Exercises to Probability Theory I

Sheet 5
Submission before: Friday, 19.11.2021, 12:00
Digital submission in the tutorial's "Lernraum"
(Exercises marked with "*" are additional exercises.)
Problem 17. (cf. Remark 1.8.9 (ii))
(4 points)
Let (Ω, \mathcal{A}, P) be a probability space and I an index set. Consider $\left(X_{i}\right)_{i \in I}$ and $\left(Y_{i}\right)_{i \in I}$, two uniformly integrable families of random variables. Furthermore let $\alpha, \beta \in \mathbb{R}$. Show that then the linear combination $\left(\alpha X_{i}+\beta Y_{i}\right)_{i \in I}$ is also uniformly integrable.

Problem 18. (cf. Remark 1.9.5)
(4 points)
Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing, bounded function. Show that F has at most countably many points of discontinuity.

Problem 19. (Random Walk)
Let $\Omega=\left\{\omega=\left(x_{1}, \ldots, x_{N}\right) \mid x_{i} \in\{-1,1\}\right\}, P$ be the uniform distribution on Ω and $X_{i}: \Omega \rightarrow \mathbb{R}$ given by the projection $X_{i}(\omega):=x_{i}$ for $\omega=\left(x_{1}, \ldots, x_{N}\right) \in \Omega$. The sum

$$
S_{n}=X_{1}+\ldots+X_{n}, \quad \text { für } n=0, \ldots, N
$$

can be understood as a random motion of a particle on \mathbb{Z} starting in 0 , i.e. as a so-called "random walk". For $a \in \mathbb{Z}$ with $a>0$ let T_{a} be the time of the first visit of the particle to the site a, i.e.

$$
T_{a}:=\min \left\{n>0 \mid S_{n}=a\right\}
$$

where for $\left\{n>0 \mid S_{n}=a\right\}=\emptyset$ we have $T_{a}=\infty$. Show that
(a) For every $c>0$:

$$
P\left[S_{n}=a-c, T_{a} \leqslant n\right]=P\left[S_{n}=a+c\right] .
$$

(b) For the distribution of T_{a} the following holds true:
(i) $P\left[T_{a} \leqslant n\right]=P\left[S_{n} \notin[-a, a-1]\right]$,
(ii) $P\left[T_{a}=n\right]=P\left[S_{n}=a\right]-P\left[S_{n}=a, T_{a} \leqslant n-1\right]=\frac{1}{2}\left(P\left[S_{n-1}=a-1\right]-P\left[S_{n-1}=a+1\right]\right)$.

Problem 20. (cf. Proposition 1.9.9)
Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative measurable function and X, Y be random variables with distributions μ, ν. Let X be absolutely continuous with density f and let Y be discretely distributed with $\nu(S)=1$ for a countable set $S \subset \mathbb{R}$. Show the following:
(a) $\mathbb{E}[h(X)]=\int_{-\infty}^{\infty} h(x) f(x) d x$,
(b) $\mathbb{E}[h(Y)]=\sum_{y \in S} h(y) \nu(\{y\})$.

