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Overview

You are looking at the text “The associahedral chain complex” [pdf].

We construct the associahedral chain complex algebraically and prove its acyclic-
ity. All details are given.

The methods seem to be new.

§1 and §2 are entirely independent.
§1 is a textbook style introduction to free multi-magmas (the set of partially

parenthesized words). Some things are missing, but it contains all what is needed
further on.

§2 is an important part. Proposition (2.1) describes a basic relation valid in
any extended odd multi-algebra. See Remark (2.4) and section 6.1 for further
comments.

§3 collects the fruits and defines the associahedral chain complex.

§4 and §5 have been added a bit later. §4 complements §1 and §5 shows acyclicity
of the associahedral chain complex.

§6 mentions possible expansions.
Section 6.1 is a draft for an interpretation of the proof of Corollary (2.2) using

signed coderivations. (A detailed exposition of this topic is too involved for now.)
Section 6.2 mentions the construction of the associahedron as subdivided cube.

I believe that this point of view (which is not new) is basic.
Section 6.3: Another construction of the associahedral chain complex uses plane

trees. It has some elegance, since it hides the sign business in the coefficient system
of the graph complex. It also reveals the automorphism group (the Dieder group).
There is a (well known) dictionary to polygon triangulations (mentioned in 6.4).

To be clear: I have no idea if and when I will write on these topics.

http://www.math.uni-bielefeld.de/~rost/assoc.html#assoc2
https://www.math.uni-bielefeld.de/~rost/data/assoc2.pdf
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§1. Free multi-magmas

A magma consists of a set M and a map M2 →M , see Serre (Lie algebras and
Lie groups, 1964) [5, Chap. IV, Free Lie Algebras, 1. Free magmas, p. 18].

Multi-magmas are a variant of magmas with multi-fold products.
Free multi-magmas make precise the term “partially parenthesized words”.

(1.1) Definition. A set M together with a family of maps

mn : Mn →M (n ≥ 2)

is called a multi-magma. The map mn is called the n-ary product of the multi-
magma M .

1.1. Free multi-magmas. We adopt the construction of free magmas in [5].

1.1.1. The definition. Let X be a set. Define inductively a family of sets Xk

(k ≥ 1) as follows:

X1 = X(1.2)

Xk,n =
∐

p1+···+pn=k

Xp1 × · · · ×Xpn (k, n ≥ 2)(1.3)

Xk =
∐
n≥2

Xk,n (k ≥ 2)(1.4)

In (1.3) one understands pi ≥ 1. Since n ≥ 2 one has pi < k.
Put

MX =
∐
k≥1

Xk

and let

len: MX → Z

len |Xk = k (k ≥ 1)

be the separating function. Thus α ∈ Xlen(α) (α ∈MX).
For α ∈MX the integer len(α) is called the length of α. An element of length 1

is called an atom. The atoms form the set X ⊂MX .
Further let

ar : MX \X → Z

ar |Xk,n = n (k, n ≥ 2)

The integer ar(α) is called the arity of α. Clearly ar(α) ≥ 2. (The arity is not
defined for atoms.)

The pair (len, ar) decomposes the subset of non-atomic elements into the disjoint
union

MX \X =
∐
k≥2

∐
n≥2

Xk,n

and a non-atomic element α can be written as ar(α)-tuple

α = (α1, . . . , αar(α)) (αi ∈MX)

Such a presentation is unique since

len(α) =

ar(α)∑
i=1

len(αi)
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The element αi is called the i-th factor of α. Clearly len(αi) < len(α).
For n ≥ 2 define

µn : Mn
X →MX

µn(α1, . . . , αn) = (α1, . . . , αn) ∈
n∏
i=1

Xpi ⊂ Xk,n ⊂ Xk ⊂MX

where pi = len(αi), k =
∑
i pi. Thus µn(α1, . . . , αn) has αi as i-th factor.

There results the arity-decomposition

(1.5) MX = X q
∐
n≥2

Mn
X

with the µn serving as inclusions.

1.1.2. Universal property. The multi-magma (MX , (µn : Mn
X → MX)n≥2) is

called the free multi-magma on X.

(1.6) Lemma. Let (M, (mn : Mn → M)n≥2) be any multi-magma. For any map
f : X → M there exists a unique multi-magma homomorphism F : MX → M ex-
tending f .

