Injectivity of $K_{2} \boldsymbol{D} \rightarrow K_{2} \boldsymbol{F}$ for quaternion algebras

by Markus Rost

Regensburg, May 1986*

Let F be field of characteristic different from 2 and let D be a quaternion algebra over F. The purpose of this paper is to show that the reduced norm Nrd : $K_{2} D \rightarrow K_{2} F$ is injective. (for definition and properties of Nrd see $[M S ; \S 6, \S 7]$). This result is essential for the proof of Hilbert 90 for K_{3} for degree-two extensions in Milnor K-Theory of fields ([R1]). Our method of proof is in some sense similar to the proof of Hilbert 90 for K_{2} by Merkur'ev and Suslin. However the important role of Severi-Brauer varieties in the work of Merkur'ev and Suslin has now to be played by a certain type of three-dimensional nonsingular quadrics X_{c}, for which we show that $H^{1}\left(X_{c}, \mathcal{K}_{3}\right)=K_{2} F$. This result is based on the computation of the K-Theory of nonsingular quadrics in [Sw] and the more elementary determination of $S K_{1}\left(X_{c}\right)$ in [R2].

$\S 0$ The results

Let F be a field, Char $F \neq 2$. Every quaternion algebra over F is isomorphic to

$$
D=D(a, b)=\left\langle A, B \mid A^{2}=a, B^{2}=b, A B=-B A\right\rangle
$$

for some $a, b \in F^{*}$.

Theorem 1

The reduced norm

$$
\mathrm{Nrd}: K_{2} D \rightarrow K_{2} F
$$

is injective.
Let det : $D \rightarrow F$ be the norm of D. In coordinates we have

$$
\operatorname{det}\left(x_{1}+x_{2} A+x_{3} B+x_{4} A B\right)=x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}+a b x_{4}^{2}
$$

If D is trivial, i.e. $D=M_{2}(F)$, then det is the usual determinant.
It is not difficult to prove Theorem 1 if det is surjective, see $\S 5$. Therefore we study field extensions which enlarge the image of det. To D and a fixed element $x \in F^{*}$ we associate a nonsingular three-dimensional quadric $X=X_{c}$ as follows. Let $q: D \times F \rightarrow F$ be the quadratic form $q(x, y)=\operatorname{det}(x)-c y^{2}$, and define $X \subset \mathbb{P}(D \times F) \simeq \mathbb{P}^{4}$ by $q=0 . X$ is a smooth irreducible variety over F. Its function field is denoted by $F(X)$. The important role of X in the proof of Theorem 1 relies on the fact that $c \in \operatorname{det}\left(D \otimes_{F} F(X)\right)$.

* This is a $T_{E X e d}$ version (Sept. 1996) of the original preprint.

Theorem 2

The homomorphism

$$
K_{2} D \rightarrow K_{2}\left(D \otimes_{F} F(X)\right)
$$

induced by inclusion is injective.
Let $K_{i}(X)=K_{i}(X)^{0} \supset K_{i}(X)^{1} \supset K_{1}(X)^{2} \supset K_{i}(X)^{3}$ be the filtration given by codimension of support. We put $K_{i}(X)^{n / m}=K_{i}(X)^{n} / K_{i}(X)^{m}$ for $m \geq n$.

Theorem 3

For $i=0,1,2$ there are natural isomorphisms

$$
K_{i}(X)^{0 / 1}=K_{i} F \quad \text { and } \quad K_{i}(X)^{1 / 2}=K_{i} F .
$$

Consider the sequence

$$
\bigoplus_{v \in X} K_{3} \kappa(v) \xrightarrow{d} \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v) \xrightarrow{d^{\prime}} \bigoplus_{v \in X^{(2)}} K_{1} \kappa(v)
$$

given by the localization sequence in K-Theory $[Q ; \S 5]$.

Theorem 4

There is a natural isomorphism

$$
\text { Ker } d^{\prime} / \operatorname{Im} d=K_{2} F
$$

§ 1 Preliminaries

For a splitting field L of D, finite over F, there is a natural homomorphism $\theta_{L}: K_{i} L \rightarrow K_{i} D$ by composing the transfer $K_{i}\left(D \otimes_{F} L\right) \rightarrow K_{i} D$ and the isomorphism $K_{i} L=K_{i}\left(M_{2}(L)\right)=$ $K_{i}\left(D \otimes_{F} L\right)$ (See [MS; §1] for functorial properties). For the following proposition see [MS; Theorem 5.2] or [RS; § 4].

