
ON THE CLASSIFICATION OF ALBERT ALGEBRAS

MARKUS ROST

preliminary version

1. Introduction

This is a very preliminary text. Our goal is to prove Corollary 4 at the very end
of this text.

I am indebted to H. Petersson for comments on earlier versions of this text.

2. Jordan symbol algebras of degree 3

Let R be a commutative ring in which 6 is invertible. Let ζ ∈ R with ζ2+ζ+1 = 0
and let a, b, c ∈ R. The aim of this section is to define Jordan algebras Jζ(R; a, b, c)
generalizing the first Tits construction of Albert algebras (=exceptional Jordan al-
gebras) over fields to possibly degenerate Jordan algebras over rings. The condition
1/2 ∈ R is probably not necessary for this, but I haven’t thought about details.

2.1. First Notations. J(R; a) = R[X]/(X3 − a) is the cubic Kummer extension
associated to a. The algebra J(R; a) is a free R-module with basis Xi, 0 ≤ i ≤ 2.
Aζ(R; a, b) is the associative R-algebra with generators X, Y and relations X3 =

a, Y 3 = b and Y X = ζXY . The algebra Aζ(R; a, b) is a free R-module with basis
XiY j , 0 ≤ i, j ≤ 2.
J(R; a, b) = Aζ(R; a, b)+ is the Jordan R-algebra associated to Aζ(R; a, b). The

algebra J(R; a, b) is a free R-module with basis Xi · Y j , 0 ≤ i, j ≤ 2, where x · y =
(xy + yx)/2 is the Jordan product. Since Aζ(R; a, b)op = Aζ2(R; a, b), one has
J(R; a, b) = Aζ2(R; a, b)+.

2.2. The first Tits construction. It is possible to define the Jordan algebras
Jζ(R; a, b, c) in terms of generators and relations, see proposition 1. However to
carry out the details is somewhat tedious. Therefore we use an indirect way by
referring to the first Tits construction over fields.

Let F be a field of characteristic different from 2, 3. Moreover let A be a central
simple F -algebra of degree 3 and let c ∈ F ∗, let Nrd, Trd: A → F be the reduced
norm and reduced trace of A and let × : A × A → A be the symmetric bilinear
product defined by (x × x)x = Nrd(x). For x ∈ A, set x = 1

2 (Trd(x) − x). Tits
[2, 5] defined an Albert algebra

J(A, c) = A0 ⊕A1 ⊕A2
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as the sum of three copies of A with the product

x0 y1 z2

x′0
1
2 (xx′ + x′x)0 (x′y)1 (zx′)2

y′1 (xy′)1 c(y × y′)2 (y′z)0

z′2 (z′x)2 (yz′)0
1
c (z × z′)1

Now assume that F contains a primitive cube root ζ of 1 and let a, b, c ∈ F ∗.
We put

Jζ(F ; a, b, c) = J
(
Aζ(a, b), c

)
Note that the algebra J(F ; a, b) is a subalgebra of Jζ(F ; a, b, c) via x 7→ (x, 0, 0).
Let

X1 = (X, 0, 0), X2 = (Y, 0, 0), X3 = (0, 1, 0).

Let R0 = Z[1/6, ζ, a, b, c]/(ζ2 + ζ + 1) and let F0 = Q(µ3)(a, b, c) be the fraction
field of R0. Let

Jζ(R0; a, b, c) ⊂ Jζ(F0; a, b, c)

be the R0-subalgebra generated by X1, X2, X3.
Now let R be a commutative ring in which 6 is invertible, let ζ ∈ R with ζ2 +ζ+

1 = 0 and let a1, a2, a3 ∈ R. We define Jζ(R, a1, a2, a3) as the R-algebra obtained
via specialization from the universal example: Let R0 → R be the homomorphism
sending ζ, a, b, c to the elements ζ, a1, a2, resp. a3 of R and let

Jζ(R, a1, a2, a3) = Jζ(R0, a, b, c)⊗R0 R

Let Γ = (Z/3)3 and let ω : Alt(3,Γ)→ Z/3 be the isomorphism with

ω
(
(1, 0, 0) ∧ (0, 1, 0) ∧ (0, 0, 1)

)
= 1

For r ∈ Γ we denote by r1, r2, r3 ∈ Z the integers with 0 ≤ ri ≤ 2 and r = (r1, r2, r3)
mod 3.