Proof : Define by induction on the length

F (α) = mn(F (α1), . . . , F (αn)), α = (α1, . . . , αn)

with n = ar(α). �

1.1.3. Complexity and degree. For α ∈ MX the complexity c(α) is defined
inductively as follows: c(x) = 0 for atoms x ∈ X and

c(α) = 1 +

ar(α)∑
i=1

c(αi), α = (α1, . . . , αar(α))

in the non-atomic case.
Clearly c(α) ≥ 0 with equality only for atoms. One has c(α) = 1 if and only if

all factors are atoms:

α = (x1, . . . , xar(α)) (xi ∈ X)

By definition, an element α ∈MX is a nested tuple (with no 1-tuples) constructed
from atoms, like

α = (x1, (x2, x3, x4), (x5, (x6, x7), x8), x9) (xi ∈ X)

The complexity c(α) is the number of paren pairs appearing in such a full expansion
down to atoms.

For α ∈ MX the degree deg(α) is defined inductively as follows: deg(x) = 0 for
atoms x ∈ X and

deg(α) = ar(α)− 2 +

ar(α)∑
i=1

deg(αi), α = (α1, . . . , αar(α))

in the non-atomic case. Obviously deg(α) ≥ 0.

(1.7) Lemma.

c(α) + deg(α) + 1 = len(α)
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Proof : The claim is clear for atoms and follows by induction from

c(α) = 1 +
∑n
i=1 c(αi)

deg(α) = n− 2 +
∑n
i=1 deg(αi)

1 = 1− n+
∑n
i=1 1

len(α) = 0 +
∑n
i=1 len(αi)

with n = ar(α). �

1.1.4. The free magma. Let

M ′X = {α ∈MX | deg(α) = 0 }
One has X ⊂M ′X . The inductive description of deg shows ar(α) = 2 for α ∈M ′X\X
and αi ∈M ′X for the two factors of α. Moreover µ2(M ′X

2) ⊂M ′X .

(1.8) Lemma. (M ′X , µ2 : M ′X
2 →M ′X) is the free magma on X (cf. [5]).

Proof : One proceeds as in the proof of Lemma (1.6), this time referring to the
unique presentation

α = µ2(α1, α2) (αi ∈M ′X)

of α ∈M ′X \X. �

1.1.5. Notations and conventions. In the complete product notation one sim-
ply drops the commas from a tuple presentation:

(α1 · · ·αn) = (α1, . . . , αn) = µn(α1, . . . , αn) (n ≥ 2)

In the case of atoms no parens are written.
In this notation the example above reads as

(x1(x2x3x4)(x5(x6x7)x8)x9)

In the simple product notation one drops the outer paren pair as well (in the
non-atomic case) and writes

α1 · · ·αn = (α1, . . . , αn)

x1(x2x3x4)(x5(x6x7)x8)x9

This is often convenient for writing and reading, but when taking products one has
to reinsert the omitted paren pairs before combining.

The elements of MX are called partially parenthesized words in X, but often we
call them simply words.

As already noted, the complexity of a word counts the number of paren pairs
including a possible outer paren pair in a fully expanded presentation (down to
atoms). Obviously it also counts the number of µn involved to construct the word
from atoms. For example

(ab(cde)) = µ3(a, b, µ3(c, d, e)) (a, b, c, d, e ∈ X)

has complexity 2.
A binary word is an element of µ2(M2

X), that is, a 2-tuple

α = (α1, α2) = α1α2

with no extra conditions on the factors α1, α2. Example:

α = (x1x2x3)(x4x5(x6x7)x8)
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A fully binary word is a binary word with both factors again fully binary words
or atoms. The fully binary words are the elements of the free magma M ′X . We also
call them fully parenthesized words.

1.2. Further generalities. At some point I will probably discuss the opposite
Mop of a multi-magma M . For the free multi-magma MX this yields an invo-
lution. This involution reverses parenthesizing and order. One may also reverse
parenthesizing and order separately:

a(bc)↔ (ab)c↔ (cb)a↔ c(ba)

Further, it can be useful to introduce notations like

V ⊗α

for α ∈MX and a family of modules V = (Vx)x∈X . Also, for a bifunctor � : C2 → C
on a category C and an object V of C, the objects V �α (α ∈ M ′X) are defined
without an associativity constraint for �.

Some of these things are mentioned here: “Notes on free alternative algebras”
[pdf]. They will be expanded when needed (or dropped).

