Exercises to Probability Theory II

Submission before: Friday, 01.07.2022, 12:00

(Exercises marked with "*" are additional exercises.)

Problem 30. (Characterisation of Brownian motion) Let $(X_t)_{t \in [0,1]}$ be $\mathcal{A}/\mathcal{B}(\mathbb{R})$ -measurable and $X_0 = 0$. Show that the following are equivalent:

- (a) $(X_t)_{t \in [0,1]}$ is a Brownian motion.
- (b) $(X_t)_{t \in [0,1]}$ is a centered Gaussian family with covariance

$$\mathbb{E}[X_s X_t] = s \wedge t, \quad s, t \in [0, 1].$$

Hint: For (a) \Rightarrow (b), Exercise 28 might be helpful. For (b) \Rightarrow (a) you might want to use Proposition 9.1.3 and Corollary 9.1.4. (8 points)

Problem 31. (A representation of the Borel σ -algebra of C[0, 1])

Let C[0,1] be the space of continuous functions $w: [0,1] \to \mathbb{R}$. Then C[0,1] is Banach space with the supremum (or maximum) norm $\|\cdot\|_{\infty}$. Let \mathcal{B} be the associated Borel σ -algebra. Show that

$$\mathcal{B} = \sigma \left(\pi_t \mid 0 \leqslant t \leqslant 1 \right),$$

where $\pi_t: C[0,1] \to \mathbb{R}, t \in [0,1]$ are given by $\pi_t(w) := w(t), w \in C[0,1]$.

Hint: C[0, 1] is a separable metric space, so for " \subset " it is enough to show that every ball from C[0, 1] is contained in $\sigma(\pi_t \mid 0 \le t \le 1)$, as we saw last semester in Problem 50 on Sheet 12. For " \supset ": How is $\sigma(\pi_t \mid 0 \le t \le 1)$ defined? (4 points)