Übungen zur Wahrscheinlichkeitstheorie I

Blatt 5

Abgabe: Freitag, 19.11.2021, 12:00 Uhr Digitale Abgabe im Lernraum des Tutoriums

(Aufgaben(teile), die mit einem "*" gekennzeichnet sind, sind Zusatzaufgaben.)

Aufgabe 17. (vgl. Bemerkung 1.8.9 (ii))

(4 Punkte)

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und I eine Indexmenge. Betrachten Sie $(X_i)_{i \in I}$ und $(Y_i)_{i \in I}$ zwei gleichmäßig integrierbare Familien von Zufallsvariablen. Zudem seien $\alpha, \beta \in \mathbb{R}$. Zeigen Sie, dass dann auch die Linearkombination $(\alpha X_i + \beta Y_i)_{i \in I}$ gleichmäßig integrierbar ist.

Aufgabe 18. (vgl. Bemerkung 1.9.5)

(4 Punkte)

Sei $F \colon \mathbb{R} \to \mathbb{R}$ eine monoton steigende und beschränkte Funktion. Zeigen Sie, dass F höchstens abzählbar viele Unstetigkeitsstellen hat.

Aufgabe 19. (Random Walk)

(2+2 Punkte)

Sei $\Omega = \{\omega = (x_1, \dots, x_N) \mid x_i \in \{-1, 1\}\}$, P die Gleichverteilung auf Ω und $X_i : \Omega \to \mathbb{R}$ gegeben durch die Projektion $X_i(\omega) := x_i$ für $\omega = (x_1, \dots, x_N) \in \Omega$. Die Summe

$$S_n = X_1 + \ldots + X_n$$
, für $n = 0, \ldots, N$

kann als zufällige Bewegung eines Teilchens auf \mathbb{Z} mit Start in 0 interpretiert werden, d.h. als ein sogenannter "random walk". Für $a \in \mathbb{Z}$ mit a > 0 sei T_a der Zeitpunkt des ersten Besuchs des Teilchens in a, d.h.

$$T_a := \min\{n > 0 \mid S_n = a\},\$$

wobei für $\{n>0\mid S_n=a\}=\emptyset$ gerade $T_a=\infty$ gilt. Zeigen Sie:

(a) Für jedes c > 0 gilt:

$$P[S_n = a - c, T_a \leqslant n] = P[S_n = a + c].$$

- (b) Für die Verteilung von T_a gelten:
 - (i) $P[T_a \le n] = P[S_n \notin [-a, a-1]],$

(ii)
$$P[T_a = n] = P[S_n = a] - P[S_n = a, T_a \le n - 1] = \frac{1}{2} (P[S_{n-1} = a - 1] - P[S_{n-1} = a + 1]).$$

Aufgabe 20. (vgl. Satz 1.9.9)

(2+2 Punkte)

Sei $h: \mathbb{R} \to \mathbb{R}$ eine nichtnegative messbare Funktion und X,Y Zufallsvariablen mit Verteilungen μ,ν . X sei absolutstetig mit Dichte f und Y sei diskret verteilt mit $\nu(S)=1$ für eine abzählbare Menge $S \subset \mathbb{R}$. Zeigen Sie:

- (a) $\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x)dx$,
- (b) $\mathbb{E}[h(Y)] = \sum_{y \in S} h(y)\nu(\{y\}).$