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Abstract

A 3-fold Pfister form is associated to every involution of
the second kind on a central simple algebra of degree 3. This
quadratic form is associated to the restriction of the reduced
trace quadratic form to the space of symmetric elements; it
is shown to classify involutions up to conjugation. Subfields
with dihedral Galois group in central simple algebras of ar-
bitrary odd degree with involution of the second kind are
investigated. A complete set of cohomological invariants for
algebras of degree 3 with involution of the second kind is
given.

1. Introduction. Let B be a central simple algebra over a field
K with an involution σ of the second kind and let F be the fixed
subfield of K. Let Trd be the reduced trace and Nrd the reduced
norm of B. The restriction Qσ of the trace form Q: (x, y) 7→ Trd(xy)
to the F–space (B, σ)+ of symmetric elements of B is a quadratic
form with values in F . It is an invariant of σ and the aim of this
paper is to study this invariant. We first describe the general form of
Qσ for algebras of arbitrary odd degree and then restrict our attention
to central simple algebras of degree 3.

Consider a cubic étale F -subalgebra L ⊂ (B, σ)+. The restriction
of the trace form to L is nonsingular, hence we have an orthogonal
decomposition:

(B, σ)+ = L ⊥ V.

1The text appeared as: Israel J. Math. 96 B, 299-340 (1996) - Amitsur Volume
2Supported in part by the National Fund for Scientific Research (Belgium)
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We give an explicit description of the restriction of the form Qσ to
V , using a special case of a construction introduced by T. Springer
[19], in connection with exceptional Jordan algebras, and generalized
by Petersson–Racine [11] to algebras of degree 3. Our next goal is to
show that the trace form Qσ determines the involution up to isomor-
phism. As a consequence we get a parametrization of all involutions
of the second kind on a central simple algebra of degree 3 which
leave elementwise invariant a given cubic separable subalgebra. We
also associate a 3-fold Pfister form π(B, σ) to Qσ, which determines
σ up to isomorphism, and characterize the class of involutions for
which this 3-fold Pfister form is hyperbolic. The existence of such
involutions, which we call distinguished, follows from Springer’s con-
struction, but is also related to a crossed product construction given
by A.A. Albert [2]. A distinguished involution is characterized by the
fact that the space (B, σ)+ contains up to isomorphism every cubic
étale F -subalgebra of B.

In the last section, we use Galois cohomology and symbols to an-
alyze étale subalgebras of dihedral central simple algebras. As ap-
plications, we get on one hand different proofs of previous results of
the paper and on the other hand we show that a dihedral algebra of
degree 2n, n odd, is cyclic if a quadratic extension of F contains a
primitive nth–root of 1 (see Corollary 30 for the precise statement).
This is due to L. Rowen and D. Saltman [15] if F contains a prim-
itive nth–root of 1. As a last application, we give a complete set of
cohomological invariants for algebras of degree three with involution
of the second kind.

The second author is indebted to H.P. Petersson for useful com-
ments on the subject.

2. Some General Results. Throughout the paper, B denotes a
central simple algebra over a field K of characteristic different from
2 and σ denotes an involution of the second kind on B, i.e. a map
σ: B → B such that

σ(x+ y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x), σ2(x) = x

for all x, y ∈ B, and σ|K 6= IK . We let F denote the subfield of
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K elementwise invariant under σ and denote by : K → K the
restriction of σ to K.

Under a scalar extension of F , the field K — hence also the algebra
B — may split into a direct product of two factors. Therefore, we
shall also allow K to be a split quadratic étale F -algebra:

K = F × F.

In that case, B = A × A′ for some central simple F -algebras A,
A′ which are exchanged under the involution σ. Therefore, there is
an isomorphism of K-algebras with involution (i.e. an isomorphism
which commutes with the involutions):

(B, σ) ' (A× Aop, s)

where Aop is the opposite algebra of A and s is the switch involution:

s(a1, a
op
2 ) = (a2, a

op
1 ).

Abusing the terminology, we shall also consider (B, σ) as a central
simple algebra with involution in this case. (It is indeed simple as an
algebra-with-involution: see Jacobson’s definition in [8, p. 208]).

We let α ∈ F× be such that K = F (
√
α) = F [X]/(X2 − α). In

particular, we have α ∈ F×2
if K = F × F .

Let (B, σ)+ denote the F -vector space of σ-symmetric elements:

(B, σ)+ = {b ∈ B: σ(b) = b}.

We denote by Qσ the restriction to (B, σ)+ of the reduced trace
quadratic form:

Qσ(x) = TrdB(x2) for x ∈ (B, σ)+.

For any u ∈ (B, σ)+∩B×, σ′ = Int(u)◦σ is again an involution of the
second kind of B and conversely, if σ, σ′ are involutions of the second
kind of B, there exists u ∈ (B, σ)+ ∩ B× such that σ′ = Int(u) ◦ σ.
Let 〈u〉B be the B-hermitian form on B (as a right B–module) given
by

〈u〉B(x, y) = σ(x)uy,
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for u ∈ (B, σ)+∩B× and x, y ∈ B. A right B-module automorphism
rv: x 7→ vx, v ∈ B×, of B is an isometry 〈u1〉B

∼→ 〈u2〉B if σ(v)u2v =
u1 and is a similarity if there is λ ∈ F× such that λσ(v)u2v = u1.

Lemma 1. Let u1, u2 ∈ (B, σ)+ ∩B× and let σi = Int(ui) ◦ σ. Then

(1) An isomorphism (B, σ1)
∼→ (B, σ2) induces an isometry Qσ1

∼→
Qσ2.

(2) (B, σ1) and (B, σ2) are isomorphic (as K-algebras with involu-
tion) if and only if the hermitian spaces 〈u1〉B and 〈u2〉B are
similar.

Proof. (1): If Int(v): (B, σ1)
∼→ (B, σ2) is an isomorphism, then

Int(v)[(B, σ1)+] = (B, σ2)+ and

Qσ2(vxv−1, vyv−1) = TrdB(vxyv−1) = Qσ1(x, y)

for x, y ∈ (B, σ)+.
(2): The automorphism Int(v) of B is an isomorphism (B, σ1)

∼→
(B, σ2), if and only if σ2(vxv−1) = vσ1(x)v−1 for all x ∈ B, if and
only if u2 = λvu1σ(v) for some λ ∈ F×, hence 〈u1〉B and 〈u2〉B
are similar. Conversely any such similitude induces an isomorphism
(B, σ1)

∼→ (B, σ2).

Let B = Mn(K) be split and let τ(xij) = (xij)
t, where t is trans-

pose and x 7→ x is conjugation on K. Any u ∈ (Mn(K), τ)+ is a
hermitian matrix, hence there is v ∈ GLn(K) such that σ(v)uv =
a = diag(α1, . . . , αn), αi ∈ F×. Thus any involution of Mn(K) of the
second kind is isomorphic to an involution of the form σ = Int(a) ◦ τ
with a = diag(α1, · · · , αn), αi ∈ F×.

Let ha = 〈α1, . . . , αn〉K be the hermitian form on Kn determined
by diag(α1, · · · , αn), i.e. ha(x, y) =

∑
xiαiyi = xtay, x, y ∈ Kn. Any

isometry ha
∼→ ha′ of the K–space Kn can be viewed as an isometry

〈a〉Mn(K)
∼→ 〈a′〉Mn(K) of the Mn(K)–space Mn(K).

For α1, . . . , αn ∈ F×, we denote by 〈α1, . . . , αn〉 the quadratic form
on F n determined by diag(α1, · · · , αn), and by 〈〈α1, . . . , αn〉〉 the n-
fold Pfister form:

〈〈α1, . . . , αn〉〉 = 〈1,−α1〉 · · · · · 〈1,−αn〉.
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The next proposition follows by straightforward computation.

Proposition 2. Let K = F (
√
α). For a = diag(α1, · · · , αn) ∈

Mn(K) and σ = Int(a) ◦ τ we have

Qσ ' n〈1〉 ⊥ 〈2〉 · 〈〈α〉〉 · (⊥1≤i<j≤n 〈αiαj〉).

In order to get a similar result for arbitrary central simple algebras
of odd degree, we first prove:

Lemma 3. Let L/F be a field extension of odd degree and let q be a
quadratic form over F . Let also qL denote the quadratic form over
L derived from q by extending scalars to L, and let α ∈ F× r F×2

.
If qL ' 〈〈α〉〉 · h for some quadratic form h over L, of determinant 1,
then there is a quadratic form t of determinant 1 over F such that

q ' 〈〈α〉〉 · t.

Proof. Let K = F (
√
α) and E = L · K = L(

√
α). Let also qan

denote an anisotropic form over F which is Witt-equivalent to q.
The form (qan)E is Witt-equivalent to the form (〈〈α〉〉 ·h)E, hence it is
hyperbolic. Since the field extension E/K has odd degree, Springer’s
theorem on the behaviour of quadratic forms under field extensions
of odd degree [16, Theorem 2.5.3] shows that (qan)K is hyperbolic,
hence, by [16, Remark 2.5.11],

qan = 〈〈α〉〉 · t0

for some quadratic form t0 over F . Let dim q = 2d, so that dimh = d,
and let w denote the Witt index of q, so that

q ' wH ⊥ 〈〈α〉〉 · t0, (1)

where H is the hyperbolic plane. We then have dim t0 = d−w, hence

det q = (−1)w (−α)d−w · F×2 ∈ F×/F×2
.

On the other hand, the relation qL ' 〈〈α〉〉 · h yields:

det qL = (−α)d · L×2 ∈ L×/L×2
.
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Therefore, αw ∈ F× becomes a square in L; since the degree of
L/F is odd, this implies that αw ∈ F×

2
, hence w is even. Letting

t1 = w
2
H ⊥ t0, we then derive from (1):

q ' 〈〈α〉〉 · t1.

It remains to prove that we may modify t1 so as to satisfy the deter-
minant condition. Since dim t1 = d, we have modulo the square I2F
of the fundamental ideal of the Witt ring of F :

t1 ≡
{
〈〈(−1)d(d−1)/2 det t1〉〉 if d is even
〈(−1)d(d−1)/2 det t1〉 if d is odd.

We may use these relations to compute the Clifford algebra of q '
〈〈α〉〉 · t1 (up to Brauer-equivalence): in both cases we get the same
quaternion algebra:

C(q) ∼ (α, (−1)d(d−1)/2 det t1)F .

On the other hand, since deth = 1 we derive from qL ' 〈〈α〉〉 · h:

C(qL) ∼ (α, (−1)d(d−1)/2)L.