For r ∈ Γ let Lr be the R-submodule of Jζ(R; a1, a2, a3) generated by the element
(Xr1

1 Xr2
2 )Xr3

3 .

Proposition 1. The R-modules Lr are free of rank 1. One has

Jζ(R; a1, a2, a3) =
⊕
r∈Γ

Lr

and LrLs ⊂ Lr+s.
The R-algebra Jζ(R; a1, a2, a3) is generated by X1, X2, X3.
For r ∈ Γ one has (

(Xr1
1 Xr2

2 )Xr3
3

)3 =
1
8n
ar11 a

r2
2 a

r3
3

where n = 2 if the ri are all nonzero, n = 1 if exactly one of the ri is equal to 0
and n = 0 otherwise.
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Let r, s, t ∈ Γ be linearly independent elements (i. e., r ∧ s ∧ t 6= 0) and let
U ∈ Lr, V ∈ Ls, W ∈ Lt. Then

U2(UV ) = U(U2V ) =
1
4
U3V

U(UV ) = −1
2
U2V

(UV )(UW ) = −1
2
U2(VW )

(UV )(U2W ) =
1
4
U3(VW )

(UV )W = ζω(r∧s∧t)(UW )V

Proof. This all follows by inspection of the product in Jζ(F0; a, b, c). �

The significance of proposition 1 is that it provides a complete description
of Jζ(R; a1, a2, a3) as commutative (but not necessarily associative) Γ-graded R-
algebra with generators X1, X2, X3 and certain relations. We mention one partic-
ular consequence:

Corollary 1.

Jζ(R; a3, a1, a2) ' Jζ(R; a1, a2, a3)

Jζ(R; a2, a1, a3) ' Jζ2(R; a1, a2, a3)

3. The H3(Z/3)-invariant

We summarize results from [6, 10]. See also [5].

Proposition 2. For Albert algebras J over fields F (of characteristic different
from 2, 3) there exist a unique cohomological invariant g3(J) ∈ H3(F,Z/3) such
that: For a field F containing a primitive cube root ζ of 1 and for a1, a2, a3 ∈ F ∗
one has

g3

(
Jζ(F ; a1, a2, a3)

)
⊗ ζ = (a1) ∪ (a2) ∪ (a3)

in H3(F,Z/3)⊗ µ3 = H3(F, µ⊗3
3 ) (note that µ3 ⊗ µ3 ≡ Z/3).

4. F4-torsors

We assume that R contains a subfield k with ζ ∈ k. The algebraic group F4 =
Aut

(
Jζ(k; 1, 1, 1)

)
(= group of k-algebra automorphisms) is a split group over k of

type F4.

Lemma 1. Let a1, a2, a3 ∈ R be invertible.
Then Isom

(
Jζ(R; 1, 1, 1), Jζ(R; a1, a2, a3)

)
is an F4-torsor over R (in the etale

topology).

Proof. It suffices to note that after adjoining cube roots of the ai the Jordan R-
algebras Jζ(R; a1, a2, a3) and Jζ(R; 1, 1, 1) become isomorphic. �

We will use the following corollary of the theorem of Raghunathan-Ramanathan
[9] (together with a theorem of Steinberg) applied to F4-torsors over the affine line:

Proposition 3. Let k be perfect and let J be a algebra over k[t] which is locally
(in the etale topology) isomorphic to the split Albert algebra. Then J ' J0 ⊗ k[t]
for some Albert algebra J0 over k.
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By Lemma 1, this condition is satisfied if for every irreducible polynomial P ∈
k[t] there exists a1, a2, a3 ∈ (k[t](P ))∗ with J ⊗ k[t](P ) ' Jζ(k[t](P ); a1, a2, a3).

Remark added on Sept. 10:
Actually, we will need only the following:

Proposition 4. Let char k 6= 3 with µ3 ⊂ k, let J be an Albert divsion algebra
of first Tits construction over k, and let J ′ ⊂ J ⊗ k(t) be a k[t]-subalgebra which
is locally (in the etale topology) isomorphic to the split Albert algebra. Then J ′ '
J ⊗ k[t].

Proof. (Sketch) One uses, I guess, Harder’s method used for quadratic forms. The
argument simplifies for the anisotropic case.

