Exercises to Probability Theory II

Submission before: Friday, 27.05.2022, 12:00

(Exercises marked with "*" are additional exercises.)

Problem 18. (A submartingale)

Let (Ω, \mathcal{A}, P) be a probability space, $(\mathcal{A}_t)_{t \in I}$ a family of increasing sub- σ algebras (i.e. $s \leq t \Rightarrow \mathcal{A}_s \subset \mathcal{A}_t$). Prove that if $(M_t)_{t \in I}$ is an $(\mathcal{A}_t)_{t \in I}$ -martingale, then $X_t := |M_t|, t \in I$, is an (\mathcal{A}_t) -submartingale. (4 points)

Problem 19. (Symmetric random walk on \mathbb{Z})

Let (X_n) be the symmetric random walk on \mathbb{Z} in the sense of Def. 7.2.2 (i) with parameter p = 1/2, i.e.¹

$$X_n := \sum_{k=1}^n Y_k$$
, Y_k i.i.d. with $P(Y_k = 1) = P(Y_k = -1) = \frac{1}{2}$.

Find an α such that $M_n := \exp(\alpha X_n - \lambda n)$ is an $(\mathcal{A}_n)_{n \in \mathbb{N}_0}$)-martingale for $n \in \mathbb{N}_0$, $\lambda \ge 0$, where $\mathcal{A}_n := \sigma(X_0, \ldots, X_n)$. (4 points)

Problem 20. (A martingale for 2-dimensional random walk)

Let $(Z_n)_{n \in \mathbb{N}_0} := (X_n, Y_n)_{n \in \mathbb{N}_0}$ be the 2-dimensional symmetric random walk, i.e. the Markov chain with state space $S = \mathbb{Z}^2$ and transition kernel

$$p((x,y),\cdot) := \frac{1}{4} \left(\delta_{(x+1,y)} + \delta_{(x-1,y)} + \delta_{(x,y+1)} + \delta_{(x,y-1)} \right)$$

with $(x, y) \in \mathbb{Z}^2$. Show that $M_n := |Z_n|^2 - n$, $n \in \mathbb{N}_0$ is a martingale, where $|\cdot|$ is the Euclidean norm. (4 points)

¹The independence of the Y_k was shown in Problem 16 (i).