Therefore, the quaternion algebra (α, det t1)F is split, since it splits
over the extension L/F of odd degree. Therefore, if δ ∈ F× is a
representative of det t1 ∈ F×/F×2, we have

δ ∈ nK/F (K×).

Let β ∈ F× be a represented value of t1, so that

t1 ' t2 ⊥ 〈β〉

for some quadratic form t2 over F , and let

t = t2 ⊥ 〈δβ〉.

Then
det t = δ · det t1 = 1.
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On the other hand, since δ is a norm from the extension K/F we
have

〈〈α〉〉 · 〈δβ〉 ' 〈〈α〉〉 · 〈β〉,

hence
〈〈α〉〉 · t ' 〈〈α〉〉 · t1 ' q.

Proposition 4. Let B be a central simple K-algebra of odd degree
n = 2m − 1 with an involution σ of the second kind. There is a
quadratic form qσ of dimension n(n − 1)/2 and determinant 1 over
F such that

Qσ ' n 〈1〉 ⊥ 〈2〉 · 〈〈α〉〉 · qσ.

Proof. Suppose first K = F × F . We may then assume (B, σ) =
(A× Aop, s), where s is the switch involution. In that case

(B, σ)+ = {(a, aop): a ∈ A} ' A,

and Qσ is isometric to the reduced trace quadratic form on A. Since
α ∈ F×2

, we have to show that this quadratic form is Witt-equivalent
to n〈1〉. By Springer’s theorem, it suffices to prove this relation over
an odd-degree field extension. Since the degree of A is odd, we may
therefore assume A is split: A = Mn(F ). In that case, the relation
is easy to check. (Observe that the upper-triangular matrices with
zero diagonal form a totally isotropic subspace).

For the rest of the proof, we may thus assume K is a field. Let D
be a division K-algebra Brauer-equivalent to B and let τ : D → D be
an involution of the second kind on D. Let also L be a field contained
in (D, τ)+ and maximal for this property. The field E = L ·K is then
a maximal subfield of D, otherwise the centralizer CDE contains a
symmetric element outside E, contradicting the maximality of L. We
have [L : F ] = [E : K] = degD, hence the degree of L/F is odd, since
D is Brauer-equivalent to the algebra B of odd degree. Moreover,
the algebra

B ⊗F L = B ⊗K E
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splits, since E is a maximal subfield of D. By Proposition 2 the
quadratic form [Qσ]L obtained from Qσ by scalar extension to L has
the form

[Qσ]L ' n 〈1〉 ⊥ 〈2〉 · 〈〈α〉〉 · h (2)

where h =⊥1≤i<j≤n 〈αiαj〉 for some α1, . . . , αn ∈ L×. Therefore, the
Witt index of the form [Qσ]L ⊥ n 〈−1〉 is at least n:

w([Qσ]L ⊥ n 〈−1〉) ≥ n.

By Springer’s theorem the Witt index of a form does not change
under an odd-degree scalar extension. Therefore,

w(Qσ ⊥ n 〈−1〉) ≥ n,

and it follows that Qσ contains a subform isometric to n 〈1〉. Let

Qσ ' n 〈1〉 ⊥ q

for some quadratic form q over F . Relation (2) shows that

(q)L ' 〈2〉 · 〈〈α〉〉 · h.

Since deth = 1, we may apply Lemma 3 to the quadratic form 〈2〉 · q
and get a quadratic form qσ over F , of determinant 1, such that

〈2〉 · q ' 〈〈α〉〉 · qσ,

hence
Qσ ' n〈1〉 ⊥ 〈2〉 · 〈〈α〉〉 · qσ.

We conclude with a result which will be used in the next section
for algebras of degree 3.

Lemma 5. Let L ⊂ (B, σ)+ be étale of dimension n over F and let
R = L ⊗F L ⊗F K. Then B is a free R-module of rank one via left
and right multiplication; the action is equivariant with respect to the
involution σ on B and the action σ: R→ R given by σ(λ⊗ µ⊗ x) =
µ⊗ λ⊗ x̄. In particular we have an induced action of Rσ on (B, σ)+
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Proof. We may assume that F is separably closed, that

B = Mn(F )×Mn(F )op,

σ is the switch involution, and

L = {(d, dop): d is diagonal}.

Let L′ be the set of diagonal matrices in Mn(F ). We have

Mn(F ) = L′ ⊕ xL′ ⊕ · · · ⊕ xn−1L′,

with x a permutation matrix of order n. In this case ξ = 1 + x · · ·+
xn−1 is a free generator of Mn(F ) as a L′ ⊗ L′-module. Thus (ξ, ξop)
is a free generator of B as L ⊗ L-module. The last claim follows by
a direct verification.

3. A Construction of Springer. In this section, we restrict
attention to central simple algebras of degree 3 over a field of char-
acteristic different from 2, 3. We use the same notation as in the
preceding section; in particular, we denote by B a central simple
K-algebra with involution σ of the second kind. Consider a cubic
étale F -subalgebra L ⊂ (B, σ)+ and denote by tL/F : L → F and
nL/F : L → F the trace, resp. the norm of L. The restriction of the
trace form to L is nonsingular, hence we have an orthogonal decom-
position:

(B, σ)+ = L ⊥ V.

For v ∈ V let

N(v) = 1
2

TrdB(v2)− pL(v2) ∈ L,

where pL: (B, σ)+ → L denotes the orthogonal projection. We define
an L-action on V such that (V,N) is a nonsingular quadratic space
of rank 2 over L. We give two descriptions of the action of L on
V . The first was introduced by T. Springer [19] in connection with
exceptional Jordan algebras and generalized by Petersson–Racine [11]
to Jordan algebras of degree 3. The second uses Lemma 5 and is
specific to central simple algebras of degree 3.
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Lemma 6. (Springer’s Construction) The space V is a free L-
module of rank 2 through the operation

(`, v) 7→ ` ◦ v = tL/F (`)v − `v − v` ∈ V

and N : V → L is a nonsingular quadratic form for this structure.
Moreover, for all v ∈ V ,

Qσ(v) = 2 tL/F (N(v)).

If v ∈ V is invertible in B, then

TrdB(v−1`) = −NrdB(v)−1tL/F (N(v)`)

for all ` ∈ L.

Proof. Extending scalars from F to an algebraic closure, we may
assume that B is of the form M3(F ) × M3(F )op, σ is the switch
involution, and L = {(d, dop): d is diagonal}. In this case the lemma
follows by explicit computation.

We now describe the second construction: Let D = F (
√
δ) be the

discriminant algebra of L, i.e. δ is the determinant of the trace form
tL/F (x2) = Qσ|L(x). There exists a decomposition

L⊗F L = L× L⊗F D, (3)

such that the twist σ of L⊗F L restricts on D to a 7→ ā. Note that
there are three natural imbeddings L → L ⊗F D. Two of them are
given by λ 7→ pr(λ ⊗ 1) and λ 7→ pr(1 ⊗ λ), respectively (pr is the
projection L ⊗F L → L ⊗F D) and L → L ⊗F D, λ 7→ λ ⊗ 1, is the
third one, which is σ-invariant. We have an induced decomposition

R = L⊗F L⊗F K = L⊗F K × L⊗F D ⊗F K. (4)

The σ-action on R (see Lemma 5) restricts on L ⊗F D ⊗F K to
λ⊗ d⊗ a 7→ λ⊗ d̄⊗ ā, so the fixed subalgebra is

Rσ = L× L⊗F H,

where H = F (
√
αδ).
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Lemma 7. The decomposition of the R-module B induced by the de-
composition (4) reduces to the decomposition

B = L⊗F K ⊥ V ⊗F K

over K. In particular Rσ = L × L ⊗F H acts on (B, σ)+ = L ⊥ V
componentwise and V is a free L⊗H-module of rank one. Moreover
the action given by the restriction L ⊂ L ⊗ H coincide with the
Springer action, hence N : V → L is a nonsingular quadratic form
on the free L-module V of rank 2. We have N(hv) = nH/F (h)N(v)
for h ∈ H, so that N extends to a hermitian form on the L ⊗F H-
space V of rank one.

Proof. As for Lemma 6 it suffices to check the split case, where the
claims follow by explicit computations.

Let, as above, δ denote the discriminant of L. We recall that
δ ∈ F×2

if and only if L is cyclic and that

Qσ|L = 〈1, 2, 2δ〉;

this is easy to check if L is not a field, since then L = F×F (
√
δ). The

general case follows by extending scalars from F to L and applying
Springer’s theorem. Combining this result with Lemma 6, we get

Qσ = 〈1, 2, 2δ〉 ⊥ 〈2〉 · tL/F (N), (5)

where tL/F (N) denotes the Scharlau transfer of N .

Proposition 8. Let K = F (
√
α). The following conditions are

equivalent:

(a) N is hyperbolic.

(b) δ = α in F×/F×
2
.

(c) LK is a cyclic extension of K and is Galois with Galois group
S3 over F .
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Moreover, if these conditions hold, then B is a crossed product:

B = LK ⊕ LKx⊕ LKx2

for some x such that x3 ∈ F and σ(x) = x.

Proof. (a)⇔ (b): follows immediately from Lemma 7. Alternatively,
if we only want to use Springer’s Construction (Lemma 6), we get
(a) ⇒ (b) as follows: If N is hyperbolic, equation (5) yields:

detQσ = −δ.

On the other hand, Proposition 4 shows that detQσ = −α. There-
fore, (b) follows.

(b) ⇒ (c): If δ = α, then the discriminant of L becomes a square
in K, hence LK/K is cyclic. Let ρ denote a generator of the Galois
group Gal(LK/K). The restriction of σ to LK is an automorphism
of order 2 of LK over F , hence σ|LK and ρ generate a group of
automorphisms of order at least 6 of LK/K which shows that LK/F
is Galois.

If α 6= 1, then L/F is not cyclic, hence the group generated by ρ
and σ|LK is not cyclic. It is therefore isomorphic to S3.

If α = δ = 1, then B ' A×Aop and σ is isomorphic to the switch
involution. Moreover, LK ' L0×Lop

0 for some cyclic extension L0/F .
If γ is a generator of the Galois group Gal(L0/F ), then we choose for
ρ the automorphism of L given by:

ρ(`1, `
op
2 ) = (γ(`1), γ2(`2)op).

Thus, σ and ρ do not commute; they generate a group isomorphic to
S3.