Extend the order J ′ to an order J̄ on the projective line by taking the order
J⊗k[1/t] at infinity. Let x ∈ H0

(
P1,Hom

(
OP1(1), J̄

))
be a global section. Since J ′

is a vector bundle (in fact, a direct sum of line bundles OP1(r), [1, p. 516]), one
has H0

(
P1,Hom

(
OP1(n), J̄

))
= 0 for n � 0. Thus x is nilpotent, and since J(t)

is a field, it follows x = 0. Hence H0
(
P1,Hom

(
OP1(1), J̄

))
= 0. This shows that

J̄ is trivial as a vector bundle, since the vector bundle J̄ is self dual (via the trace
form). Thus J0 = H0(P1, J̄) is an Albert algebra over k with J̄ = J0 ⊗ OP1 . It
suffices to note J0 = J̄(∞) = J . �

5. Orders

Let R = k[t] and F = k(t). Let further f1, f2, f3 ∈ R be nonzero polynomials.
Then

Jζ(R; f1, f2, f3) ⊂ Jζ(F ; f1, f2, f3)

is an R-order (see [3, 4, 8]). Our goal in this section is to show that if Jζ(F ; f1, f2, f3)
is unramified on the affine line, then there exists a regular R-order J ′ with

Jζ(R; f1, f2, f3) ⊂ J ′ ⊂ Jζ(F ; f1, f2, f3)

[By a regular order we understand here an order which is locally (in the etale
topology) isomorphic to a split Albert algebra. For a regular order the quadratic
form is nondegenerate. The converse should be also true, but we won’t need this.]

By proposition 3 it follows then that if Jζ(F ; f1, f2, f3) ' J0(t) for some Albert
algebra J0 over k, then Jζ(R; f1, f2, f3) admits an embedding into J0⊗k[t] (at least
if k is perfect). This gives rise to some sort of Cassels-Pfister theorem for Albert
algebras.

One is tempted to take for J ′ a maximal R-order, as in the case of associative
central simple algebras or of quadratic forms. However Knebusch [4] has given an
example of a maximal order of an Albert algebra which is not regular. It is not clear
to me whether such phenomena can appear in our specific applications. Anyway,
we will construct J ′ locally by means of a sequence of elementary operations on the
generators of Jordan symbol algebras.

Let v : F ∗ → Z be a discrete valuation, let R be the valuation ring, let κ be
the residue field and let π be a prime element of v. (F can be any field with
charF 6= 2, 3 and µ3 ⊂ F ; we assume also charκ 6= 3). Let

∂v : H3(F, µ3)→ H2(κ,Z/3)

be the residue map.
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Proposition 5. Let f1, f2, f3 ∈ R be nonzero elements with

∂v
(
(f1) ∪ (f2) ∪ (f3)

)
= 0

Then there exists an R-order

Jζ(R; f1, f2, f3) ⊂ J ′ ⊂ Jζ(F ; f1, f2, f3)

such that J ′ ' Jζ(R; g1, g2, g3) with gi ∈ R∗.

Remark 1. Actually, what we will need in the proof is that Jζ(F ; f1, f2, f3) is
unramified, that is, it is extended from some regular Albert algebra over R. In
the application this will be obvious, since then Jζ(F ; f1, f2, f3) is extended from an
Albert algebra over the ground field.

We will also use the following fact: If Jζ(F ; f1, f2, f3) is unramified, and if f1

is a prime element for R and f2, f3 are R-units, then the reduction J(f̄2, f̄3) of
J(f2, f3) is the split algebra.

Moreover, in this case, the norm of J(f2, f3) represents a prime element.
Namely, if J(f̄2, f̄3) is split, then f̄2 = NL̄/κ(λ̄) where L = R[t]/(t3 − f3) and

λ ∈ L∗. After replacing f2 by f2NL/κ(λ)−1 we may assume that f̄2 = 1. Then, for
e ∈ R and a prime element π one has with S = R[s]/(s3 − f2) ⊂ J(f2, f3)

NS/R(1 + eπ − s) = (1 + eπ)3 − f2 ≡ π
(
3e+

1− f2

π

)
mod π2

It is clear that for e = 0 or for e = 1 the right hand side is nonzero. Then
N(1 + eπ − s) is a prime element.

Proof of Proposition 5. Let X1, X2, X3 be the generators of Jζ(R; f1, f2, f3).
We first reduce to the case v(f2) = v(f3) = 0. Suppose that v(f1) ≥ v(f2) > 0.

Then X1X
−1
2 , X2, X3 generate an order J ′ isomorphic to Jζ(R; f1f

−1
2 , f2, f3).

