Exercises to Probability Theory I

Sheet 3

Submission before: Friday, 05.11.2021, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem 9. (cf. Bemerkung 1.3.2 (iii))

Let $(\Omega_i, \mathcal{A}_i)$ for i = 1, 2, 3 be measurable spaces and $T_i: \Omega_i \to \Omega_{i+1}$ for i = 1, 2 measurable maps. Show that $T_2 \circ T_1$ is $\mathcal{A}_1/\mathcal{A}_3$ -measurable. (2 points)

Problem 10. (Permutations)

Let $n \in \mathbb{N}$, $\Omega := \{\omega : \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \mid \omega \text{ bijective}\}$ and let $P : \mathcal{P}(\Omega) \to [0, 1]$ be the uniform distribution on $(\Omega, \mathcal{P}(\Omega))$. Let a random variable $X : \Omega \to \{1, 2, \dots, n\}$ be given by

$$\omega \mapsto X(\omega) := \sum_{i=1}^{n} \mathbb{1}_{\{\omega(i)\}}(i) \quad \forall \omega \in \Omega.$$

Calculate (a) the expectation $\mathbb{E}[X]$ and (b) the variance $\operatorname{var}(X)$.

Problem 11. (Repetition of the construction of the integral)

Proof the following proposition (step by step as in the construction of the integral):

Satz 1. Let X be a random variable¹ on (S, \mathcal{S}) with $\mu(A) := P[X \in A]$, i.e. X is a measurable map $X: (\Omega, \mathcal{A}, P) \to (S, \mathcal{S})$. If $f: (S, \mathcal{S}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a measurable function with $f \ge 0$ or $\mathbb{E}[|f(X)|] < \infty$, then

$$\mathbb{E}[f(X)] = \int_{S} f(y)\mu(dy).$$

(4 points)

(6 points)

Problem 12. (Factorisation lemma)

Let Ω be a set and let $(\tilde{\Omega}, \tilde{\mathcal{A}})$ be a measurable space. Further let $T: \Omega \to \tilde{\Omega}$ and $f: \Omega \to \mathbb{R}$ be **arbitrary** maps. Show that f is $\sigma(T)/\mathcal{B}(\mathbb{R})$ -measurable if and only if there is a map $\varphi: \tilde{\Omega} \to \mathbb{R}$ which is $\tilde{\mathcal{A}}/\mathcal{B}(\mathbb{R})$ -measurable with $f = \varphi \circ T$. (4 points)

¹Here we consider the general case on a measurable space (S, \mathcal{S}) . The case $S = \mathbb{R}$ can be considered an example.