Our next goal is to show that B contains an invertible element x
such that σ(x) = x and x` = ρ(`)x for all ` ∈ LK. These relations
imply that x3 centralizes LK, is σ-symmetric and commutes with x,
hence x3 ∈ F . Let

S = {x ∈ (B, σ)+: x` = ρ(`)x for all ` ∈ LK};
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this is a vector space over F in which the invertible elements form
a Zariski open set. In order to prove that this set is non-empty, we
may extend scalars from F to an algebraic closure, and assume

B = M3(F )×M3(F )op,

σ is the switch involution, and

L = {(d, dop): d is diagonal}.

We may further assume that ρ maps
 d1

d2

d3

 ,
 d′1

d′2
d′3


op

to 
 d3

d1

d2

 ,
 d′2

d′3
d′1


op ;

we may then choose

x =


 0 0 1

1 0 0
0 1 0

 ,
 0 0 1

1 0 0
0 1 0


op ∈ S ∩B×,

proving the claim. It follows that B is a crossed product, as required.
(c) ⇒ (a): For every element x as above, we have x, x2 ∈ V (as is

easily seen by scalar extension to an algebraic closure of F ), hence
N(x) = 0, proving that N is isotropic, hence hyperbolic since its
dimension over L is 2.

Remark. Proposition 8 can also be deduced from the Corollary of
[12, Theorem 1] in relation with [11, Proposition 2.2].

In order to give an explicit description of the form N for general
L, we need the following lemmas:

Lemma 9. Let pV : (B, σ)+ → V denote the orthogonal projection.
For all v ∈ V ,

nL/F (N(pV (v2))) = nL/F (N(v))2.
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Proof. The lemma follows by explicit computation after extending
scalars from F to an algebraic closure.

Lemma 10. For any λ ∈ L× such that nL/F (λ) ∈ F×2
, the quadratic

form
〈〈δ〉〉 · [tL/F (〈λ〉) ⊥ 〈−1〉]

is hyperbolic.

Proof. By Springer’s theorem, it suffices to prove that the quadratic
form above is hyperbolic after extending scalars from F to L. We
may thus assume L = F × F ′ where F ′ = F (

√
δ). Let λ = (λ0, λ1)

with λ0 ∈ F and λ1 ∈ F ′; then

tL/F (〈λ〉) = 〈λ0〉 ⊥ tF ′/F (〈λ1〉). (6)

By [16, p. 50], the image of the transfer map from the Witt ring WF ′

to WF is killed by 〈〈δ〉〉, hence

〈〈δ〉〉 · tF ′/F (〈λ1〉) = 0 in WF. (7)

On the other hand,

nL/F (λ) = λ0 nF ′/F (λ1) ∈ F×2
,

hence λ0 is a norm from F ′ to F , and therefore

〈〈δ〉〉 · 〈λ0,−1〉 = 0 in WF. (8)

The lemma follows from (7) and (8), in view of the decomposi-
tion (6).

Proposition 11. The quadratic form N has a diagonalization

〈〈αδ〉〉 · 〈λ〉

for some λ ∈ L× such that nL/F (λ) ∈ F×2
. Consequently,

Qσ = 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · tL/F (〈λ〉)
= 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · tL/F (〈λ〉)

for some λ ∈ L× such that nL/F (λ) ∈ F×2
.
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Proof. Let v ∈ V be such thatN(v) is invertible in L. Lemma 9 shows
that N(pV (v2)) also is invertible. The element pV (v2) is a basis of V
as a L⊗H-module, so that by Lemma 7, letting λ = N(pV (v2)), we
get

N = 〈〈αδ〉〉 · 〈λ〉

as wanted. Alternatively, without using Lemma 7, and letting λ =
N(pV (v2)) as above, we have

N = 〈λ, λ′〉

for some λ′ ∈ L×, and nL/F (λ) = nL/F (N(v))2 ∈ F×2
, by Lemma 9.

On the other hand, Proposition 8 shows that N becomes hyperbolic
over L(

√
αδ), so detN = −αδ, and therefore

N = 〈〈αδ〉〉 · 〈λ〉.

The first formula for Qσ then follows from (5) by Frobenius reci-
procity. Since

〈〈αδ〉〉 = 〈〈α〉〉 · 〈δ〉+ 〈〈δ〉〉 in WF,

the following relation in WF follows:

Qσ = 〈1, 2, 2δ〉+ 〈2δ〉 · 〈〈α〉〉 · tL/F (〈λ〉) + 〈2〉 · 〈〈δ〉〉 · tL/F (〈λ〉).

Lemma 10 shows that the last term on the right-hand side is equal
to 〈2〉 · 〈〈δ〉〉. Since

〈2δ〉+ 〈2〉 · 〈〈δ〉〉 = 〈2〉 and 〈1, 2, 2〉 = 〈1, 1, 1〉,

we get

Qσ = 〈1, 1, 1〉+ 〈2δ〉 · 〈〈α〉〉 · tL/F (〈λ〉) in WF.

Since both sides have the same dimension, these two quadratic forms
are isometric, proving the second formula for Qσ.
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Corollary 12. The form qσ defined in Proposition 4 may be chosen
as

qσ = 〈δ〉 · tL/F (〈λ〉)
for some λ ∈ L× such that nL/F (λ) ∈ F×2

.

Proof. According to [16, p. 51], we have

det(tL/F (〈λ〉)) = δ nL/F (λ).

So far, the involution σ has been fixed, as well as the étale subalge-
bra L ⊂ (B, σ)+. In the last proposition, we compare the quadratic
forms Qσ and Qσ′ associated to two involutions of the second kind
which leave L elementwise invariant. We denote by

q: L→ L

the quadratic map such that `q(`) = nL/F (`) for all ` ∈ L.

Proposition 13. Let σ, σ′ be two involutions on B such that σ|L =
σ′|L = IL:

σ′ = Int(z) ◦ σ
for some z ∈ L×. If λ ∈ L× is such that

Qσ = 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · tL/F (〈λ〉),
then

Qσ′ = 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · tL/F (〈q(z)λ〉).
Proof. The map b 7→ zb is an isomorphism (B, σ)+ → (B, σ′)+ which
maps L to L; therefore, it also maps the orthogonal V of L in (B, σ)+

to the orthogonal V ′ of L in (B, σ′)+. Let N ′: V ′ → L denote the
quadratic form

N ′(v′) = 1
2

Trd(v′2)− p′L(v′2) for v′ ∈ V ′,
where p′L: (B, σ′)+ → L denotes the orthogonal projection. An ex-
plicit computation, after extending scalars to an algebraic closure of
F , shows that

N ′(zv) = q(z)N(v) for all v ∈ V.
Therefore, multiplication by z defines a similarity N

∼→ N ′ with
similarity factor q(z).
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Proposition 13 leads to the following converse of Proposition 11:

Corollary 14. Let L be an arbitrary cubic étale F -subalgebra in
B. For every λ ∈ L× such that nL/F (λ) ∈ F×2

, there is an involution
σ on B leaving L elementwise invariant such that

Qσ = 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · tL/F (〈λ〉)
= 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · tL/F (〈λ〉).

Proof. By a theorem of Albert [1, p. 157], there is an involution τ
leaving L elementwise invariant. Let

Qτ = 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · tL/F (〈µ〉)

for some µ ∈ L× such that nL/F (µ) ∈ F×2. If λ ∈ L× is such that

nL/F (λ) ∈ F×2
, let ξ ∈ F× be such that

nL/F (λµ−1) = ξ2.

Since nL/F (λµ−1) = λµ−1q(λµ−1), the preceding equality yields:

λµ−1 = ξ2q(λµ−1)−1 = q(ξλ−1µ).

Therefore, the preceding proposition shows that σ = Int(ξλ−1µ) ◦ τ
satisfies the required properties.

4. A Classification of Involutions in Degree 3. In this section
we continue to assume that B has degree 3 and that F has charac-
teristic different from 2, 3. By Proposition 4, the trace form of any
involution σ of the second kind has the form

Qσ = 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈−b,−c, bc〉

where K = F (
√
α) and b, c ∈ F . Our goal is to show that the 3-fold

Pfister form 〈〈α, b, c〉〉 determines the involution σ up to isomorphism
and to characterize the involutions for which this 3-fold Pfister form
is hyperbolic.

For any Pfister form 〈〈a1, . . . , an〉〉, we let 〈〈a1, . . . , an〉〉] = 〈1〉⊥, so
that

〈〈b, c〉〉] = 〈−b,−c, bc〉.

17



Theorem 15. Let σ, σ′ be involutions of the second kind on a central
simple K–algebra B of degree 3. Let

Qσ = 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈〈b, c〉〉]

and
Qσ′ = 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈〈b′, c′〉〉].

The following conditions are equivalent:

(a) The involutions σ and σ′ are isomorphic.

(b) The quadratic forms Qσ and Qσ′ are isometric.

(c) The quadratic forms 〈〈α〉〉 · 〈〈b, c〉〉] and 〈〈α〉〉 · 〈〈b′, c′〉〉] are iso-
metric.

(d) Either K = F ×F or the K-hermitian forms 〈−b,−c, bc〉K and
〈−b′,−c′, b′c′〉K are isometric.

(e) The quadratic forms 〈〈α, b, c〉〉 and 〈〈α, b′, c′〉〉 are isometric.

Proof. (a) ⇒ (b) is already in Lemma 1, and (b) ⇐⇒ (c) ⇐⇒
(e) follows by Witt cancellation. Moreover, (c) ⇒ (d) is a theorem
of Jacobson [7] if K is a field, and is clear if K = F × F . We
finally check that (d) ⇒ (a). If K = F × F , all involutions on
B ' A × Aop are isomorphic to the switch involution, so (a) holds
trivially. Thus we are reduced to the caseK a field. Assume next that
B = M3(K) is split. Up to automorphisms of (B, σ), resp. (B, σ′), we
have σ = Int(a)◦τ , resp. σ′ = Int(a′)◦τ with a = diag(α1, α2, α3) and
a′ = diag(α′1, α

′
2, α

′
3). We may assume that α1α2α3 = 1 = α′1α

′
2α
′
3.

By Proposition 2, we have

Qσ ' 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈α2α
−1
3 , α3α

−1
1 , α1α

−1
2 〉

and

Qσ′ ' 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈α′2α3
′−1, α′3α

′
1
−1
, α′1α

′
2
−1〉.

Thus

〈α2α
−1
3 , α3α1

−1, α1α2
−1〉K ' 〈α′2α′3

−1
, α′3α

′
1
−1
, α′1α

′
2
−1〉K .