Proposition 1.1.

For $i=0,1,2$ the map

$$
\theta=\left(\theta_{L}\right): \bigoplus_{L} K_{i} L \rightarrow K_{i} D
$$

is surjective. Here L runs over all splitting fields of D, finite over F.
Let Y be the Severi-Brauer variety associated to D and denote by $F(Y)$ its function field. Y is isomorphic to the quadric in \mathbb{P}^{2} given by $x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}=0$. The residue fields of the points of Y are splitting fields of D. The K-Cohomology of Y was studied in [MS]. We need the following results.

Proposition 1.2.

The following sequences are exact

$$
\begin{gather*}
0 \rightarrow K_{2} F \rightarrow K_{2} F(Y) \xrightarrow{d} \bigoplus_{v \in Y^{(1)}} K_{1} \kappa(v) \xrightarrow{\theta} K_{1} D \rightarrow 0 \tag{1.2.1}\\
K_{3} F(Y) \xrightarrow{d} \bigoplus_{v \in Y^{(1)}} K_{2} \kappa(v) \xrightarrow{\theta} K_{2} D \rightarrow 0 \tag{1.2.2}
\end{gather*}
$$

Here $\theta=\left(\theta_{\kappa(v)}\right)$ as above. For (1.2.1) see also [So; Proposition 3]. (1.2.2) is a consequence of (1.2.1), the long exact localization sequence for Y and the isomorphism $K_{i}(Y)=K_{i} F \oplus K_{i} D([Q$; Theorem 4.1]).

Now let $X=X_{c}=X(q)$ be the quadric defined in $\S 1$. For the following analogue of the exactness of the right part of (1.2.1) see [R2].

Proposition 1.3.

The sequence

$$
\bigoplus_{v \in X^{(2)}} K_{2} \kappa(v) \xrightarrow{d} \bigoplus_{v \in X^{(3)}} K_{1} \kappa(v) \xrightarrow{\mathcal{N}} K_{1} F
$$

is exact.
Here \mathcal{N} is induced by the usual norm for finite extensions.
For trivial D, X is isomorphic to the canonical quadric \hat{X} in \mathbb{P}^{4} defined by

$$
x_{1} x_{2}+x_{3} x_{4}-x_{5}^{2}=0 .
$$

Let $Z \subset \hat{X}$ be the irreducible hyperplane section given by $x_{1}=0$ and let $v_{Z} \in \hat{X}^{(1)}$ be the point corresponding to Z. The birational correspondence

$$
\phi: \hat{X} \rightarrow \mathbb{P}^{3}, \quad\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] \rightarrow\left[x_{1}: x_{3}: x_{4}: x_{5}\right]
$$

induces an isomorphism $\hat{X} \backslash Z \rightarrow \mathbb{P}^{3} \backslash\left\{x_{1}=0\right\}=\mathbb{A}^{3}$. From this it is clear that $\operatorname{Pic}(\hat{X})=\mathbb{Z}$, generated by a hyperplane section.

Proposition 1.4.:

The sequence

$$
0 \rightarrow K_{i} F \rightarrow K_{i} F(\hat{X}) \xrightarrow{d} \bigoplus_{\substack{v \in \hat{X}^{(1)} \\ v \neq v_{Z}}} K_{i-1} \kappa(v)
$$

is exact.

Proof

ϕ induces via $\hat{X} \leftarrow \hat{X} \backslash Z \simeq \mathbb{A}^{3} \rightarrow \mathbb{P}^{3}$ an equivalence of the sequence in question with the sequence

$$
0 \rightarrow K_{i} F \rightarrow K_{i} F\left(\mathbb{P}^{n}\right) \xrightarrow{d} \bigoplus_{v \in\left(\mathbb{A}^{n}\right)^{(1)}} K_{i-1} \kappa(v)
$$

for $n=3$. The exactness of this sequence is known for $n=1$ and induction yields the result.

Corollary 1.5.

