Exercises to Probability Theory I

Sheet 6
Submission before: Friday, 26.11.2021, 12:00
Digital submission in the tutorial's "Lernraum"

> (Exercises marked with "*" are additional exercises.)

Problem 21. (Corollary 1.10.7, Proof of (i) \Rightarrow (ii))
Consider the probability measures μ_{n}, μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let the sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ converge vaguely to μ. Show that this implies that $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ converges weakly to μ.

To this end, show first that for $f \in C_{b}(\mathbb{R}), f \geqslant 0$ the following holds:

$$
\liminf _{n \rightarrow \infty} \int f d \mu_{n} \geqslant \int f d \mu .
$$

Problem 22.

Let X, X_{n}, U_{n} for $n \in \mathbb{N}$ be random variables with values in \mathbb{R}. Assume that the distribution of X_{n} converges weakly to the distribution of X for $n \rightarrow \infty$. Assume further that the distribution of U_{n} converges weakly to the Dirac-measure δ_{u} for $n \rightarrow \infty$, for a $u \in \mathbb{R}$. Prove the following:
(a) U_{n} converges stochastically to u for $n \rightarrow \infty$.
(b) For $n \rightarrow \infty$, the distribution of the sum $U_{n}+X_{n}$ converges weakly to the distribution of $u+X$.

Problem 23.

Let S_{n} for $n=0,1,2, \ldots, 2 N$ be the "random walk" of Problem 19 , where now $2 N$ steps are considered instead of N. We define the first return time to 0 via

$$
T_{0}(\omega):=\min \left\{n>0 \mid S_{n}(\omega)=0\right\},
$$

and the time of the last visit to 0 by

$$
L(\omega):=\max \left\{0 \leqslant n \leqslant 2 N \mid S_{n}(\omega)=0\right\} .
$$

You may use that

$$
P[L=2 n]=P\left[S_{2 n}=0\right] \cdot P\left[S_{2 N-2 n}=0\right]=2^{-2 N}\binom{2 n}{n}\binom{2(N-n)}{N-n}
$$

holds. Please show that:
(a) For all $0<a<b<1$, the following holds ${ }^{1}$

$$
\left.\left.P\left[\frac{L}{2 N} \in\right] a, b\right]\right] \xrightarrow{N \rightarrow \infty} \int_{\mathbb{R}} 1_{] a, b]}(x) \frac{1}{\pi} \frac{1}{\sqrt{x(1-x)}} d x
$$

(b) Conclude using (a) that the distribution of $\frac{L}{2 N}$ for $N \rightarrow \infty$ converges weakly to the distribution with the following density:

$$
f(x)= \begin{cases}\frac{1}{\pi \sqrt{x(1-x)}}, & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 24. (cf. Proposition 1.11.11)
Let S be a metric space with Borel- σ algebra \mathcal{S}. According to Example 1.11.13, we know that this σ-algebra equals $\sigma\left(C_{b}(S)\right)$. Consider a probability measure μ on (S, \mathcal{S}), and $1 \leqslant p<\infty$.
(a) Show that for every Borel-measurable function f on S, there exists a sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ of functions from $C_{b}(S)$ such that

$$
\left\|g_{n}-f\right\|_{p} \xrightarrow{n \rightarrow \infty} 0,
$$

where $\|h\|_{p}:=\left(\int_{S}|h|^{p} d \mu\right)^{1 / p}$.
(b) Show that the same statement holds ${ }^{2}$ even for $f \in \mathcal{L}^{p}$. What does this mean?

[^0]
[^0]: ${ }^{1}$ Hint: Use Stirling's formula (for a proof of it, cf. e.g. Amann, Escher: Analysis II, English edition, Theorem 9.10, p. 109):

 $$
 m!=C_{m} \cdot \sqrt{2 \pi m} \cdot m^{m} \cdot e^{-m}, \quad \text { with } \lim _{m \rightarrow \infty} C_{m}=1
 $$

 ${ }^{2}$ You may use the following property (sometimes called "inner regularity") of probability meaasures on the Borel- σ algebra \mathcal{S} of a metric space S : For every $A \in \mathcal{S}$ it holds that

 $$
 \mu(A)=\sup \{\mu(C) \mid C \subset A, C \text { closed }\}
 $$