18



Since

〈α1α2α3〉 · 〈α2α
−1
3 , α3α

−1
1 , α1α

−1
2 〉K ' 〈α1, α2, α3〉K ,

we get isometries ha ' ha′ or 〈a〉M3(K) ' 〈a′〉M3(K) and (M3(K), σ) is
isomorphic to (M3(K), σ′) by Lemma 1.

If B is not split and if σ′ = Int(u)◦σ, we have to check by Lemma 1
that the hermitian spaces 〈u〉B and 〈1〉B are similar. Replacing u by
u · Nrd(u), we may assume that Nrd(u) ∈ F×2

. Let L = F (x) with
x ∈ (B, σ)+, x 6∈ F , so that L is a field extension of F of degree 3. The
algebra B⊗F L is split over K⊗F L× and there is v′ ∈ GL3(K⊗F L)
such that

u⊗ 1 = λv′(σ ⊗ 1)(v′)

Thus, denoting by : K → K the non-trivial automorphism of K/F ,

Nrd(u⊗ 1) = λ3 Nrd(v′)Nrd(v′) = µ2

with µ ∈ F , since Nrd(u) ∈ F×2
, and we can write

λ = (µλ−1 Nrd(v′)−1)(µλ−1 Nrd(v′)−1) = νν.

It follows that u ⊗ 1 = v(σ ⊗ 1)(v) with v = νv′, so 〈u〉B⊗L '
〈1〉B⊗L. By the Bayer–Lenstra [4] generalization of Springer’s the-
orem to hermitian spaces, we have 〈u〉B ' 〈1〉B and, by Lemma 1,
(B, σ) ' (B, σ′).

In view of the equivalence (a)⇐⇒ (e) in Theorem 15, the Pfister
form 〈〈α, b, c〉〉 classifies involutions σ on B. We denote it by π(B, σ).
Note that π(B, σ) is isometric to the norm of the octonion algebra
OctA associated in [14] to any simple Jordan algebra A of degree 3
and dimension 9, if A = (B, σ)+. Let

(B, σ)◦+ = {x ∈ (B, σ)+: Trd(x) = 0} = 1⊥ ⊂ (B, σ)+.

Since Qσ(1) = 3, the restriction Q◦σ of Qσ to (B, σ)◦+ is given by

Q◦σ ' 〈2, 6〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈〈b, c〉〉] ' 〈2〉 · (〈1, 3〉 ⊥ 〈〈α〉〉 · 〈〈b, c〉〉]).

In the Witt ring WF , we have

〈〈α〉〉 · 〈〈b, c〉〉] = 〈〈α, b, c〉〉 − 〈〈α〉〉;
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therefore,

Q◦σ = 〈2〉 · (〈3, α〉+ 〈〈α, b, c〉〉) in WF.

Comparing dimensions on both sides, we see that the Witt indices of
both sides are related by:

w(Q◦σ) = w(〈3, α〉 ⊥ 〈〈α, b, c〉〉)− 1. (9)

Isotropic elements of Q◦σ are elements u ∈ (B, σ)+ such that Trd(u) =
Trd(u2) = 0. Since the reduced characteristic polynomial of any
a ∈ B has the form

X3 − Trd(a)X2 + 1
2

[Trd(a)2 − Trd(a2)] X − Nrd(a) · 1,

it follows that u is isotropic if and only if u3 = Nrd(u) ∈ F .

Theorem 16. The following conditions are equivalent:

(a) π(B, σ) is hyperbolic;

(b) Either K = F × F or 〈−b,−c, bc〉K ' 〈1,−1,−1〉K;

(c) w(Q◦σ) ≥ 2;

(c’) (B, σ)+ contains a subspace U of dimension 2 whose elements
satisfy: u3 = Nrd(u);

(d) w(Q◦σ) ≥ 3;

(d’) (B, σ)+ contains a subspace U of dimension 3 whose elements
satisfy: u3 = Nrd(u);

(e) (B, σ)+ contains an étale cubic F -algebra L of discriminant α.

(f) B is a crossed product:

B = M ⊕M x⊕M x2,

where M (⊃ K) is a Galois extension of F with Galois group
S3, the involution σ preserves M and leaves x invariant.
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Proof. (a) ⇒ (b) is a straightforward consequence of Theorem 15,
and (c)⇐⇒ (c’), (d)⇐⇒ (d’) follow from the preceding observations
on isotropic elements in Q◦σ. Moreover, (a) ⇒ (d) follows from (9),
(e)⇐⇒ (f) from Proposition 8, and (d)⇒ (c) is clear. We now show
(c) ⇒ (a): if the Witt index of Q◦σ is at least 2, then (9) shows that
〈3, α〉 ⊥ 〈〈α, b, c〉〉 contains isotropic subspaces of dimension 3. There-
fore, 〈〈α, b, c〉〉 is isotropic, hence hyperbolic, proving (a). Assuming
(e), the formula for Qσ in Proposition 11 shows that w(Q◦σ) ≥ 3,
hence (e) ⇒ (d). To complete the proof, we show (c’) ⇒ (e), using
results from [6]. We first consider the easy special case where B is
not a division algebra. If α = 1 in F×/F×

2
, then we may assume

B = A× Aop

for some central simple F -algebra A of degree 3, and σ is the switch
involution. A theorem of Wedderburn [1] shows that A contains a
cyclic extension L of F . We may then choose

M = {(`, `op): ` ∈ L}.

If B is split, then since (c’) ⇒ (b), it follows that σ is the adjoint
involution with respect to an isotropic hermitian form. We may thus

assume B = M3(K) and σ = Int(u) ◦ τ , where u =

 1 0 0
0 0 1
0 1 0

. We

may then choose

M =


 f 0 0

0 k 0
0 0 k

 : f ∈ F, k ∈ K

 .
For the rest of the proof of (c’) ⇒ (e), we now assume that B is a
division algebra. Let U ⊂ (B, σ)+ be a subspace of dimension 2 such
that u3 = Nrd(u) for all u ∈ U . According to Lemma 2 of [6], one
can find a basis (w1, w2) of U such that

Trd(w−1
1 w2) = 0.
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Following [6], we let

θ1 = w−1
1 w2, θ2 = w−1

1 θ1w1, θ3 = w−1
1 θ2w1.

Note θ2 = w−3
1 (w1w2w1), so σ(θ2) = θ2. We let also E = K(θ−1

2 θ3) if
θ−1

2 θ3 6∈ K and E = K(θ2) if θ−1
2 θ3 ∈ K. Theorem 3 of [6] shows that

E/K is cyclic and E/F is Galois with Galois group S3. Moreover,
one of the order 2 automorphisms of E/F is the restriction of the
involution

σ′ = Int(θ−1
2 ) ◦ σ.

Let L′ ⊂ E denote the subfield of σ′-invariant elements. Since L′K =
E is cyclic over K and Galois over F with group S3, Proposition 8
shows that the discriminant of L′/F is α.

Observe now that

θ2 = w−3
1 w−3

2 (w1w
2
2)(w2

2w1),

hence θ−1
2 = λvσ(v) for λ = w3

1w
3
2 and v = w−1

1 w−2
2 , so that

Int(v): (B, σ)
∼→ (B, σ′)

is an isomorphism of algebras with involution. Pulling L′ ⊂ (B, σ′)+

back gives the wanted extension L ⊂ (B, σ)+.

Remark. Theorem 16 gives a positive answer to a question about
Tits constructions asked in [14, (2.12)].

An involution σ satisfying the equivalent conditions of Theorem 16
is called distinguished. By Theorem 15, two distinguished involu-
tions on B are isomorphic. The existence of distinguished involutions
is clear if B ' M3(K) is split: the adjoint involution with respect to
any isotropic hermitian form on K3 is distinguished. If K = F × F ,
the switch involution on B ' A × Aop is distinguished: in fact we
have α = 1, so that 〈〈α〉〉 = 〈1,−1〉 and Q◦σ has Witt index at least
3. The existence in general of distinguished involutions for algebras
of degree 3 is shown next.

Proposition 17. For every cubic étale F -algebra L ⊂ B, there is
a distinguished involution σ such that L ⊂ (B, σ)+.
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Proof. Let λ0 ∈ L× be such that tL/F (λ0) = 0, and let

λ = λ0/nL/F (λ0);

then nL/F (λ) = nL/F (λ0)−2 ∈ F×
2

and tL/F (λ) = 0. Corollary 14
shows that there is an involution σ on B such that L ⊂ (B, σ)+ and

Qσ = 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · tL/F (〈λ〉),

hence
Q◦σ = 〈2〉 · (〈1, 3〉 ⊥ 〈δ〉 · 〈〈α〉〉 · tL/F (〈λ〉)).

Since tL/F (λ) = 0, the form tL/F (〈λ〉) is isotropic, hence the Witt
index of 〈〈α〉〉 · tL/F (〈λ〉) is at least 2. Therefore, condition (c) of
Theorem 16 holds.

Alternative proof. Pick an involution σ0 such that L ⊂ (B, σ0)+

and denote by V the orthogonal of L with respect to Qσ0 , as in
the preceding section. By Zariski density, we may find an invertible
element v ∈ V such that nL/F (N(v)) 6= 0, where N : V → L is the
quadratic form defined in section 3. Lemma 6 shows:

Trd(v−1`) = −Nrd(v)−1tL/F (N(v)`)

for all ` ∈ L. Since N(v) is invertible in L, we may, again by Zariski
density, find ` ∈ L× such that

Trd(v−1`) = 0.

Following [6, Proposition 1], the vector space

U = v−1L ∩ ker Trd

is at least 2-dimensional over F and satisfies: u3 = Nrd(u) for all
u ∈ U . We then have v−1` ∈ U for ` ∈ L as above. Let

σ = Int(`−1) ◦ σ0.

Since L ⊂ (B, σ0)+ and ` ∈ L×, it follows that L ⊂ (B, σ)+. We
claim that σ is distinguished. Let y = `−1v ∈ B×, then

yU = `−1(vU) ⊂ L ⊂ (B, σ)+
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and
σ(y) = `−1σ0(y)` = `−1v`−1` = y,

hence (B, σ)+ contains y2Uy = y(yU)y. Since v−1` ∈ U , we have
y−1 ∈ U , hence y3 = Nrd(y) ∈ F×. For u ∈ U , we have u3 =
Nrd(u) ∈ F , hence

(y2uy)3 = y2uy · y2uy · y2uy = y2u3y Nrd(y)2

= Nrd(u) Nrd(y)3 = Nrd(y2uy).

Therefore, y2Uy ⊂ (B, σ)+ is a subspace of dimension ≥ 2 whose
elements satisfy x3 = Nrd(x), hence σ is distinguished.

