# Exercises to Probability Theory II 

Sheet 10
Submission before: Friday, 17.06.2022, 12:00
(Exercises marked with "*" are additional exercises.)

Problem 24. (Some applications of the martingale convergence theorem)
(i) Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a filtration. Let $A \in \sigma\left(\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}\right)$. Show the $\mathbf{0} \mathbf{- 1}$ law of Lévy:

$$
\lim _{n \rightarrow \infty} P\left[A \mid \mathcal{A}_{n}\right]=1_{A}, \quad P \text {-a.s. }
$$

(ii) Derive from (i) the $\mathbf{0} \mathbf{- 1}$ law of Kolmogorov (which you know already): let $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots$ be a sequence of independent $\sigma$-algebras and $\mathcal{B}_{\infty}:=\bigcap_{n \in \mathbb{N}} \sigma\left(\bigcup_{k \geqslant n} \mathcal{B}_{k}\right)$ be the tail $\sigma$-algreba. Then

$$
\begin{equation*}
A \in \mathcal{B}_{\infty} \quad \Rightarrow \quad P[A] \in\{0,1\} . \tag{2points}
\end{equation*}
$$

Hint: Use $\mathcal{A}_{n}:=\sigma\left(\bigcup_{k=1}^{n} \mathcal{B}_{k}\right)$.
Problem 25. (A generalisation of the Borel-Cantelli lemma)
Let $(\Omega, \mathcal{A}, P)$ be a probability space. Let $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a filtration and $A_{n} \in \mathcal{A}_{n}, n \in \mathbb{N}$. Show the following generalisation of the Borel-Cantelli lemma:

$$
\bigcap_{n \in \mathbb{N}} \bigcup_{m \geqslant n} A_{m}=\left\{\sum_{n=1}^{\infty} P\left[A_{n+1} \mid \mathcal{A}_{n}\right]=\infty\right\}, \quad P \text {-a.s. }
$$

Here, two sets $A, B$ are equal $P$-a.s. if $P(A \Delta B)=0$, where $\Delta$ denotes the symmetric difference, i.e. $A \Delta B=(A \backslash B) \cup(B \backslash A)$ (cf. Problem 5, where a similar definition was used).
(4 points)
Hint: Apply Proposition 8.6 .1 to the following $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$-martingale (?!):

$$
X_{n}:=\sum_{k=0}^{n-1}\left(1_{A_{k+1}}-P\left[A_{k+1} \mid \mathcal{A}_{k}\right]\right) .
$$

Problem 26. (Missing step in the proof of the backwards martingale convergence theorem 8.5.5) Let $I=-\mathbb{N}_{0}$ with the usual ordering, i.e. $\ldots<-2<-1<0$. Let $\left(X_{n}\right)_{n \in-\mathbb{N}_{0}}$ be an $\left(\mathcal{A}_{n}\right)_{n \in-\mathbb{N}_{0}-}$ submartingale. We want to show part (i) of the Proposition 8.5.5. (i), i.e. that the limit

$$
X_{-\infty}:=\lim _{n \rightarrow-\infty} X_{n} \in \mathbb{R} \cup\{-\infty\}
$$

exists $P$-a.s. You can prove this in the following steps:
(a) Show that the limit

$$
X_{-\infty}:=\lim _{n \rightarrow-\infty} X_{n} \in \mathbb{R} \cup\{-\infty,+\infty\}
$$

exists $P$-a.s.
(b) Show that

$$
X_{-\infty}<\infty, \quad P \text {-a.s. }
$$

Hint: Obviously, Doob's Upcrossing Inequality also holds for discrete submartingales. Consider the submartingales $\left(Y_{i}\right)_{1 \leqslant i \leqslant n}$ defined by $\left(Y_{0}, \ldots, Y_{n}\right):=\left(X_{-n}, \ldots, X_{0}\right)$.

