Exercises to Probability Theory I

Sheet 6

Submission before: Friday, 26.11.2021, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem 21. (Corollary 1.10.7, Proof of (i) \Rightarrow (ii)) (4 points) Consider the probability measures μ_n, μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let the sequence $(\mu_n)_{n \in \mathbb{N}}$ converge vaguely to μ . Show that this implies that $(\mu_n)_{n \in \mathbb{N}}$ converges weakly to μ .

To this end, show first that for $f \in C_b(\mathbb{R})$, $f \ge 0$ the following holds:

$$\liminf_{n \to \infty} \int f d\mu_n \ge \int f d\mu.$$

Problem 22.

Let X, X_n, U_n for $n \in \mathbb{N}$ be random variables with values in \mathbb{R} . Assume that the distribution of X_n converges weakly to the distribution of X for $n \to \infty$. Assume further that the distribution of U_n converges weakly to the Dirac-measure δ_u for $n \to \infty$, for a $u \in \mathbb{R}$. Prove the following:

- (a) U_n converges stochastically to u for $n \to \infty$.
- (b) For $n \to \infty$, the distribution of the sum $U_n + X_n$ converges weakly to the distribution of u + X.

Problem 23.

Let S_n for n = 0, 1, 2, ..., 2N be the "random walk" of Problem 19, where now 2N steps are considered instead of N. We define the first return time to 0 via

$$T_0(\omega) := \min\{n > 0 \mid S_n(\omega) = 0\},\$$

and the time of the last visit to 0 by

$$L(\omega) := \max\{0 \le n \le 2N \mid S_n(\omega) = 0\}.$$

You may use that

$$P[L=2n] = P[S_{2n}=0] \cdot P[S_{2N-2n}=0] = 2^{-2N} \binom{2n}{n} \binom{2(N-n)}{N-n}$$

holds. Please show that:

(2+2 points)

(2+2 points)

(a) For all 0 < a < b < 1, the following holds¹

$$P\left[\frac{L}{2N}\in]a,b]\right] \xrightarrow{N\to\infty} \int_{\mathbb{R}} 1_{]a,b]}(x)\frac{1}{\pi}\frac{1}{\sqrt{x(1-x)}}dx.$$

(b) Conclude using (a) that the distribution of $\frac{L}{2N}$ for $N \to \infty$ converges weakly to the distribution with the following density:

$$f(x) = \begin{cases} \frac{1}{\pi \sqrt{x(1-x)}}, & 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 24. (cf. Proposition 1.11.11)

(2+2 points)

Let S be a metric space with Borel- σ algebra \mathcal{S} . According to Example 1.11.13, we know that this σ -algebra equals $\sigma(C_b(S))$. Consider a probability measure μ on (S, \mathcal{S}) , and $1 \leq p < \infty$.

(a) Show that for every Borel-measurable function f on S, there exists a sequence $(g_n)_{n \in \mathbb{N}}$ of functions from $C_b(S)$ such that

$$||g_n - f||_p \xrightarrow{n \to \infty} 0$$

where $||h||_p := (\int_S |h|^p d\mu)^{1/p}$.

(b) Show that the same statement holds² even for $f \in \mathcal{L}^p$. What does this mean?

$$m! = C_m \cdot \sqrt{2\pi m} \cdot m^m \cdot e^{-m}, \quad \text{with } \lim_{m \to \infty} C_m = 1.$$

$$\mu(A) = \sup\{\mu(C) \mid C \subset A, \ C \text{ closed}\}.$$

¹Hint: Use **Stirling's formula** (for a proof of it, cf. e.g. Amann, Escher: Analysis II, English edition, Theorem 9.10, p. 109):

²You may use the following property (sometimes called "inner regularity") of probability meaasures on the Borel- σ algebra S of a metric space S: For every $A \in S$ it holds that