A third proof of the existence of distinguished involutions is given
in Proposition 31.

Corollary 18. The space (B, σ)+ contains an isomorphic copy of
every cubic étale F -subalgebra L of B if and only if σ is distinguished.

Proof. Since all the distinguished involutions on a central simple
algebra B are isomorphic, the if direction follows from Proposition 17.
Conversely, by Theorem 16, (e), the only involutions which leave
elementwise invariant étale cubic F -subalgebras of discriminant α
are the distinguished involutions.

The fact that the only involutions which leave elementwise invari-
ant étale cubic F -subalgebras of discriminant α are the distinguished
involutions also follows from the following general result:

Proposition 19. Let σ be an involution on B and let L be a cubic
étale F -algebra such that L ⊂ (B, σ)+. Let δ ∈ F× represent the
discriminant of L/F . The Pfister form π(B, σ) has a factorization:

π(B, σ) = 〈〈α〉〉 · ϕ

where ϕ is a 2-fold Pfister form whose pure subform satisfies:

ϕ] = tL/F (〈`〉)

24



for some ` ∈ L× such that

nL/F (`) ∈ δ · F×2
.

In particular,
ϕ · 〈〈δ〉〉 = 0.

Proof. Proposition 11 shows that

Qσ = 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · tL/F (〈δλ〉)

where λ ∈ L× is such that nL/F (λ) ∈ F×2
. Letting ` = δλ, we get

nL/F (`) ∈ δ · F×2
and tL/F (〈`〉) is a 3-dimensional form of determi-

nant 1. Comparing with the form of Qσ in Theorem 15, we obtain:

π(B, σ) = 〈〈α〉〉 · (〈1〉 ⊥ tL/F (〈`〉)).

The relation (〈1〉 ⊥ tL/F (〈δλ〉)) · 〈〈δ〉〉 = 0 follows from Lemma 10,
using the fact that 〈−δ〉 · 〈〈δ〉〉 = 〈〈δ〉〉.

The condition ϕ · 〈〈δ〉〉 = 0 in the proposition above yields some
restriction on the discriminants of cubic F -algebras L which lie in
(B, σ)+. It does not yield any information on cyclic extensions how-
ever, since in this case 〈〈δ〉〉 = 0. Nevertheless, there are examples
where (B, σ)+ does not contain any cyclic cubic extension of F . Con-
sider for instance the “symbol algebra” Aω(s, t) generated over the
iterated powerseries field C((s))((t)) by two indeterminates i, j sub-
ject to the relations:

i3 = s, j3 = t, ji = ωij,

where ω is a primitive cube root of unity. This algebra carries an
involution σ extending conjugation on C such that

σ(i) = i, σ(j) = j.

The subfield consisting of the σ-invariant elements in the center
C((s))((t)) is R((s))((t)), which does not have any non-trivial cyclic
extension of odd degree. Therefore, the space of symmetric elements
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(Aω(s, t), σ)+ does not contain any cyclic extension of F of degree 3.
We are indebted to H.P. Petersson (see [13]) for suggesting this ex-
ample.

Let L be an arbitrary cubic étale F -subalgebra in B. Let Σ(B,L)
be the pointed set of isomorphism classes of involutions σ of B such
that σ|L = IL, the point being given by the class of distinguished
involutions.

Corollary 20. The map µ ∈ L× 7→ σµ, where σµ is the involution
determined up to isomorphism by the trace form

Qσµ = 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · tL/F (〈q(µ)〉L),

induces a surjective map of pointed sets

L×/nLK/L(LK×) · F× → Σ(B,L).

If L/F is cyclic, the map is well-defined on the set of orbits of the
group Gal(L/F ) in
L×/nLK/L(LK×) · F×.

Proof. The proof of Corollary 14 shows that the elements λ ∈ L such
that nL/F (λ) ∈ F×

2
are exactly the elements of the form q(µ) for

µ ∈ L×. Thus, by Corollary 14, Qσµ is the trace form of an involution
σµ. Elements µ, µ′ ∈ L× such that µ′ = ξnLK/L(η)µ for η ∈ LK× and
ξ ∈ F× give isomorphic involutions in view of Theorem 15, (d), since
q(µ′) = ξ2 q(η) q(µ) q(η) implies that the hermitian forms 〈q(µ)〉LK
and 〈q(µ′)〉LK are isomorphic.

5. Cohomology and Symbols. Let F be a field of characteristic
different from 2; let Fs denote a separable closure of F and Γ =
Gal(Fs/F ). For any integer n relatively prime to the characteristic
of F , let

µn = {x ∈ Fs: xn = 1}

denote the Γ-module of n-th roots of 1. The Kummer exact sequence

1→ µn → F×s
n→ F×s → 1
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and Hilbert’s Theorem 90 yield canonical isomorphisms:

H1(Γ, µn) = F×/F×n and H2(Γ, µn) = nBr(F ),

where nBr(F ) denotes the subgroup killed by n in the Brauer group
Br(F ). Since the action of Γ on µ2 is trivial, we also have

H1(Γ, µ2) = Hom(Γ, {±1}).

For any α ∈ F×, let φα: Γ → {±1} be the (continuous) homomor-
phism corresponding to α · F×2

under the identification: F×/F×
2

=
Hom(Γ, {±1}); it is explicitly defined by:

φα(γ) =

{
+1 if γ leaves invariant
−1 if γ permutes

}
the square roots of α in Fs.

We then define a Γ-module Z(α) by twisting the trivial action of Γ
on Z: for γ ∈ Γ and z ∈ Z, we let γ · z = φα(γ)z. Multiplication in Z
yields a canonical isomorphism:

Z(α)⊗Z Z(β) = Z(αβ) for α, β ∈ F×,

since φα(γ)φβ(γ) = φαβ(γ) for all γ ∈ Γ.
For any Γ-module M , we define a twisted module M(α) by:

M(α) = M ⊗Z Z(α).

The Galois cohomology groups H`(Γ,M) are also denoted H`(F,M).

Proposition 21. Let K = F (
√
α) be a quadratic field extension

of F . For all ` ≥ 1 and all Γ-modules M on which multiplication
by 2 is invertible, the following sequence is split exact:

0→ H`(F,M(α))
res−→ H`(K,M)

cor−→ H`(F,M)→ 0

where res (resp. cor) is the restriction (resp. the corestriction) map.
The restriction map identifies H`(F,M(α)) with the subgroup of

H`(K,M) consisting of the classes of cocycles which are cohomolo-
gous to the negative of their conjugate under the action of Gal(K/F ):

H`(F,M(α)) = {ϕ ∈ H`(K,M): ϕ+ ϕ = 0}.
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Proof. From the definition of M(α), it is clear that M = M(α)
as modules over Gal(Fs/K). Let G = Gal(K/F ) = {1, ι} and let
IG = Z ·(1− ι) denote the augmentation ideal in the group ring ZG.
Denote by Σ the augmentation map:

Σ: ZG→ Z

and define Γ-module homomorphisms s: Z → ZG and t: ZG → IG
by:

s(z) = z(1 + ι), t(x) = (1− ι)x for z ∈ Z, x ∈ ZG.

These maps fit into a commutative diagram:

0 ← IG
t←− ZG

s←− Z ← 0x2·
∥∥∥ y 2·

0 → IG −→ ZG
Σ−→ Z → 0

Observe that IG ' Z(α); therefore, tensoring the diagram above with
M , we get the following commutative diagram:

0 ← M(α)
t←− M ⊗

Z ZG
s←− Mx2·

∥∥∥ y 2·

M(α)
i−→ M ⊗

Z ZG
Σ−→ M → 0

and since multiplication by 2 is invertible on M , it follows that the
sequence

0→M(α)
i−→M ⊗

Z ZG
Σ−→M → 0

is split exact. It yields a split exact sequence in cohomology:

0→ H`(F,M(α))
i∗−→ H`(F,M ⊗ ZG)

Σ∗−→ H`(F,M)→ 0.

By the lemma of Eckmann–Faddeev–Shapiro, there is an isomor-
phism

ψ: H`(F,M ⊗ ZG)
∼→ H`(K,M)

such that Σ∗ = cor ◦ψ and ψ ◦ i∗ = res. This proves the first part.
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Let res′ : H`(F,M) → H`(K,M) denote the restriction map. For
ϕ ∈ H`(K,M), we have:

res′ ◦ cor(ϕ) = ϕ+ ϕ, (10)

hence ϕ+ϕ = 0 if cor(ϕ) = 0. Conversely, applying cor to both sides
of (10), we get:

2 cor(ϕ) = cor(ϕ+ ϕ),

since cor ◦ res′ = 2. Since multiplication by 2 is invertible on M ,
it follows that cor(ϕ) = 0 if ϕ + ϕ = 0. Therefore, the image of
H`(F,M(α)) in H`(K,M) can be indifferently described as the kernel
of the corestriction map or as the kernel of the map ϕ 7→ ϕ+ ϕ.

Remark. If multiplication by 2 is not invertible on M , the restric-
tion and corestriction maps fit into a long exact sequence described
by Arason and Elman in [3, Appendix].

We shall apply this proposition to the special cases where M =
Z /nZ (n odd) with trivial action and M = µn = {x ∈ Fs: xn = 1}
(assuming n odd and relatively prime to the characteristic of F ). We
first review how, for an arbitrary finite group G, the first cohomology
set H1(F,G), where the Galois action on G is trivial, is related to
Galois extensions of F with Galois group G. We recall that, in this
case,

H1(F,G) = Hom(Γ,G)/ ∼,

where Hom(Γ,G) is the set of continous homomorphisms Γ→ G and
χ′ ∼ χ if χ′(γ) = gχ(γ)g−1 for some g ∈ G. In particular we have
H1(F,G) = Hom(Γ,G) if G is abelian.

Let L be a finite-dimensional commutative algebra over F and let

X(L) = AlgF (L, Fs)

denote the set of F -algebra homomorphisms L → Fs. Let G be
an arbitrary finite group acting on L by F -algebra automorphisms
` 7→ g ∗ `. We call L a Galois G-algebra if L is étale of dimension
n = |G| over F and the action of G on X(L) is simply transitive.
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Now, assume L is a Galois G-algebra and fix some ξ ∈ X(L). For
every γ ∈ Γ, there is a unique χξ(γ) ∈ G such that

γ(ξ(`)) = ξ(χξ(γ) ∗ `) for all ` ∈ L.

The map χξ: Γ→ G is a continuous homomorphism:

χξ ∈ Hom(Γ,G).

