, J\neq\emptyset} (-1)^{|J|-1} \cdot P\left(\bigcap_{j\in J}A_j\right).$$

(4 points)

(4 points)

(b) Show that in the special case $I = \{1, 2, ..., n\}$ with $n \in \mathbb{N}$ the following formula holds:

$$P\left(\bigcup_{i\in I} A_i\right) = \sum_{k=1}^n (-1)^{k-1} \sum_{1\leqslant i_1<\ldots< i_k\leqslant n} P\left(A_{i_1}\cap\ldots\cap A_{i_k}\right).$$
(2 points)

Problem 7. (Discrete probability measures, cf. Satz 1.2.1 (ii))

Let $\Omega \neq \emptyset$ be countable and $\mathcal{A} = \mathcal{P}(\Omega)$. Show:

Every probability measure P on (Ω, \mathcal{A}) is of the form $p(\omega) := P(\{\omega\})$ for all $\omega \in \Omega$; with other words: there is a uniquely determined function $p: \Omega \to [0, 1]$ with

$$P(A) = \sum_{\omega \in A} p(\omega) = \sum_{\omega \in A} P(\{\omega\}) \quad \forall \ A \subset \Omega.$$
(4 points)

Problem 8. (Preimage σ -Algebra) Let (Ω, \mathcal{A}) , $(\tilde{\Omega}, \tilde{\mathcal{A}})$ be measurable spaces with $\Omega, \tilde{\Omega} \neq \emptyset$. Show that (a) for a $\tilde{\mathcal{A}}/\mathcal{A}$ -measurable map $T: \tilde{\Omega} \to \Omega$, the system of sets

$$\sigma(T) := \{T^{-1}(A) \mid A \in \mathcal{A}\}$$

is a σ -algebra over $\tilde{\Omega}$ and

(b) This σ -algebra $\sigma(T)$ is the smallest σ -algebra with respect to which T is a $\tilde{\mathcal{A}}/\mathcal{A}$ -measurable map. (2 points)