The natural homomorphism

$$
K_{2} F \rightarrow K_{2} F(X)
$$

is injective.
This follows from a result of Suslin, since F is algebraically closed in $F(X)$. It can be also derived from Proposition 1.2. and Proposition 1.4. and the commutative diagram

since X is isomorphic to \hat{X} over $F(Y)$.
Let $\mu: K_{i} F \otimes K_{0}(X) \rightarrow K_{i}(X)$ be the multiplication in K-Theory. μ respects filtration, i.e. $\mu\left(K_{i} F \otimes K_{0}(X)^{n}\right) \subset K_{i}(X)^{n}$. Let $C=C_{0}(q)$ be the even part of the Clifford algebra of q. For the following theorem see [Sw; Theorem 9.1].

Theorem 1.6.

There is a natural isomorphism

$$
\left(u_{0}, u_{1}, u_{2}, w\right):\left(K_{i} F\right)^{3} \oplus K_{i} C \rightarrow K_{i}(X) .
$$

The definition of $w\left(=u^{\prime}\right.$ in the notation of $\left.[\mathrm{Sw}]\right)$ shows that the following diagram commutes

Moreover we have

$$
u_{i}(\alpha)=\mu\left(\alpha,\left[\mathrm{O}_{X}(-i)\right]\right) \quad \text { for } \quad \alpha \in K_{i} F .
$$

§ 2 Proof of Theorem 3

Lemma 2.1

$$
C=M_{2}(D)
$$

Proof

Let $q^{\prime}=c x_{1}^{2}-a c x_{2}^{2}-b c x_{3}^{2}+a b c x_{4}^{2}$. Then $q=x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}+a b x_{4}^{2}-c x_{5}^{2}$ is equivalent to $c\left(q^{\prime} \oplus\langle-1\rangle\right)$. [Sw; Lemma 4.4 and Lemma 4.5] yields $C=C_{0}(q)=C_{0}\left(q^{\prime} \oplus\langle-1\rangle\right)=C\left(q^{\prime}\right)$ Hence

$$
\begin{gathered}
C=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right| e_{1}^{2}=c, e_{2}^{2}=-a c, e_{3}^{2}=-b c, e_{4}^{2}=a b c, \\
\left.e_{i} e_{j}+e_{j} e_{i}=0 \text { for } i \neq j\right\rangle . \\
=\left\langle f_{1}, f_{2}, g_{1}, g_{2}\right| f_{1}^{2}=a, f_{2}^{2}=b, g_{1}^{2}=1, g_{2}^{2}=-a b c ; \\
\left.f_{1} f_{2}+f_{2} f_{1}=0, g_{1} g_{2}+g_{2} g_{1}=0,\left[f_{i}, g_{j}\right]=0\right\rangle
\end{gathered}
$$

where $f_{1}=e_{1}^{-1} e_{2}, f_{2}=e_{1}^{-1} e_{3}, g_{1}=\left(e_{2} e_{3}\right)^{-1} e_{1} e_{4}, g_{2}=e_{1}^{-1} e_{2} e_{3}$. Therefore $C=$ $D(a, b) \otimes D(1,-a b c) \simeq D(a, b) \otimes M_{2}(F)$.
qed
Lemma 2.1 and Proposition 1.1 imply

Corollary 2.2

For $i=0,1,2$ the map

$$
\bigoplus_{L} K_{i}\left(C \otimes_{F} L\right) \rightarrow K_{i} C
$$

induced by transfer is surjective. Here L runs over all splitting fields of D, finite over F.

Lemma 2.3

Let $i=0,1,2$. Then
i) $K_{i}(X)=u_{1}\left(K_{i} F\right)+K_{i}(X)^{1}$.
ii) $K_{i}(X)=u_{0}\left(K_{i} F\right)+u_{1}\left(K_{i} F\right)+K_{i}(X)^{2}$.

Proof

Let $\gamma=\left[\mathrm{O}_{X}\right]-\left[\mathrm{O}_{X}(-1)\right] \in K_{0}(X)$. Since γ is defined by a hyperplane section we have $\gamma \in K(X)^{1}$ and $\gamma^{2} \in K(X)^{2}$. Hence

$$
u_{0}(\alpha)-u_{1}(\alpha)=\mu(\alpha, \gamma) \in K_{i}(X)^{1}
$$

which shows ii) \Rightarrow i). For ii) first note

$$
u_{0}(\alpha)-2 u_{1}(\alpha)+u_{2}(\alpha)=\mu\left(\alpha, \gamma^{2}\right) \in K_{i}(X)^{2}
$$