If L, L′ are Galois G-algebras over F and ξ ∈ X(L), ξ′ ∈ X(L′), an
isomorphism ψ: (L, ξ)

∼→ (L′, ξ′) is an isomorphism of algebras over
F which commutes with the action of G and such that ξ′ ◦ ψ = ξ.
An isomorphism of Galois G-algebras ψ: L

∼→ L′ is an isomorphism
of algebras over F which commutes with the action of G.

Proposition 22. The map (L, ξ) 7→ χξ defines a 1–1 correspon-
dence between the set of isomorphism classes of couples (L, ξ), where
L is a Galois G-algebra and ξ ∈ X(L), and the set Hom(Γ,G). More-
over L 7→ χξ induces a 1–1 correspondence between the set of isomor-
phism classes of Galois G-algebras and the set H1(F,G).

Proof. This proposition is presumably well-known (see for example
[17]), but we include a sketch of proof for the reader’s convenience.
For χ ∈ Hom(Γ,G), we define an action of Γ on the algebra F(G, Fs)
of maps G → Fs by:

(γ � f)(x) = γ(f(χ(γ)−1x)) for γ ∈ Γ, x ∈ G.

Let Fχ denote the algebra of invariant elements under this action:

Fχ = {f : G → Fs: γ(f(x)) = f(χ(γ)x) for γ ∈ Γ, x ∈ G}.

This algebra carries a natural G-action defined by:

(g ∗ f)(x) = f(xg) for x, g ∈ G, f ∈ Fχ.

Moreover, for g ∈ G, there is an F -algebra homomorphism

εg: Fχ → Fs
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defined by:
εg(f) = f(g) for f ∈ Fχ,

and X(Fχ) = {εg: g ∈ G}. It is then straightforward to check that Fχ

is a Galois G-algebra, and that χε1 = χ.
For any Galois G-algebra L and any ξ ∈ X(L), there exists a

unique isomorphism (L, ξ)
∼→ (Fχξ , ε1): this isomorphism maps ` ∈ L

to f` ∈ Fχ defined by:

f`(g) = ξ(g ∗ `) for g ∈ G.

Let now ξ, η ∈ X(L). By definition of Galois algebra, there is a
unique element g ∈ G such that η(`) = ξ(g ∗ `) for all ` ∈ L. Then,
for γ ∈ Γ and ` ∈ L,

γ(η(`)) = γ(ξ(g ∗ `)) = ξ(χξ(γ)g ∗ `) = ξ(g ∗ (g−1χξ(γ)g ∗ `)),

hence
χη(γ) = g−1χξ(γ)g.

This implies the last claim of Proposition 22.

We now consider the particular case where G is dihedral: let Dn
be the group generated by two elements r, s subject to the relations:

rn = 1, s2 = 1 and rsr = s,

and let Zn denote the cyclic (normal) subgroup of Dn generated by
r. The group Dn is the semidirect product Dn = Zn o µ2 and we
have a split exact sequence

1→ Zn → Dn
ρ−→ µ2 → 1. (11)

Proposition 23. Let L be a Galois Dn-algebra over F and let

L0 = {` ∈ L: r ∗ ` = `}, L1 = {` ∈ L: s ∗ ` = `}.

Then L0 ' F (
√
α) for some α ∈ F×. For all ξ ∈ X(L), the

homomorphism ρ ◦ χξ ∈ Hom(Γ, µ2) corresponds to α · F×2
under

the identification Hom(Γ, µ2) = H1(F, µ2) = F×/F×
2
. Moreover,

if n is odd, α · F×2
is the discriminant of L/F , so that the map

H1(F,Dn)→ H1(F, µ2), induced in cohomology by ρ, associates to L
the discriminant of L. The discriminant of L1/F is 1 if n ≡ 1 mod
4 and α · F×2 if n ≡ 3 mod 4.
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Proof. The first statement is clear, since Galois theory shows L0 is
a quadratic étale algebra over F . Since the action of Zn on L0 is
trivial, the action of Dn factors through µ2: we may set

ρ(g) ∗ ` = g ∗ ` for g ∈ Dn and ` ∈ L0.

For all ξ ∈ X(L), we then have

γ(ξ(`)) = ξ(ρ ◦ χξ(γ) ∗ `) for γ ∈ Γ and ` ∈ L0,

proving that ρ ◦ χξ ∈ H1(F, µ2) is the homomorphism corresponding
to the Galois µ2-algebra L0/F .

For the rest of the proof, assume n is odd. The discriminant of
L1/F is represented by the determinant

det(trL1/F (eiej))1≤i,j≤n,

where (ei)1≤i≤n is a basis of L1 over F . Since, for ` ∈ L1,

trL1/F (`) =
n∑
i=1

ξ(ri ∗ `),

we have
(trL1/F (eiej))1≤i,j≤n = mt ·m

where
m = (ξ(ri ∗ ej))1≤i,j≤n.

Therefore, if δ1 = detm ∈ ξ(L), the discriminant of L1/F is repre-
sented in F×/F×

2
by δ2

1. For γ ∈ Γ, we have

γ(δ1) = ξ(det(χξ(γ)ri ∗ ej)1≤i,j≤n) = ξ(det(χξ(γ)ris ∗ ej)1≤i,j≤n).

If χξ(γ) ∈ Zn, multiplication by χξ(γ) is an even permutation of Zn,
hence

det(χξ(γ)ri ∗ ej)1≤i,j≤n = det(ri ∗ ej)1≤i,j≤n,

and therefore γ(δ1) = δ1. If χξ(γ) 6∈ Zn, the map z 7→ χξ(γ)zs is a
permutation of Zn of signature (−1)(n−1)/2, hence

γ(δ1) = (−1)(n−1)/2δ1.
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Therefore, if n ≡ 1 mod 4 we have δ1 ∈ F , hence the discriminant of
L1/F is trivial. If n ≡ 3 mod 4, we have

γ(δ1) = ρ ◦ χξ(γ) δ1,

hence the discriminant of L1/F corresponds to ρ ◦ χξ ∈ H1(F, µ2),

hence it is α · F×2
.

The discriminant of L/F is calculated in a similar way: multiplica-
tion by g ∈ Dn defines on Dn a permutation of signature ρ(g), hence
the discriminant of L/F corresponds to ρ ◦ χξ ∈ H1(F, µ2).

Suppose now K = F (
√
α) is a quadratic field extension of F con-

tained in Fs. We denote by ΓK the Galois group ΓK = Gal(Fs/K)
of Fs over K.

Proposition 24. Suppose n is odd. The group H1(F,Zn(α)) clas-
sifies the Galois Zn-algebras L over K which can be endowed with a
Galois Dn-algebra structure over F extending the action of Zn.

Proof. Let σ ∈ Γ r ΓK . Proposition 21 shows that

H1(F,Zn(α)) = {χ ∈ H1(K,Zn): χχ = 1}
= {χ ∈ Hom(ΓK ,Zn): χχ = 1},

where χ is defined by:

χ(γ) = χ(σγσ−1) for γ ∈ ΓK .

Let L be a Galois Zn-algebra over K which also has a Galois Dn-
algebra structure over F extending the action of Zn. Let ξ ∈ X(L).
We may assume ξ is a K-algebra homomorphism; the restriction to
ΓK of the associated homomorphism χξ: Γ→ Dn is then the element
χξ|ΓK ∈ H1(K,Zn) associated to L, viewed as a Galois Zn-algebra
over K.

If χξ(σ) ∈ Zn, then ρ maps the image of χξ to 1 ∈ µ2, hence
Proposition 23 shows that the subalgebra L0 of invariant elements
under r splits as F × F . This is a contradiction since L0 = K.
Therefore, χξ(σ) 6∈ Zn, hence, for γ ∈ ΓK ,

χξ|ΓK (σγσ−1) = χξ(σ)χξ(γ)χξ(σ)−1 = χξ|ΓK (γ)−1.
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This shows that χξ|ΓKχξ|ΓK = 1, hence χξ|ΓK ∈ H1(F,Zn(α)).
Conversely, to every χ ∈ H1(F,Zn(α)) we associate the Galois
Zn-algebra over K:

Fχ = {f ∈ F(Zn, Fs): γ(f(x)) = f(χ(γ)x) for all x ∈ Zn}.

Since χχ = 1, we may extend the Zn-action on Fχ to an action of Dn
by letting:

(s ∗ f)(x) = σ(f(x−1)) for f ∈ Fχ, x ∈ Zn.

Remark. Another proof of the proposition above can be obtained
by defining a twisted action of Γ on Dn extending the action on Zn.
There is an exact sequence corresponding to (11):

1→ Zn(α)→ Dn(α)→ µ2 → 1,

and the associated cohomology sequence:

1→ H1(F,Zn(α))→ H1(F,Dn(α))→ H1(F, µ2)

yields an alternative (equivalent) description of H1(F,Zn(α)).
As observed in the proof, all Galois Zn-algebras L over K which

can be endowed with a Galois Dn-algebra structure over F extending
the Zn-action have discriminant α · F×2

. It is also clear from the
proof that the Dn-algebra structure on L is not uniquely determined,
since it depends on the choice of σ. However, the subalgebra L1 of
invariant elements under the element s of Dn does not depend on the
choice of the Dn-algebra structure up to F -isomorphism. Therefore,
for χ ∈ H1(F,Zn(α)), we may denote by Fχ an F -algebra which is
isomorphic to the subalgebra of s-invariant elements in the algebra L
corresponding to χ under the correspondence of Proposition 24. Ac-
cording to Proposition 23, the discriminant of Fχ is 1 if n ≡ 1 mod 4

and α · F×2
if n ≡ 3 mod 4.

Any χ ∈ H1(F,Zn) defines a Galois Zn-algebra over F which we
will also denote by Fχ. The discriminant of this extension is 1.
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We now turn to the Galois module µn of n-th roots of unity, assum-
ing that n is relatively prime to the characteristic of F . As above,
we denote

µn(α) = µn ⊗Z Z(α).

Proposition 25. Let K = F (
√
α) be a quadratic field extension of

F . For any odd integer n relatively prime to the characteristic of F ,

H1(F, µn(α)) = {x ·K×n ∈ K×/K×n: xx = 1}

and H2(F, µn(α)) classifies up to Brauer-equivalence central simple
K-algebras of exponent n which admit involutions of the second kind
leaving F elementwise invariant.

Proof. Applying Proposition 21 with M = µn and ` = 1 yields:

H1(F, µn(α)) = {x ·K×n ∈ K×/K×n: xx ∈ F×n}.

