Exercises to Probability Theory II

Sheet 9
Submission before: Friday, 10.06.2022, 12:00

> (Exercises marked with "*" are additional exercises.)

Problem 21. (Missing step in proof of Doob's Upcrossing inequality)
Let $\varphi:[0, \infty) \rightarrow \mathbb{R}$ be a right-continuous function and for $a<b$ and $T \in(0, \infty]$, let $U^{\varphi}(a, b ; T)$ be the number of "upcrossings", defined in the lecture as

$$
\begin{aligned}
U^{\varphi}(a, b ; T): & =\inf \{n \geqslant 0 \mid \varphi \text { crosses }[a, b] \text { at most } n \text { times in }[0, T)\} \\
& =\inf \{n \geqslant 0 \mid \varphi \text { does not cross }[a, b](n+1) \text { times in }[0, T)\} .
\end{aligned}
$$

For $m \in \mathbb{N}$, we define the "discretisation" of φ by

$$
\varphi_{m}(t):=\varphi\left(\frac{\left\lceil 2^{m} t\right\rceil}{2^{m}} \wedge\left(T-\frac{1}{2^{m}}\right)\right), \quad t \in[0, \infty)
$$

and we write $U_{m}(a, b ; T):=U^{\varphi_{m}}(a, b ; T)$. Prove that $U_{m}(a, b ; T) \uparrow U^{\varphi}(a, b ; T)$ by showing
(a) $U_{m}(a, b ; T) \leqslant U^{\varphi}(a, b ; T)$,
(b) $U_{m}(a, b ; T) \leqslant U_{m+1}(a, b ; T)$,
(c) $U^{\varphi}(a, b ; T) \geqslant K$ for a $K \in \mathbb{N} \quad \Rightarrow \quad \exists m \in \mathbb{N}: U_{m}(a, b ; T) \geqslant K$.

Problem 22. (Missing step in the proof of Corollary 8.5.3)
Let $\varphi:[0, \infty) \rightarrow \mathbb{R}$ be a right-continuous function. Let $a<b$ and $T \in(0, \infty]$. Show that if $U(a, b ; T)<\infty$ for all $a, b \in \mathbb{Q}$, then the left limit

$$
\varphi(t-):=\lim _{s \uparrow t} \varphi(s) \in[-\infty, \infty] \quad \forall t \in(0, T]
$$

exists.
Hint: Proof by contraposition!
Problem 23. (Counterexample for the converse of Proposition 8.5.3)
Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be independent random variables on a probability space (Ω, \mathcal{A}, P) with

$$
\begin{aligned}
& P\left(X_{i}=2^{i}\right)=P\left(X_{i}=-2^{i}\right)=\frac{1}{2 i^{2}}, \\
& P\left(X_{i}=0\right)=1-\frac{1}{i^{2}}
\end{aligned}
$$

We define $Y_{n}:=X_{1}+\ldots+X_{n}, n \in \mathbb{N}$. Prove the following:
$\left(Y_{n}\right)_{n \in \mathbb{N}}$ is a $\left(\sigma\left(X_{1}, \ldots, X_{n}\right)\right)_{n \in \mathbb{N}^{-m}}$ martingale such that the limit $Y_{\infty}:=\lim _{n \rightarrow \infty} Y_{n}$ exists P-a.s., but $\sup _{n \in \mathbb{N}} \mathbb{E}\left[\left|Y_{n}\right|\right]=\infty$.
Hint: Use Lemma 1.1.13!