Moreover Jζ(R; f1, f2, f3) is contained in J ′ since X1 = 4(X1X
−1
2 )X2, see proposi-

tion 1. Iterating this argument, possibly using the symmetry relations of corollary 1,
one may indeed arrange v(f2) = v(f3) = 0.

Now write v(f1) = r + 3m with 0 ≤ r ≤ 2 and m ≥ 0. Then X1π
−m,

X2, X3 generate an order J ′ isomorphic to Jζ(R; f1π
−3m, f2, f3) and containing

Jζ(R; f1, f2, f3). We may therefore assume m = 0.
Suppose v(f1) = 0. Then we may (and must) take J ′ = Jζ(R; f1, f2, f3).
Suppose v(f1) = 2. Then X2

1π
−1, X2, X3 generate an order J ′ isomorphic

to Jζ2(R; f2
1π
−3, f2, f3). Moreover Jζ(R; f1, f2, f3) is contained in J ′ since X1 =

(X2
1π
−1)2u with u = π2/f1 ∈ R∗, see proposition 1. Since v(f2

1π
−3) = 1, we are

reduced to the case v(f1) = 1.
Finally suppose v(f1) = 1. Then

(f̄2) ∪ (f̄3) = ∂v
(
(f1) ∪ (f2) ∪ (f3)

)
= 0

Hence Aζ(R; f2, f3) is an Azumaya algebra over R which is split over the residue
class field. It follows that the reduced norm of Aζ(R; f2, f3) represents a prime
element. Hence there exist an element α in the subalgebra of Jζ(R; f1, f2, f3) gen-
erated by X2, X3 with v

(
N(α)

)
= 1. Let J ′ be the order generated by X ′1 =

X1

(
T (α) − 2α

)−1 and X2, X3. Note that N(X ′1) = N(X1)N(α)−1 = f1N(α)−1

and therefore J ′ ' Jζ(R; f1N(α)−1, f2, f3). Clearly f1N(α)−1 ∈ R∗. Moreover one
has X1 = X ′1

(
T (α)− 2α) and therefore J ′ contains Jζ(R; f1, f2, f3). �

Now let again R = k[t] and F = k(t).
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Proposition 6. Let f1, f2, f3 ∈ R be nonzero elements with

(f1) ∪ (f2) ∪ (f3) ∈ H3(k, µ3) ⊂ H3(F, µ3)

Then there exists a regular R-order

Jζ(R; f1, f2, f3) ⊂ J ′ ⊂ Jζ(F ; f1, f2, f3)

Remark 2. Actually, what we will need in the proof is that Jζ(F ; f1, f2, f3) is every-
where unramified. In the application this will be obvious, since then Jζ(F ; f1, f2, f3)
is extended from an Albert algebra over the ground field.

Proof. Take the regular order Jζ(R[(f1f2f3)−1]; f1, f2, f3) and extend it to the affine
line using proposition 5. �

Corollary 2. Let a1, a2, a3 ∈ k∗ and let f1, f2, f3 ∈ k[t] be nonzero elements with

Jζ(k(t); f1, f2, f3) ' Jζ(k(t); a1, a2, a3)

Then there exists a homomorphism

Jζ(k[t]; f1, f2, f3)→ Jζ(k[t]; a1, a2, a3)

of k[t]-algebras. �

6. A Cassels-Pfister type theorem for Albert algebras

Let J be a Albert algebra over k of first Tits construction. We write J(t) =
J ⊗k k(t) and J [t] = J ⊗k k[t]. We assume µ3 ⊂ k.

We recall the following fact [2], [7, Corollary 3]:

Lemma 2. Let a ∈ k∗ and suppose that J ⊗ k( 3
√
a) has zero divisors. Then there

exist an element x ∈ J with T (x) = T (x2) = 0 and N(x) = a.

Theorem 1. Let f ∈ k[t] and suppose that there exists α ∈ J(t) with T (α) =
T (α2) = 0 and N(α) = f . Then there exists α ∈ J [t] with T (α) = T (α2) = 0 and
N(α) = f .

Proof. There exists g, h ∈ k(t)∗ such that

J(t) ' Jζ(k(t); f, g, h)

This follows from the fact that the invariant f3(J) ∈ H3(k,Z/2) is trivial. See the
proof of [5, Proposition (40.5)].