If x ∈ K× is such that xx = λn with λ ∈ F×, then

x′ = x(λ(n−1)/2x−1)n

represents the same element of K×/K×n and satisfies: x′x′ = 1. This
proves the first claim.

For ` = 2, Proposition 21 yields a split exact sequence:

1→ H2(F, µn(α))→ nBr(K)
cor−→ nBr(F )→ 1.

The proposition follows, since by the theorem of Albert–Riehm–
Scharlau [16] a central simple K-algebra admits an involution of the
second kind leaving F elementwise invariant if and only if its core-
striction is trivial.

For a ∈ K× with aa = 1, we denote the class of a in H1(F, µn(α))
by [a] and we define a commutative étale F -algebra Fa of dimension
n as follows: on the K-algebra K(y) where y is an indeterminate
subject to yn = a, define an F -automorphism θ extending on K by
letting θ(y) = y−1. Then Fa is the F -subalgebra K(y)θ of invariant
elements under θ. It is easily seen that Fa ' Fa′ if [a] = [a′] ∈

35



H1(F, µn(α)). For [a] ∈ H1(F, µn) = F×/F×n, a ∈ F×, we also
denote by Fa the F -algebra F (y) where yn = a.

We now relate by cup-product the special cases Zn and µn con-
sidered above. There is a canonical isomorphism: Zn ⊗Z µn = µn
defined by: ri ⊗ ζ 7→ ζ i. Therefore, for δ1, δ2 ∈ F×,

Zn(δ1)⊗
Z
µn(δ2) = Zn ⊗ µn ⊗ Z(δ1)⊗ Z(δ2) = µn(δ1δ2).

Thus the cup-product defines a map:

H1(F,Zn(δ1))×H1(F, µn(δ2))→ H2(F, µn(δ1δ2)).

Proposition 26. Let K = F (
√
α) be a quadratic field extension of

F and let δ1, δ2 ∈ F× be such that δ1δ2 ≡ α mod F×
2
. Let χ ∈

H1(F,Zn(δ1)) and a ∈ F (
√
δ2)× such that nF (

√
α2)/F (a) = 1, with

cohomology class [a] ∈ H1(F, µn(δ2)). There exists a central simple
K-algebra B(χ, a) of degree n such that

(1) [B(χ, a)] = χ ∪ [a] ∈ H2(F, µn(α));

(2) B(χ, a) admits an involution σ of the second kind such that
(B(χ, a), σ)+ contains subalgebras isomorphic to Fχ and to Fa.

Proof. We first consider the special cases where δ1 ∈ F×2
or δ2 ∈ F×2

.
If δ1 ∈ F×

2
, we have χ ∈ H1(F,Zn) and [a] ∈ H1(F, µn(α)) with

a ∈ K× such that aa = 1. The algebra Fχ is a Galois Zn-algebra
over F . The central simple algebra B(χ, a) is the crossed product:

B(χ, a) =
n−1⊕
i=0

(Fχ ⊗F K)zi,

where the indeterminate z is subject to the relations:

z(`⊗ k) = [(r ∗ `)⊗ k]z for ` ∈ Fχ, k ∈ K, and zn = a.

An involution of the second kind σ on B(χ, a) is defined by:

σ(`⊗ k) = `⊗ k for ` ∈ Fχ, k ∈ K, and σ(z) = z−1.
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Clearly, (B, σ)+ contains Fχ and the subalgebra Fa ⊂ K(z).

If δ2 ∈ F×2
, then χ ∈ H1(F,Zn(α)) and a ∈ F×, [a] ∈ H1(F, µn).

Let L be a Galois Zn-algebra over K corresponding to χ. According
to Proposition 24, we may also choose a Galois Dn-algebra structure
on L, viewed as an algebra over F . The algebra B(χ, a) is the crossed
product:

B(χ, a) =
n−1⊕
i=0

Lzi

where the indeterminate z is subject to the relations:

z` = (r ∗ `)z for ` ∈ L, and zn = a.

An involution of the second kind σ on B(χ, a) is defined by:

σ(`) = s ∗ ` for ` ∈ L, and σ(z) = z.

By definition, it is clear that Fa = F (z) ⊂ (B, σ)+ and that the
subalgebra L1 ⊂ L of invariant elements under s, which is isomorphic
to Fχ, lies in (B, σ)+.

Suppose now δ1, δ2 6∈ F×2
. Let F ′ = F (

√
δ1) and K ′ = K(

√
δ1).

Let L be a Galois Zn-algebra over F ′ which corresponds to χ ∈
H1(F,Zn(δ1)); according to Proposition 24, we may endow it with
a Galois Dn-algebra structure over F . Since δ1δ2 ≡ α mod F×

2
, we

may identify F (
√
δ2) with a subfield of K ′. Consider the following

crossed product algebra over K ′:

B′ =
n−1⊕
i=0

(L⊗F K) zi

where z is subject to:

z(`⊗ k) = [(r ∗ `)⊗ k]z for ` ∈ L, k ∈ K and zn = a.

This algebra represents the restriction res(χ ∪ [a]) ∈ H1(F ′, µn(α)).
We define an involution σ′ on B′ by:

σ′(`⊗ k) = (s ∗ `)⊗ k for ` ∈ L, k ∈ K, and σ′(z) = z.
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On the other hand, we define a K-algebra automorphism θ on B′ by:

θ(`⊗ k) = (s ∗ `)⊗ k for ` ∈ L, k ∈ K, and θ(z) = z−1.

The restriction of θ to the center K ′ is the non-trivial automorphism
over K, and θ2 = I; therefore, the subalgebra B = B′θ of invariant
elements under θ is a central simple K-algebra such that

B′ = B ⊗K K ′.

Since the restriction map res : H2(F, µn(α)) → H2(F ′, µn(α)) is in-
jective (since n is odd), it follows that B represents the cup product
χ∪[a] ∈ H2(F, µn(α)) and we define B(χ, a) = B. Moreover, θ and σ′

commute, hence the restriction of σ′ to B(χ, a) defines an involution
σ of the second kind. The subalgebra L1 of L elementwise invari-
ant under s and the subalgebra K ′(z)θ invariant under θ both lie in
(B(χ, a), σ)+; the involution σ thus satisfies the required properties,
since L1 ' Fχ and K ′(z)θ ' Fa.

Proposition 27. Let B be a central simple K-algebra of degree n
(odd) which admits involutions of the second kind leaving F elemen-
twise invariant, and let δ ∈ F×. If B contains a subfield isomor-
phic to Fχ for some χ ∈ H1(F,Zn(δ)), then B ' B(χ, a) for some
a ∈ F (

√
αδ)× such that nF (

√
αδ)/F (a) = 1.

Proof. Suppose first δ ∈ F×2
. Then Fχ ⊗K is a maximal subfield of

B which is cyclic over K, hence B is a cyclic algebra:

[B] = resK/F (χ) ∪ [b] ∈ H2(K,µn) (12)

for some b ∈ K× (so that [b] ∈ H1(K,µn)), where [B] denotes the
image of B in H2(K,µn). Since B admits involutions of the second
kind over F , we have corK/F (B) = 0; therefore,

χ ∪ corK/F ([b]) = 0 in H2(F, µn). (13)

Since n is odd, we may find m ∈ Z such that 2m ≡ 1 mod n. Then

b ≡ b2m = (bb
−1

)mnK/F (b)m mod K×
n
;
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therefore, letting a = (bb
−1

)m, we have [a] ∈ H1(F, µn(α)) and

[b] = [a] +m resK/F ◦ corK/F ([b]) in H1(K,µn).

Substituting in equation (12), we get:

[B] = resK/F (χ) ∪ [a] +m resK/F (χ ∪ corK/F ([b])),

hence B ' B(χ, a), in view of (13). Suppose next δ 6∈ F×2
and let

F ′ = F (
√
δ). Since δ ∈ F ′×2

, the case already considered yields:

[B ⊗ F ′] = resF ′/F (χ) ∪ [a′]

for some [a′] ∈ H1(F ′, µn(αδ)). Applying the corestriction map to
both sides of this equation, we get by the projection formula:

2[B] = χ ∪ corF ′/F ([a′]).

Therefore, if 2m ≡ 1 mod n,

[B] = mχ ∪ corF ′/F ([a′]),

hence B ' B(χ, a) for [a] = m corF ′/F ([a′]) ∈ H1(F, µn(αδ)).

In a different direction, we have the following result on the Galois
cohomology of the twisted modules µn(α):

Proposition 28. Let δ1, δ2 ∈ F×. In H2(F, µ⊗2
n (δ1δ2)), we have:

H1(F, µn(δ1)) ∪H1(F, µn(δ2)) ⊂ H1(F, µn) ∪H1(F, µn(δ1δ2)),

where the left-hand side is

{x ∪ y: x ∈ H1(F, µn(δ1)), y ∈ H1(F, µn(δ2))}.

Proof. Assume first that δ1, δ2, δ1δ2 6∈ F×2. For i = 1, 2, let Fi =
F (
√
δi) ⊂ Fs and let ai ∈ F×i be such that nFi/F (ai) = 1, so that

[ai] ∈ H1(F, µn(δi)). If ai ∈ F×n, then [ai] = 0, hence [a1] ∪ [a2] =
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0 ∈ H1(F, µn) ∪ H1(F, µn(δ1δ2)). For the rest of the proof, we may
thus assume ai 6= ±1 for i = 1, 2. Let

u =
a1 − 1

a1 + 1
∈ F×1 and v =

a2 + 1

a2 − 1
∈ F×2 ,

so that

a1 =
1 + u

1− u
and a2 =

v + 1

v − 1
.

Since nFi/F (ai) = 1, it follows that u and v have trace zero. Therefore,
u2, v2 ∈ F× and uv−1 ∈ F (

√
δ1δ2)×. Let

[b] =
1− v2

1− u2
· F×n ∈ H1(F, µn)

and

[c] =
1 + uv−1

1− uv−1
· F

(√
δ1δ2

)×n
∈ H1(F, µn(δ1δ2)).

We claim that

[a1] ∪ [a2] = [b] ∪ [c] in H2(F, µ⊗2
n (δ1δ2)).

Let M = F (
√
δ1,
√
δ2) ⊂ Fs. Since the degree of the extension M/F

is relatively prime to n, the restriction map

resM/F : H2(F, µ⊗2
n (δ1δ2))→ H2(M,µ⊗2

n (δ1δ2)) = H2(M,µ⊗2
n )

is injective; therefore, it suffices to prove the claim over M . The
identity {

1 + u

1− u
;
v + 1

v − 1

}
=

{
1− v2

1− u2
;

1 + uv−1

1− uv−1

}
.

holds for symbols {a, b} in Milnor’s K2, a proof is given in the fol-
lowing Lemma 29.

