
ON 14-DIMENSIONAL QUADRATIC FORMS, THEIR SPINORS,
AND THE DIFFERENCE OF TWO OCTONION ALGEBRAS

MARKUS ROST

This text originates from an E-mail to in May 1994. It has been revised on
September 18, 1996 and March 9, 1999 (but still may contain some inaccuracies).

. . .
Let me give a short report on some thoughts on low dimensional quadratic forms.

“low” means here up to dimension 14.

1. Introduction.

One may start with the following: Consider a quadratic form q of dimension d and
with trivial e1- and e2-invariants. Then q comes from a torsor q̃ ∈ H1

(
Spin(d)

)
.

Consider a fundamental spinor representation S of Spin(d) and let S(q̃) be the
corresponding “twisted” representation.

It turns out that if d is smaller or equal to 14, then the dimension of S is smaller
than the dimension of the group Spin(d). These dimensions are “exceptional” in this
sense. The significance is as follows: If you take any nontrivial vector s ∈ S(q̃), it
will have a nontrivial isotropy group, and one may hope that this gives an interesting
reduction of the torsor q̃ ∈ H1

(
Spin(d)

)
to H1 of a subgroup of Spin(d).

This is indeed the case: The isotropy group of a generic spinor s ∈ S has the
1-component

• G2 ×G2 (for d = 14),
• SL(6) (for d = 12),
• semi-direct product of an additive group with Spin(7) (for d = 10),
• Spin(7) (for d = 8, 9),
• G2 (for d = 7).

Moreover if d = 10, then the (1-component of the) isotropy group of a generic
vector in S ⊕S, (i.e., the intersection of the isotropy group of two generic s) is G2.

Let me note that for d = 9 the embedding of the isotropy group Spin(7) →
Spin(9) is not the usual one: it is in Spin(8) twisted by a triality, so that the center
of Spin(7) does not map to the center of Spin(9). Similarly for Spin(7) → Spin(10)
in the case d = 10.

The computations (together with computations of the normalizers, e.g., in the
14-dimensional case the normalizer is (G2 ×G2) o µ8) yield the following:

• for a 14-dimensional form q in I3 there is a quadratic extension L = F (
√
a)

and a 3-fold Pfister form p over L, such that q is the trace of
√
ap′, where

p′ is the pure subform of p. (This was not known to me before and I don’t
know any other proof than the one described below.)

• a 12-dimensional form in I3 is the trace of a 6-dimensional hermitian form
with trivial determinant. (A known fact.)
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• a 10-dimensional form in I3 is isotropic. (A well-known fact.)
• etc.

I will discuss here only the cases d = 10, 14. The case d = 12 is of different
nature and will not be considered.

2. A construction of “the difference of two composition algebras”

The goal of the following considerations is to give a certain description of the (64-
dimensional) spinor representation of Spin(14). The advantage of this description is,
that it makes it easy to determine the dimension of the main orbit and to compute
its isotropy group.

I assume char(F ) 6= 2, or even char(F ) = 0.
Let C be a composition algebra over a field F with norm form N and unit e and

let
C = eF ⊕ V

be the orthogonal decomposition.
Let D be another composition algebra over F with norm form M and unit f

and let
D = fF ⊕W

be the orthogonal decomposition.
Put

R = C ⊗D

and
L =

∧2(V ⊕W ) =
∧2
V ⊕

∧2
W ⊕ V ⊗W.

I define a map
Θ: L −→ End(R)

by the following formulas:

Θ(v ∧ v̄)(c⊗ d) = [v · (v̄ · c)− v̄ · (v · c)]⊗ d,

Θ(w ∧ w̄)(c⊗ d) = c⊗ [w · (w̄ · d)− w̄ · (w · d)],
Θ(v ∧ w)(c⊗ d) = (v · c)⊗ (w · d).

Here x · y is the product in the composition algebras.

Lemma 1. The map Θ is injective and its image is a Lie subalgebra.

Proof. This follows from standard rules for composition algebras. �

Let
p : V −→ F, p(v) = N(v)

be the restriction of N . I identify
∧2
V with the Lie algebra so(p). (In the natural

way as subspaces of the even Clifford algebra of p.)
Let

J :
∧2
V −→ V, J(v ∧ w) = v · w − w · v.

• Suppose dim C = 4. Then C is a quaternion algebra and J is bijective.
• Suppose dim C = 8. Then C is a octonion algebra. In this case J is

surjective and its kernel is the Lie algebra of G2.
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Let

q : W −→ F, q(v) = M(v)

be the restriction of M . I identify
∧2
W with the Lie algebra so(q).

Let

U = V ⊕W

and consider the quadratic form

[p− q] : U −→ F,

[p− q](v, w) = p(v)− q(w).

Note that L =
∧2
U . I identify L with the Lie algebra of so([p − q]). In this way

the inclusion ∧2
V ⊕

∧2
W −→ L

is identified with the inclusion

so(p)⊕ so(q) −→ so([p− q]).