By Theorem 1.6 it remains to show that

$$
\begin{equation*}
\underline{w}\left(K_{i} C\right) \subset u_{0}\left(K_{i} F\right)+u_{1}\left(K_{i} F\right)+K_{i}(X)^{2} \tag{*}
\end{equation*}
$$

Since the transfer $K_{i}\left(X \times_{F} L\right) \rightarrow K_{i}(X)$ respects filtration, Corollary 2.2 shows that we may assume $D=M_{2} F$; in particular we may assume that X is the canonical quadric \hat{X}. Let us first assume $i=0$. The Gersten spectral sequence $E_{2}^{p, q} \Rightarrow K_{-p-q}$ yields isomorphisms $\mathrm{Ch}^{0}(X)=E_{2}^{0,0}=E_{\infty}^{0,0}=K_{0}(X)^{0 / 1}$ and $\mathrm{Ch}^{1}(X)=E_{2}^{1,-1}=E_{\infty}^{1,-1}=K_{0}(X)^{1 / 2}$. Therefore $K_{0}(X)=\left[\mathrm{O}_{X}\right] \mathbb{Z} \oplus K_{0}(X)^{1}$ and $K_{0}(X)^{1}=\gamma \mathbb{Z} \oplus K_{0}(X)^{2}$, since $\operatorname{Ch}^{1}(X)=\operatorname{Pic}(X)$ is generated by a hyperplane section.

Now let i be arbitrary. Let $\varepsilon \in K_{0} C$ be the unit of the ring $K_{*} C=K_{*} D=K_{*} F$ and let $k, l \in \mathbb{Z}$ such that

$$
w(\varepsilon)=k\left[\mathrm{O}_{X}\right]+l\left[\mathrm{O}_{X}(-1)\right] \quad \bmod K_{0}(X)^{2}
$$

Then, for $\alpha \in K_{i} F=K_{i} C$:

$$
\begin{aligned}
w(\alpha) & =w(\alpha \varepsilon)=\mu(\alpha, w(\varepsilon)) \\
& =k u_{0}(\alpha)+l u_{1}(\alpha)+\mu\left(\alpha, w(\varepsilon)-k\left[\mathrm{O}_{X}\right]-l\left[\mathrm{O}_{X}(-1)\right]\right) \\
& \in u_{0}\left(K_{i} F\right)+u_{1}\left(K_{i} F\right)+K_{i}(X)^{2}
\end{aligned}
$$

This proves $\left({ }^{*}\right)$.
To prove Theorem 3 it remains to show that the sums in Lemma 2.3 are direct.

Proposition 2.4

Let $i=0,1,2$. Then
i) $u_{0}\left(K_{i} F\right) \cap K_{i}(X)^{1}=0$
ii) $\tilde{u}\left(K_{i} F\right) \cap K_{i}(X)^{2}=0$ where $\tilde{u}=u_{0}-u_{1}$.

Let Y be the Severi-Brauer variety associated to D. To prove 2.4 we may replace F by $F(Y)$, because $K_{i} F \rightarrow K_{i} F(Y)$ is injective (Proposition 1.2). Then again $D=M_{2}(F)$ and $X=\hat{X}$.

Proof of i)

$K_{i}(X)^{1}$ is the kernel of the natural map res : $K_{i}(X) \rightarrow K_{i} F(X)$. reso $u_{0}: K_{i} F \rightarrow K_{i} F(X)$ is the homomorphism induced by inclusion, hence injective (Proposition 1.4). qed

Proof of ii)

We have to look closer to the Gersten spectral sequence. Let \mathfrak{M}^{n} be the category of coherent O_{X}-modules M with $\operatorname{cod} \operatorname{supp} M \geq n$. Let $Z \subset X=\hat{X}$ be the hyperplane section as in § 1 .
We have a commutative diagram

Here f, j, g are the obvious maps. The composition of the maps in the upper row is just \tilde{u}.
Now suppose $\tilde{u}(\alpha) \in K_{i}(X)^{2}$ for some $\alpha \in K_{i} F$. Then

$$
\begin{gathered}
f\left(\alpha \cdot\left[\mathrm{O}_{Z}\right]\right) \in \operatorname{Ker} j+\operatorname{Im}\left(K_{i}\left(\mathfrak{M}^{2}\right) \rightarrow K_{i}\left(\mathfrak{M}^{1}\right)\right)= \\
=\operatorname{Im}\left(K_{i+1}\left(\mathfrak{M}^{0} / \mathfrak{M}^{1}\right) \rightarrow K_{i}\left(\mathfrak{M}^{1}\right)\right)+\operatorname{Im}\left(K_{i}\left(\mathfrak{M}^{2}\right) \rightarrow K_{i}\left(\mathfrak{M}^{1}\right)\right),
\end{gathered}
$$