After multiplication with cubes, we may assume that g, h ∈ k[t]. The claim
follows from corollary 2. �

Corollary 3. Let a, b ∈ k∗ and suppose that J has zero divisors over the function
field of the curve

r3 + at3 + b = 0
Then there exist x, y ∈ J such that

T (x) = T (x2) = 0

N(x) = a

T (y) = T (y2) = 0

N(y) = b

T (xy) = T (yx2) = T (xy2) = 0
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Remark 3. Note that if we have the additional relation T (x2y2) = 0, then x, y
would be the standard generators of a subalgebra J(a, b) of J .

Proof. We may assume that J is a division algebra. By Lemma 2 and Theorem 1
there exists α ∈ J [t] with T (α) = T (α2) = 0 and N(α) = at3 + b. Since J is
a division algebra, one must have deg(α) = 1. Write α = xt + y. The claimed
properties are now easy to verify, by noting that N(α) = α3, whence

(xt+ y)3 = at3 + b

and therefore
x2y + xyx+ yx2 = y2x+ yxy + xy2 = 0

�

7. The main result

Let a, b ∈ k∗ and let K = k(s, t)[u] with u3 = at3 + b(1− as3). Then

b =
u3 − at3

1− as3
= NK⊗ka/K

(
u− αt
1− αs

)
with ka = k[α], α3 = a. In particular, the algebras Aζ(a, b) and J(a, b) and the
symbol (a) ∪ (b) become trivial over K.

Remark 4 (We don’t need this in the following). The field K is the function field
of the Severi-Brauer Y variety of Aζ(a, b). Indeed, K is the function field of the
cubic surface

u3 − at3 + bv3 − abw3 = 0

which turns out to be the blow up of Y in specific subschemes Spec ka → Y ,
Spec kb → Y (recall that the blow up of P2 in 6 points is a cubic surface).

Theorem 2. Let J be a Albert algebra over k (char k 6= 2, 3) and assume that J
has zero divisors over K. Then there exists a finite field extension ` of k of degree
prime to 3 and an embedding of J(a, b) into J over `.

In particular, if ` contains a primitive root ζ of 1, then

J` ' Jζ(a, b, c)

for some c ∈ `∗ (in fact, one may choose c ∈ k∗).

Proof. We may assume that k has no proper extensions of degree prime to 3. This
means that every irreducible polynomial over k has degree divisible by 3 or is linear.

We may further assume that J is a Jordan field.
By Corollary 3, there exist x, y ∈ J(s) such that

T (x) = T (x2) = 0

N(x) = a

T (y) = T (y2) = 0

N(y) = b(1− as3)

T (xy) = T (yx2) = T (xy2) = 0



8 MARKUS ROST

It suffices (see Remark 3) to find x0, y0 ∈ J such that

T (x0) = T (x2
0) = 0

N(x0) = a

T (y0) = T (y2
0) = 0

N(y0) = bNka/k(λ) for some λ ∈ k∗a
T (x0y0) = T (y0x

2
0) = T (x0y

2
0) = 0

T (x2
0y

2
0) = 0

Write
x =

X

P
, y =

Y

Q

where X, Y ∈ J [s] and P , Q ∈ k[s] with X, P resp. Y , Q relatively prime.
Then N(X) = aP 3. Let P ′ be an irreducible factor of P . Then X mod P ′ is

nonzero and a zero divisor of J over k[s]/(P ′). Since J is a field, P ′ cannot be
linear. By the assumption made at the beginning of this proof, it follows that P ′

has degree divisible by 3. Hence degP = 3n. Since J is a field, it follows also that
degX = degP .

Similarly one sees from N(Y ) = b(1 − as3)Q3 that each factor of Q has degree
divisible by 3 and that deg Y = 1 + degQ = 1 + 3m.

Consider the polynomial f(s) = T (X2Y 2). One has deg f ≤ d with d = 2(1 +
3m+ 3n).

If deg f = d, then there exists a zero s0 of f , by our assumption on k. In this
case we take x0 = x(s0) and y0 = y(s0).

If deg f < d, we take for x0 and y0 the leading coefficients of X, Y (after
arranging that P , Q have leading coefficient 1). �

By Springer’s theorem (and other things) we get

Corollary 4. Let k be a field with char k 6= 2, 3 and let J , J ′ be Albert algebras
over k with isomorphic trace forms and with g3(J) = g3(J ′). Then there exist a
finite field extension F of k of degree prime to 3 and a finite field extension L of k
of degree dividing 3 such that JF ' J ′F and JL ' J ′L.

Of course one would like to know J ' J ′ over k.
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