Lemma 2. With these identifications (with the Lie algebra structures eventually
altered by a scalar factor), the map Θ is a homomorphism of Lie algebras.

Proof. By carefully comparing both Lie brackets. �

3. The main orbit

We have now established R as Spin([p − q])-module. The tangent space of the
Spin([p− q])-orbit of some vector r of R is Θ(L)(r).

We now assume that dimC, dimD are equal to 4 or to 8. This means that the
maps J are in both cases surjective.

Let us consider the specific element r = e ⊗ f . One finds for the tangent space
of the orbit through r:

Θ(L)(e⊗ f) = e⊗W ⊕ V ⊗ f ⊕ V ⊗W.

This is a subspace of codimension 1, transversal to r. So, if we extend the group
by scalar multiplication, we see that the orbit of r is open. Therefore r generates a
generic line and the orbit of r has codimension 1.

Let us compute the Lie algebra of the isotropy group of r. This is the sum of the
Lie algebras of the isotropy groups of e and f . These are the kernels of the maps J
on so(p) =

∧2
V , and on so(q) =

∧2
W . These are trivial if C, D have dimension 4

and are the Lie algebras of G2 if C, D have dimension 8.
Since the main orbit has codimension 1 it follows that there is an invariant form

ψ : R −→ F

on R such that the varieties

{ψ = nonzero constant }

are the main orbits.
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4. On the case dimC = dimD = 8

Consider the above construction for split C and D of dimension 8. Then we are
given a representation

split- Spin(14) → End(R).

Now given a 14-dimensional quadratic form h : X −→ F with trivial e1- and
e2-invariants, we may twist this representation to a representation

Spin(h) −→ End(R).

leaving invariant a certain form ρ : R −→ F , with ρ the twist of ψ.
If you take a vector r in R such that ρ(r) is nontrivial, then there comes along

a decomposition X = Y ⊕ Z, such that h restricted to Y and h restricted to Z
are similar to the pure subform of 8-dimensional composition algebras C and D,
respectively. Moreover R = C ⊗D.

Well, this is not quite true: The decomposition X = Y ⊕ Z might be defined
only after passing to a quadratic extension E/F , whose Galois group interchanges
the two factors. In fact, there are elements in the normalizer of G2 × G2 which
interchange the two factors.

To make this more precise we compute the normalizer of G2 ×G2:

Lemma 3. The normalizer of G2 × G2 in Spin(7, 7) is (G2 × G2) o µ8. Here a
generator ω ∈ µ8 acts on G2 ×G2 via (g, h) 7→ (h, g).

Proof. Every automorphism of G2 is inner and G2 → GL(7) is an irreducible rep-
resentation. Therefore the normalizer of G2 ×G2 in GL(14) is(

(G2 ×Gm)× (G2 ×Gm)
)

o Z/2.

Intersecting this group with SO(7, 7) yields the normalizer of G2 ×G2 in SO(7, 7):

(G2 ×G2) o µ4

where µ4 is considered as a subgroup of SO(7, 7) via

ζ 7→ τ(ζ) := ζ

(
0 1
1 0

)
.

The extension µ2 → Spin(7, 7) → SO(7, 7) is nontrivial on the subgroup τ(µ4) ⊂
SO(7, 7), whence the claim.

To be more specific, we describe µ8 as a subgroup of Spin(7, 7) explicitly. Let
v1, . . . , v7, w1, . . . , w7 be an orthogonal basis with 〈vi, vi〉 = 1 and 〈wi, wi〉 = −1.
Consider the element

ω =
7∏

i=1

(
1 + ζviwi√

2

)
∈ Spin(7, 7) ⊂ C0(7, 7)

where ζ is a primitive 4-th root of unity. Then ω is of order 8 and its image in
SO(7, 7) is τ(ζ). �

One concludes that the map

H1
(
F, (G2 ×G2) o µ8

)
→ H1

(
F,Spin(7, 7)

)
is surjective.

This gives the mentioned result on 14-dimensional quadratic forms.
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5. On the cases dimD = 4, dimC = 4, 8.

5.1. The case dimC = 8 and dimD = 4. Here the isotropy group is G2 with
normalizer G2 × Spin(3) · µ4.

The associativity of D shows that the group action is compatible with the right
D-module structure of R = C⊗D. Moreover R = S⊕S, where S is a fundamental
spinor representation of Spin([p− q]).

Suppose that D is split, D = End(K) where K is a 2-dimensional vector space.
Then S is the tensor product over D of R with K so that S = C ⊗ K. A compu-
tation similar as above shows that the Spin([p− q])-group action on S has a dense
orbit.

5.2. The case dimC = dimD = 4. Here the isotropy group is trivial. If dimD =
dimC = 4, then R is an algebra and the group action is given by multiplication
from the left with Spin([p − q]) = SL(R). In this case the form ψ is the reduced
norm on R.
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