hence

$$
g f\left(\alpha \cdot\left[\mathrm{O}_{Z}\right]\right) \in \operatorname{Im}\left(K_{i+1}\left(\mathfrak{M}^{0} / \mathfrak{M}^{1}\right) \rightarrow K_{i}\left(\mathfrak{M}^{1} / \mathfrak{M}^{2}\right)\right)=d\left(K_{i+1} F(X)\right)
$$

On the other hand $g f\left(\alpha \cdot\left[\mathrm{O}_{Z}\right]\right) \in K_{i} \kappa\left(v_{Z}\right)$. Proposition 1.4. yields $K_{i} \kappa\left(v_{Z}\right) \cap$ $d\left(K_{i+1} F(X)\right)=0$ and therefore $\operatorname{res}_{F(Z) \mid F}(\alpha)=g f\left(\alpha \cdot\left[\mathrm{O}_{Z}\right]\right)=0$. Since $F(Z)$ is pure transcendental over F, we have $\alpha=0$.

§ 3 Proof of Theorem 4

Consider the Gersten spectral sequence $E_{2}^{p, q} \Rightarrow K_{-p-q}(X)$. By definition we have $\operatorname{Ker} d^{\prime} / \operatorname{Im} d=E_{2}^{1,-3}$ and $E_{2}^{3,-4}$ is the cokernel of the differential in Proposition 1.3. The spectral sequence yields the complex

$$
0 \rightarrow E_{\infty}^{1,-3} \rightarrow E_{2}^{1,-3} \rightarrow E_{2}^{3,-4} \rightarrow E_{\infty}^{3,-4}
$$

which is exact with possible exception at $E_{2}^{3,-4}$. (Note that $E_{2}^{p, q}=0$ for $p+q>0, p<0$ and $p>\operatorname{dim} X=3$). Since $E_{\infty}^{1,-3}=K_{2}(X)^{1 / 2}=K_{2} F$ by Theorem 3, it is enough to show that $E_{2}^{3,-4} \rightarrow E_{\infty}^{3,-4}=K_{1}(X)^{3}$ is injective.

The inclusion $X \subset \mathbb{P}^{4}$ induces the commutative diagram

$$
\begin{gathered}
\underset{v \in X^{(2)}}{\oplus} K_{2} \kappa(v) \xrightarrow{d_{X}} \underset{v \in X^{(3)}}{\oplus_{1}} K_{1} \kappa(v) \xrightarrow{\mathcal{N}} K_{1} F \\
\\
\underset{v \in\left(\mathbb{P}^{4}\right)^{(3)}}{ }{ }^{\oplus} K_{2} \kappa(v) \xrightarrow{d_{\mathbb{P}^{4}}} \underset{v \in\left(\mathbb{P}^{4}\right)^{(4)}}{\oplus_{1}} K_{1} \kappa(v) \xrightarrow{\mathcal{N}} K_{1} F
\end{gathered}
$$

The upper row is exact by Proposition 1.3, hence coker $d_{X} \rightarrow \operatorname{coker} d_{\mathbb{P}^{4}}$ is injective. Now the injectivity of $E_{2}^{3,-4} \rightarrow E_{\infty}^{3,-4}$ follows from the diagram

and the fact that $E_{2}\left(\mathbb{P}^{4}\right) \rightarrow E_{\infty}\left(\mathbb{P}^{4}\right)$ is an isomorphism.

§ 4 Proof of Theorem 2

Put $\bar{Y}=Y \times_{F} F(X), \bar{D}=D \otimes_{F} F(X), \bar{X}=X \times_{F} F(Y)$. One has natural identifications $F(\bar{X})=F(Y)=F(X \times Y)$.
Consider the commutative diagram

The differentials here are the differentials of spectral sequences for Y and \bar{Y} (horizontal), X and \bar{X} (vertical) respectively. According to Theorem 4 and Proposition 1.2 the homomorphism Ker $d_{F}^{\prime \prime} / \operatorname{Im} d_{F}^{\prime} \rightarrow \operatorname{Ker} d_{F(Y)} / \operatorname{Im} d_{F(Y)}^{\prime}$ is injective. Since $D \otimes_{F} F(Y)$ is trivial, the vertical sequence associated to \bar{X} is exact at $K_{3} F(Y)$ and $K_{3} F(X \times Y)$ by Proposition 1.4. Moreover $f=\operatorname{res}_{F(X) \mid F}$ is injective by Corollary 1.5.

