Exercises to Probability Theory II

Submission before: Friday, 08.07.2022, 12:00

(Exercises marked with "*" are additional exercises.)

Problem 32. (Another characterisation of Brownian motion)

Let $(X_t)_{t \in [0,1]}$ be a family of random variables on a probability space (Ω, \mathcal{A}, P) satisfying the following properties:

- (1) For $0 \leq t_0 < t_1 < \ldots < t_n$ are the increments $X_{t_i} X_{t_{i-1}}$, $1 \leq i \leq n$, independent.
- (2) For all $s \ge 0$, the distribution of $X_{t+s} X_t$ does not depend on t ("stationary increments").
- (3) $\mathbb{E}[X_t] = 0$, $\mathbb{E}[X_t^2] = t$ and $\mathbb{E}[|X_t|^3] = \frac{2^{3/2}t^{3/2}}{\sqrt{\pi}}$ for all $t \ge 0$.

Show that $(X_t)_{t \in [0,1]}$ is a Brownian motion if and only if for all c > 0 and $t \ge 0$, the distribution of $c^{-1}X_{c^2t}$ is equal to the distribution of X_t . (4 points) *Hint:* Use the central limit theorem.

Problem 33. (Filtrations associated to Brownian motion)

Let (Ω, \mathcal{A}, P) be a probability space and $(X_t)_{t\geq 0}$ be a Brownian motion on (Ω, \mathcal{A}, P) with values in \mathbb{R} , starting in 0. We define its filtration by

$$\mathcal{F}_t^0 := \sigma \left(X_s \mid s \leqslant t \right), \quad t \ge 0.$$

Further, we make this filtration **right-continuous** (cf. part (c)* below) by setting

$$\mathcal{F}_t := \bigcap_{s>t} \mathcal{F}_s^0, \quad t \ge 0$$

(a) Let $C \subset \mathbb{R}$ be a **closed** set. Then

$$T_C(\omega) := \inf\{t \ge 0 \mid X_t(\omega) \in C\}$$

is an $(\mathcal{F}_t^0)_{t \ge 0}$ -stopping time.

This case is one of very few for which the hitting time is an $(\mathcal{F}_t^0)_{t\geq 0}$ -stopping time. In general, we can only expect a hitting time T_A of a set A to be an $(\mathcal{F}_t)_{t\geq 0}$ -stopping time.

In the following, let $\emptyset \neq A \subset \mathbb{R}$ be an **open** set. Consider the hitting time

$$T_A(\omega) := \inf\{t \ge 0 \mid X_t(\omega) \in A\}.$$

(b)* Draw pictures to illustrate that T_A is only an $(\mathcal{F}_t)_{t \ge 0}$ -stopping time, and not an $(\mathcal{F}_t^0)_{t \ge 0}$ stopping time. (2 points)

The rest of the exercise is devoted to proving this rigorously.

(c)* Show that the filtration $(\mathcal{F}_t)_{t\geq 0}$ is **right-continuous**, i.e. (1 point)

$$\mathcal{F}_t = \mathcal{F}_{t+} := \bigcap_{s>t} \mathcal{F}_s.$$

(1 point)

- (d) Let $(\mathcal{F}_t)_{t\geq 0}$ be an arbitrary right-continuous filtration. Show that a random variable $T: \Omega \to \overline{\mathbb{R}}_+$ is an $(\mathcal{F}_t)_{t\geq 0}$ -stopping time if and only if $\{T < t\} \in \mathcal{F}_t$. (1 point)
- (e) Show that T_A is an $(\mathcal{F}_t)_{t \ge 0}$ -stopping time.

We now want to prove that T_A is not an $(\mathcal{F}^0_t)_{t\geq 0}$ -stopping time using the following criterion:

- (f) (Galmarino's test) Let $\Omega := C(\mathbb{R}_+, \mathbb{R})$ and X_t be the coordinate process, i.e. $X_t(\omega) = \omega(t)$. Let $T: \Omega \to \overline{\mathbb{R}}_+$ be a random variable. Then the following are equivalent: (4 points)
 - (i) T is an $(\mathcal{F}^0_t)_{t \ge 0}$ -stopping time.
 - (ii) For all $t \ge 0, \omega \in \Omega$ and $\omega' \in \Omega$, we have

$$T(\omega) \leq t \text{ and } X_s(\omega) = X_s(\omega') \ \forall s \leq t \quad \Rightarrow \quad T(\omega) = T(\omega').$$

(1 point)

(1 point)

Hints: Show first that (ii) is equivalent to:

(ii)' For all $t \ge 0, \omega \in \Omega$ and $\omega' \in \Omega$, we have

$$T(\omega) \leq t \text{ and } X_s(\omega) = X_s(\omega') \ \forall s \leq t \quad \Rightarrow \quad T(\omega') \leq t.$$

To prove (ii)' \Rightarrow (i), define the function $a_t \colon \Omega \to \Omega, \omega \mapsto \omega(\cdot \wedge t)$ and, show that $a_t \colon (\Omega, \mathcal{F}_t^0) \to (\Omega, \mathcal{F})$ is measurable, that $\mathcal{F}_t^0 = a_t^{-1}(\mathcal{F})$, and that (ii)' implies that $\{T \leq t\} = a_t^{-1}(\{T \leq t\})$. Here, $\mathcal{F} = \sigma(X_s \mid s \geq 0)$.

(g) Show using (f) that T_A is **not** an $(\mathcal{F}^0_t)_{t\geq 0}$ -stopping time.