Exercises to Probability Theory II

Submission before: Friday, 10.06.2022, 12:00

(Exercises marked with "*" are additional exercises.)

Problem 21. (Missing step in proof of Doob's Upcrossing inequality) Let $\varphi \colon [0, \infty) \to \mathbb{R}$ be a right-continuous function and for a < b and $T \in (0, \infty]$, let $U^{\varphi}(a, b; T)$ be the number of "upcrossings", defined in the lecture as

$$U^{\varphi}(a,b;T) := \inf\{n \ge 0 \mid \varphi \text{ crosses } [a,b] \text{ at most } n \text{ times in } [0,T)\} \\ = \inf\{n \ge 0 \mid \varphi \text{ does not cross } [a,b] (n+1) \text{ times in } [0,T)\}.$$

For $m \in \mathbb{N}$, we define the "discretisation" of φ by

$$\varphi_m(t) := \varphi\left(\frac{\lceil 2^m t \rceil}{2^m} \land \left(T - \frac{1}{2^m}\right)\right), \quad t \in [0, \infty),$$

and we write $U_m(a,b;T) := U^{\varphi_m}(a,b;T)$. Prove that $U_m(a,b;T) \uparrow U^{\varphi}(a,b;T)$ by showing

(a) $U_m(a,b;T) \leq U^{\varphi}(a,b;T),$ (2 points)

(b)
$$U_m(a,b;T) \leq U_{m+1}(a,b;T),$$
 (2 points)

(c) $U^{\varphi}(a,b;T) \ge K$ for a $K \in \mathbb{N} \implies \exists m \in \mathbb{N} : U_m(a,b;T) \ge K.$ (2 points)

Problem 22. (Missing step in the proof of Corollary 8.5.3) Let $\varphi \colon [0,\infty) \to \mathbb{R}$ be a right-continuous function. Let a < b and $T \in (0,\infty]$. Show that if $U(a,b;T) < \infty$ for all $a, b \in \mathbb{Q}$, then the left limit

$$\varphi(t-) := \lim_{s \uparrow t} \varphi(s) \in [-\infty, \infty] \quad \forall t \in (0, T]$$

exists.

Hint: Proof by contraposition!

Problem 23. (Counterexample for the converse of Proposition 8.5.3) Let $(X_i)_{i\in\mathbb{N}}$ be independent random variables on a probability space (Ω, \mathcal{A}, P) with

$$P(X_i = 2^i) = P(X_i = -2^i) = \frac{1}{2i^2};$$

$$P(X_i = 0) = 1 - \frac{1}{i^2}.$$

We define $Y_n := X_1 + \ldots + X_n$, $n \in \mathbb{N}$. Prove the following: $(Y_n)_{n \in \mathbb{N}}$ is a $(\sigma(X_1, \ldots, X_n))_{n \in \mathbb{N}}$ -martingale such that the limit $Y_\infty := \lim_{n \to \infty} Y_n$ exists *P*-a.s., but $\sup_{n \in \mathbb{N}} \mathbb{E}[|Y_n|] = \infty$.

Hint: Use Lemma 1.1.13!

(3 points)

(3 points)