Lemma 4.1

Let $\alpha \in \oplus_{v \in Y^{(1)}} K_{2} \kappa(v)$ and $\beta \in K_{3} F(X \times Y)$ such that $d_{F(X)}(\beta)=f(\alpha)$. Then there exist $\gamma \in \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v)$ such that $\operatorname{res}_{F(Y) \mid F}(\gamma)=d_{F(Y)(\beta)}^{\prime}$.
Let us first assume the lemma is true. To prove Theorem 2, i.e. the injectivity of coker $d_{F} \rightarrow$ coker $d_{F(X)}$, we have to find for a given α as in Lemma 4.1 an element
$\delta \in K_{3} F(Y)$ such that $d_{F}(\delta)=\alpha$. This is done by a pure diagram chasing, using Lemma 4.1 and the above remarks.

Proof of Lemma 4.1

Let $F^{\prime} \mid F$ be isomorphic to $F(Y) \mid F$. We consider the above diagram after the base extension $F \rightarrow F^{\prime}$. $D^{\prime}=D \otimes_{F} F^{\prime}$ is trivial, hence $Y^{\prime}=Y \times_{F} F^{\prime} \simeq \mathbb{P}_{F^{\prime}}^{1}$. Therefore, over F^{\prime}, both horizontal sequences are exact. Put $\alpha^{\prime}=\operatorname{res}_{F^{\prime} \mid F}(\alpha)$ and $\beta^{\prime}=\operatorname{res}_{F^{\prime} \mid F}(\beta)$. The injectivity of $K_{2} F^{\prime} \rightarrow K_{2} F^{\prime}(X)$ in the commutative diagram

yields $\theta^{\prime}\left(\alpha^{\prime}\right)=0$. By exactness there is an element $\delta^{\prime} \in K_{3} F^{\prime}(Y)$ such that $d_{F^{\prime}}\left(\delta^{\prime}\right)=\alpha^{\prime}$. Put $\tilde{\beta}=\beta^{\prime}-\operatorname{res}_{F^{\prime}(X \times Y) \mid F^{\prime}(Y)}\left(\delta^{\prime}\right)$. Since $d_{F^{\prime}(X)}^{\prime}(\tilde{\beta})=0$, we have $\tilde{\beta} \in K_{3} F^{\prime}(X)$. Put $\lambda=\operatorname{res}_{F^{\prime}(Y) \mid F(Y)}\left(d_{F(Y)}^{\prime}(\beta)\right)$. Since $\lambda=d_{F^{\prime}(Y)}\left(\beta^{\prime}\right)=\operatorname{res}_{F^{\prime}(Y) \mid F^{\prime}}\left(d_{F^{\prime}}^{\prime}(\tilde{\beta})\right)$ we have

$$
\lambda \in \operatorname{res}_{F^{\prime}(Y) \mid F(Y)}\left(\bigoplus_{v \in \bar{X}^{(1)}} K_{2} \kappa(v)\right) \cap \operatorname{res}_{F^{\prime}(Y) \mid F^{\prime}}\left(\bigoplus_{v \in X^{\prime}(1)} K_{2} \kappa(v)\right) .
$$

Therefore

$$
\lambda \in \bigoplus_{v \in X^{(1)}}\left[\operatorname{res}_{F^{\prime}(Y) \mid F(Y)}\left(K_{2} \kappa\left(v_{F(Y)}\right)\right) \cap \operatorname{res}_{F^{\prime}(X) \mid F^{\prime}}\left(K_{2} \kappa\left(v_{F^{\prime}}\right)\right)\right]
$$

Proposition 1.2 yields

$$
\lambda \in \bigoplus_{v \in X^{(1)}} \operatorname{res}_{F^{\prime}(Y) \mid F}\left(K_{2} \kappa(v)\right)
$$

Now let γ be the unique element such that $\operatorname{res}_{F^{\prime}(Y) \mid F}(\gamma)=\lambda$. Then

$$
\operatorname{res}_{F^{\prime}(Y) \mid F(Y)}\left(\operatorname{res}_{F(X) \mid F}(\gamma)-d_{F(Y)}^{\prime}(\beta)\right)=0,
$$

hence $\operatorname{res}_{F(Y) \mid F}(\gamma)=d_{F(Y)}^{\prime}(\beta)$.