Applying the norm residue homomorphism K2M → H2(M,µ⊗2
n )

to both sides, we get

[a1] ∪ [a2] = [b] ∪ [c] in H2(M,µ⊗2
n ) = H2(M,µ⊗2

n (δ1δ2)),

completing the proof in the case where δ1, δ2, δ1δ2 6∈ F×
2
. If δ1 or

δ2 ∈ F×
2
, the proposition is obvious. If δ1δ2 ∈ F×

2
, we may use

the same arguments as above, substituting F for F (
√
δ1δ2), except if

u = ±v. In this case however, we have a1 = −a±1
2 , hence [a1] = [a2]±1

and therefore [a1] ∪ [a2] = 0.
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Lemma 29. For u, v 6= ±1 ∈ F×, u 6= ±v, the relation{
1 + u

1− u
;
v + 1

v − 1

}
=

{
1− v2

1− u2
;

1 + uv−1

1− uv−1

}

holds in K2F .

Proof. We have {1− u; 1 + uv−1}+ {1− u; v} = {1− u;u+ v}. On
the other hand the basic relation {a; b} = {a; b − a} + {a − b; b} in
K2 (see for example [9, p. 75]) implies that

{1− u;u+ v} = {1− u; 1 + v} − {−u− v; 1 + v}
= {1− u; 1 + v}+ {1 + v;−u− v}.

Subtracting 0 = {1 + v;−v} we get

{1− u; 1 + uv−1} − {1 + v; 1 + uv−1} = {1− u; 1 + v} − {1− u; v}.

Replacing u, v by±u,±v, we get four expressions which adds to the
wanted relation. Another proof is to check the formula in the function
field F (u, v) by using the exact sequence of Milnor for K2F (t) (see
[10]) to show that

{
1 + u

1− u
;
v + 1

v − 1

}
−
{

1− v2

1− u2
;

1 + uv−1

1− uv−1

}

lies in K2F (u), K2F and then to show that it is 0 by specialization
at some places.

Remark. The Galois module µn plays a special rôle in the preceding
proposition. Suppose that δ1, δ2, ε1, ε2 ∈ F× are such that

µn(δ1)⊗ µn(δ2) = µn(ε1)⊗ µn(ε2),

and that the sets {µn(δ1), µn(δ2)} and {µn(ε1), µn(ε2)} are disjoint
(up to isomorphism). If µn(ε1) and µn(ε2) are different from µn,
then there is an extension F̃ of F such that

H1(F̃ , µn(δ1)) ∪H1(F̃ , µn(δ2)) 6⊂ H1(F̃ , µn(ε1)) ∪H1(F̃ , µn(ε2))
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Indeed, after a biquadratic extension of F we may assume that
δ1, δ2 ∈ F×

2
. Let then F̃ be the iterated powerseries extension

F ((s))((t)). Then

s · F̃×n ∪ t · F̃×n ∈ H1(F̃ , µn) ∪H1(F̃ , µn)

has non-trivial residue. On the other hand,

∂(H1(F̃ , µn(ε))) ⊂ H0(F,Zn(ε)) = 0

for nontrivial ε, hence s·F̃×n∪t·F̃×n cannot be a sum of cup-products
of elements of H1(F̃ , µn(ε1)) and H1(F̃ , µn(ε2)).

Corollary 30. Let n be an odd integer and let F be a field of char-
acteristic relatively prime to n. Assume that µn = Zn(ε) for some
ε ∈ F×; then every central simple F -algebra split by a Galois exten-
sion of degree 2n with dihedral Galois group is cyclic.

Proof. Let A be a central simple F -algebra split by a Galois extension
L/F with dihedral Galois group of order 2n. The index of A then
divides 2n. Since n is odd, we may decompose the Brauer class of A:

[A] = α1 + α2

where α1 has index 1 or 2 and α2 has index dividing n. The element
α1 is split by an cyclic extension C1/F of degree 1 or 2. If we show
that 2[A] is split by a cyclic extension C2/F of degree dividing n,
then α2 is also split by C2, hence A is split by the cyclic extension
C1 ⊗ C2/F . Therefore, it suffices to show that A⊗2 is cyclic. Let
δ ∈ F× be a representative of the discriminant of L. Proposition 23
shows that L is a cyclic extension of F (

√
δ). Choosing a Galois Zn-

algebra structure of L over F (
√
δ), we may associate to L an element

χ ∈ H1(F,Zn(δ)) by Proposition 24. Since A⊗ F (
√
δ) is split by L,

we have

[A⊗F F (
√
δ)] = resF (

√
δ)/F (χ) ∪ [a] in H2(F (

√
δ), µn)

for some [a] ∈ H1(F (
√
δ), µn) = H1(F (

√
δ), µn(δ)). Taking the core-

striction of both sides, we get

2[A] = χ ∪ [a′] in H2(F, µn), (14)
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where [a′] = corF (
√
δ)/F ([a]) ∈ H1(F, µn(δ)). Since µn = Zn(ε), we

have Zn(δ) = µn(εδ), hence relation (14) yields:

2[A] ∈ H1(F, µn(εδ)) ∪H1(F, µn(δ)).

From Proposition 28, it follows that

2[A] = [b] ∪ [c]

for some [b] ∈ H1(F, µn) and some [c] ∈ H1(F, µn(ε)) = H1(F,Zn).
The element [c] then defines a cyclic extension of F which splits
A⊗2.

We conclude by discussing the special features of the case where
n = 3 (assuming that the characteristic of F is not 2 nor 3). Every
cubic field extension L of F is of the form Fχ and also of the form Fa:
more precisely, if the discriminant of L/F is represented by α ∈ F×,
then the field L ⊗F F (

√
α) is cyclic over F (

√
α), hence L = Fχ for

any χ ∈ H1(F,Z3(α)) representing L⊗F F (
√
α). Since µ3 = Z3(−3),

we may also view L = Fa for [a] = χ ∈ H1(F, µ3(−3α)).

Proposition 31. Let K = F (
√
α) be a quadratic field extension of

F and let B be a central division K-algebra of degree 3 which admits
involutions of the second kind leaving F elementwise invariant. Let
also L be a cubic field extension of F with discriminant δ and let
χ ∈ H1(F,Z3(δ)) be such that L = Fχ. The algebra B contains
an isomorphic image of L if and only if B ' B(χ, a) (i.e. [B] =
χ∪ [a] in H2(F, µ3(α))) for some [a] ∈ H1(F, µ3(αδ)). The algebra B
then contains a cubic field extension L′ = Fa of discriminant −3αδ.
Moreover, there exists an involution σ such that L,L′ ⊂ (B, σ)+.

The algebra B always contains cubic field extensions L∗, L
′
∗ of

discriminant −3, α respectively, and carries an involution σ∗ such
that L∗, L

′
∗ ⊂ (B, σ∗)+.

Proof. The first part follows from Propositions 26 and 27. In order
to prove that B always contains extensions L∗, L

′
∗ as stated, we use

Proposition 28: let L be any cubic field extension of F contained in
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B; then, letting δ ∈ F× denote a representative of the discriminant
of L/F , we have

B ' B(χ, a)

for some χ ∈ H1(F,Z3(δ)) and some [a] ∈ H1(F, µ3(αδ)). Since
Z3(δ) = µ3(−3δ), it follows that

[B] ∈ H1(F, µ3(−3δ)) ∪H1(F, µ3(αδ)),

hence Proposition 28 shows that B ' B(χ∗, a∗) for some χ∗ ∈
H1(F, µ3) = H1(F,Z3(−3)) and some [a∗] ∈ H1(F, µ3(−3α)) =
H1(F,Z3(α)). We then let L∗ = Fχ∗ and L′∗ = Fa∗ .

Note that, according to condition (e) of Theorem 16, the involution
σ∗ is distinguished; the proposition above thus yields another proof
of the existence of distinguished involutions.

Note also that the pair (−3, α) is the only pair of discriminants
that occurs for every central division F (

√
α)-algebra of degree 3

which admits involutions of the second kind: given a pair (ε1, ε2)
with ε1ε2 ∈ (−3α) · F×2

, the remark following Proposition 25 to-
gether with Proposition 27 shows that there is an algebra B over
some extension of F which does not contain any cubic separable ex-
tension of discriminant ε1 or ε2. For example, there are algebras B
which do not contain a cyclic cubic field extension, i.e. a cubic field
extension of discriminant 1, as already observed in the example at
the end of section 4.

Since 3-fold Pfister forms are classified up to isometry by their
Arason invariant:

Ar(〈〈a, b, c〉〉) = (a · F×2
) ∪ (b · F×2

) ∪ (c · F×2
) ∈ H3(F, µ2),

(see [5]), Theorem 15 (together with Proposition 25) yields a clas-
sification of central simple algebras of degree 3 with involution by
cohomological invariants:

Corollary 32. Triples (K,B, σ) where K = F (
√
α) is a quadratic

étale F -algebra, B is a central simple K-algebra of degree 3 and σ is
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an involution of the second kind on B leaving F elementwise invari-
ant, are classified over F by the three cohomological invariants:

f1(K,B, σ) = α · F×2 ∈ H1(F, µ2),
g2(K,B, σ) = [B] ∈ H2(F, µ3(α)),
f3(K,B, σ) = Ar(π(B, σ)) ∈ H3(F, µ2).

Proof.
Indeed we have seen that f1 determines K, g2 determines B and

f3 determines the involution σ.

Remark. Let K0/F0 be a separable quadratic field extension and
let B0 be a central division K0-algebra of degree 3 which admits an
involution of the second kind. Let F = F0((t)), K = K0((t)) and
B = B0((t)). Let σ be any involution on B, not necessarily defined
over B0. We claim that the second residue ϕt(Qσ) is always trivial,
i.e. Qσ is induced from F0. A cubic étale F -subalgebra L of B is either
unramified or totally ramified, i.e. L = F [X]/(X3 − ut) for u ∈ F×0 .
Thus in both cases the discriminant of L is a class defined over F0.
On the other hand, an element λ ∈ L such that nL/F (λ) is a square
in F× must be a unit in F0[[t]]. This, together with Proposition 11,
implies that ϕt(Qσ) = 0. It follows that the invariant f3(B, σ) cannot
in general be arbitrary. In particular the three invariants f1, g2 and
f3 are not independent. A corresponding question for invariants of
exceptional Jordan algebras is discussed in [18].
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