Exercises to Probability Theory I

Sheet 7

Submission before: Friday, 03.12.2021, 12:00 Digital submission in the tutorial's "Lernraum"

(Exercises marked with "*" are additional exercises.)

Problem 25. (Lemma 2.1.8)

(4 points) Let $(X_n)_{n\in\mathbb{N}}$ and X be real-valued random variables on (Ω, \mathcal{A}, P) . Show that for **independent** random variables $(X_n)_{n \in \mathbb{N}}$ the following holds:

$$\sum_{n=1}^{\infty} P[|X_n - X| > \varepsilon] < \infty \ \forall \varepsilon > 0 \quad \Leftrightarrow \quad X_n \stackrel{n \to \infty}{\longrightarrow} X \ P\text{-a.s.}$$

Problem 26. (Definition 2.2.1)

(4 points)

Check whether the following random variables X_1 and X_2 are Independent (with proofs):

a) Let $(\Omega, \mathcal{A}) = ([0,1]^2, \mathcal{B}([0,1]^2))$, and P be the Lebesgue measure on $[0,1]^2$. For $(x_1, x_2) \in$ $\Omega = [0, 1]^2$, set

$$X_1(x_1, x_2) := x_1,$$

 $X_2(x_1, x_2) := x_2.$

b) Let $(\Omega, \mathcal{A}) = ([0, 1], \mathcal{B}([0, 1]))$ and P be the Lebesgue measure on [0, 1]. For $x \in \Omega = [0, 1]$, set 1

$$X_1(x) := \cos(2\pi x),$$

 $X_2(x) := \sin(2\pi x).$

Problem 27.

(4 points)

Let X be a random variable and let
$$\varepsilon > 0$$
 be arbitrary. Show that X is integrable if and only if

$$\sum_{n=1}^{\infty} P[|X| > n\varepsilon] < \infty.$$

Problem 28. (using Problem 27, Borel–Cantelli) (4 points) Let $(X_n)_{n\in\mathbb{N}}$ be independent, identically distributed random variables on (Ω, \mathcal{A}, P) . Show that X_1 is *P*-integrable if and only if

$$\lim_{n \to \infty} \frac{|X_n|}{n} = 0, \quad P\text{-a.s.}$$

 $^{{}^{1}}X_{1}$, X_{2} describe the coordinates of a random point that is equidistributed on the unit circle \mathbb{R}^{2} .