§ 5 Proof of Theorem 1

Let $\mu: K_{1} F \otimes K_{1} D \rightarrow K_{2} D$ be the multiplication in K-Theory. For a splitting field L of D, finite over F, the following diagram is commutative:

μ is surjective ([RS; Theorem 4.3]).

Lemma 5.1

μ is a symbol, that is $\mu(1-\operatorname{Nrd}(\alpha), \alpha)=0$ for $\alpha \in K_{1} D, \operatorname{Nrd}(\alpha) \neq 1$.

Proof

Let $L \subset D$ be a maximal commutative subfield and let $u \in L^{*}$ such that $\alpha=\theta_{L}(u)$. Then $\operatorname{Nrd}(\alpha)=N_{L \mid F}(u)$, hence $\mu(1-\operatorname{Nrd}(\alpha), \alpha)=\theta_{L}\left(\left\{1-N_{L \mid F}(u), u\right\}\right)$. Let σ be the generator of $\operatorname{Gal}(L \mid F)=\mathbb{Z} / 2$. By Skolem-Noether $L \rightarrow D$ is equivariant with respect to σ and an inner automorphism of D. Therefore $\theta_{L} \mathrm{o}=\sigma=\theta_{L}$ and the claim follows since $\left\{1-N_{L \mid F}(u), u\right\} \in(1-\sigma)\left(K_{2} L\right)$, see [Me, Lemma 4].

Lemma 5.2

If Nrd : $K_{1} D \rightarrow K_{1} F$ is surjective, then Nrd : $K_{2} D \rightarrow K_{2} F$ is an isomorphism.

Proof

Since $K_{1} D \rightarrow K_{1} F$ is always injective, we have $K_{1} D=K_{1} F$. Lemma 5.1 shows that $\mu: K_{1} F \otimes K_{1} F \rightarrow K_{2} D$ induces an inverse $K_{2} F \rightarrow K_{2} D$ to Nrd.

Proof of Theorem 1

For $c \in F^{*}$ let X_{c} be the quadric of $\S 0$. Then $c \in \operatorname{det}\left(D \otimes_{F} F\left(X_{c}\right)\right)$. Let \hat{F} be the compositum of the fields $F\left(X_{c}\right), c \in F^{*}$ and put $F_{0}=F, F_{1}=\hat{F}, F_{n+1}=\hat{F}_{n}, \bar{F}=\bigcup_{n \geq 0} F_{n}$ and $\bar{D}=D \otimes_{F} \bar{F}$. Then det : $\bar{D} \rightarrow \bar{F}$ is surjective and therefore the same is true for Nrd : $K_{1} \bar{D} \rightarrow K_{1} \bar{F}$. The composition of $K_{2} D \rightarrow K_{2} \bar{D} \rightarrow K_{2} \bar{F}$ is injective by Theorem 2 and Lemma 5.2 ; this clearly implies the injectivity of $K_{2} D \rightarrow K_{2} F$.

Bibliography

[Me] Merkur'ev, A.S.: K_{2} of fields and the Brauer group, Proceedings of the Boulder Conference on K-Theory, 1983.
[MS] Merkur'ev, A.S.; Suslin, A.A.: K-Cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR 46, 1982, 1011-1046.
[Q] Quillen, D.: Algebraic K-Theory I, Springer, Lecture Notes in Mathematics 341, (1973), 85-147.
[R1] Rost, M.: Hilbert 90 for K_{3} for degree-two extensions; in preparation.
[R2] Rost, M.: $S K_{1}$ of some nonsingular quadrics; in preparation.
[RS] Rehmann, U:; Stuhler, U: On K_{2} of finite dimensional division algebras over arithmetical fields, Inv. Math. 50, 75-90, (1978).
[So] Soulé, C.: K_{2} et le Groupe de Brauer, Sem. Bourbaki, 1982/83, Nr. 601, 79-93.
[Sw] Swan, R.G.: K-Theory of quadric hypersurfaces, Annals of Math., 122 (1985), 113-153.

Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31
D-93040 Regensburg

