Exercises to Probability Theory I

Sheet 4

(5 points)

(2 points)

Submission before: Friday, 12.11.2021, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem 13. (cf. Proposition 1.6.7) (3 points) Show for $X_1, \ldots, X_n \in \mathcal{L}^2$ pairwise uncorrelated random variables the following identity of Bienaymé:

$$\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right).$$

Problem 14. (Law of large numbers)

Let (Ω, \mathcal{A}, P) be a probability space and let $X_n \colon \Omega \to \mathbb{R}$ with $X_n \in \mathcal{L}^2$ for $n \in \mathbb{N}$ be a sequence of random variables with the property that

$$\mathbb{E}[X_n] = \mathbb{E}[X_1] \quad \forall n \in \mathbb{N}.$$
 (1)

Furthermore, let $r: \{0, 1, 2, ...\} \rightarrow [0, \infty)$ be a function such that

$$|\operatorname{cov}(X_n, X_m)| \leqslant r(|n-m|) \quad \forall n, m \in \mathbb{N},$$
(2)

$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{r(k)}{n} \left(1 - \frac{k}{n} \right) = 0.$$
(3)

Show that under these conditions

$$\lim_{n \to \infty} P\left(\left| \frac{X_1 + \ldots + X_n}{n} - \mathbb{E}[X_1] \right| \ge \varepsilon \right) = 0.$$

Problem 15. (cf. Remark 1.8.3)

Let $\Omega = [0, 1]$ and P be the Lebesgue measure restricted to Ω , defined on the Borel σ -algebra $\mathcal{A} = \mathcal{B}([0, 1])$. Define further

$$A_{2^m+k} := \left[\frac{k}{2^m}, \frac{k+1}{2^m}\right] \text{ for } k \in \{0, \dots, 2^m - 1\}, m \in \mathbb{N}_0 \text{ and } Y_n := 1_{A_n} \text{ for } n \in \mathbb{N}.$$

- 1. Show that Y_n converges in \mathcal{L}^1 , but **not** *P*-a.s.
- 2. Give an example of a sequence $(X_n)_{n \in \mathbb{N}}$ of random variables on (Ω, \mathcal{A}, P) which are *P*-a.s. convergent, but **not** in \mathcal{L}^1 . (2 points)

Problem 16. (Proposition 1.8.4 (i) \Rightarrow (ii) + Lemma 1.8.8) (4 points) Let $(X_n)_{n \in \mathbb{N}} \subset \mathcal{L}^1$ be a sequence of random variables on the probability space (Ω, \mathcal{A}, P) with $\lim_n X_n = X$ in \mathcal{L}^1 for a $X \in \mathcal{L}^1$. Show that under these conditions the sequence $(X_n)_{n \in \mathbb{N}}$ is uniformly integrable.