1.3. The case of a single atom. We are mainly interested in the free multi-
magma on one element, often denoted by ∗ or •.

For the 1-element set X = {∗}, the elements of Xn for n ≤ 4 are

∗
(∗∗)

(∗(∗∗)), (∗∗∗), ((∗∗)∗)
(∗(∗(∗∗))), (∗∗(∗∗)), ((∗∗)(∗∗)), ((∗∗)∗∗), (((∗∗)∗)∗)

(∗(∗∗∗)), (∗∗∗∗), ((∗∗∗)∗)
(∗((∗∗)∗)), (∗(∗∗)∗), ((∗(∗∗))∗)

To present elements of MX one may of course choose any other symbol for
the unique element of X. Moreover, for better readability one may want to “fill”
the words with a set of say digits or letters. With this convention, the following
expressions represent the same word:

∗(∗(∗(∗∗)), •(•(•(••))), 1(2(3(45))), a(b(c(de)))

In the filled cases, we understand that the symbols representing the atoms are all
different and in the same order for all words to be displayed.

1.4. Free multi-algebras. Let R be a ring (associative, commutative, unital). A
multi-algebra over R consists of an R-module V together with a family of R-module
homomorphisms

mn : V ⊗n → V (n ≥ 2)

For a set X, let AX be the free R-module with basis MX . The maps µn : Mn
X →

MX extend to R-module homomorphisms

µn : A⊗nX → AX (n ≥ 2)

which turn AX into a multi-algebra. The multi-algebra AX is called the free multi-
algebra on X.

http://www.math.uni-bielefeld.de/~rost/assoc.html#assoc5
https://www.math.uni-bielefeld.de/~rost/data/assoc5.pdf
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(1.9) Lemma. Let (V, (mn : V ⊗n → V )n≥2) be any multi-algebra and let f : X →
V be any map. Then there exists a unique multi-algebra homomorphism F : AX →
V extending f .

Proof : The compositions of mn with V n → V ⊗n make V a multi-magma. Extend f
first to a multi-magma homomorphism on MX (Lemma (1.6)) and then R-linearly
to AX . �

1.5. Gradings. A map f : M → Z from a set M to an abelian group Z defines
a Z-grading on the free R-module A with basis M by taking for Az the free R-
submodule generated by Mz = f−1(z) (z ∈ Z). For a finite family fi : Mi → Z
the sum

∑
i fi(xi) (xi ∈ Mi) yields the natural grading on the tensor product of

the free graded R-modules Ai with basis Mi. In particular, A⊗n is graded via

Mn fn

−−→ Zn
∑
−→ Z.

As for AX , one considers the following Z-gradings.

1.5.1. Length grading. The length grading is given by the function len: MX →
Z. Here all µn have degree 0. In the case |X| = 1, the words α with len(α) = k
parameterize the cells of the (k − 2)-dimensional associahedron (k ≥ 2).

1.5.2. Degree grading. The degree grading is given by the function deg : MX →
Z. Here µn has degree n− 2 as one can see from the inductive description of deg.
In the case |X| = 1, the words α of degree k parameterize the k-cells of the associ-
ahedra.

The shifted degree grading is given by 1 + deg. Here all µn have degree −1. This
can be easily seen directly or by noting that µn has degree 1 with respect to the
grading given by the complexity function c = len− deg−1: MX → Z.
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§2. The basic relation

2.1. Involutions. Let R be a ring (associative, commutative, unital). We consider
R-modules V together with an involution, that is, an endomorphism εV ∈ End(V )
with ε2V = 1. In other words, the pair (V, εV ) constitutes an R[Z/2Z]-module.

A Z/2Z-graded R-module
V = V0 ⊕ V1

carries the involution1

ε(v) =

{
v (v ∈ V0)

−v (v ∈ V1)

The involutions on the module R are (R, η) with η ∈ R, η2 = 1.
Let (V, εV ), (W, εW ) be R-modules with involution. Their tensor product is

(V ⊗W, εV ⊗ εW ). Particular cases are (V, ε) ⊗ (R, η) = (V, ηε) and (V, ε)⊗n =
(V ⊗n, ε⊗n).

Let η ∈ R, η2 = 1. An R-module homomorphism f ∈ Hom(V,W ) is called
η-homogeneous if fεV = ηεWf (in other words, f is a homomorphism (V, εV ) →
(W, εW ) ⊗ (R, η) of R-modules with involution). In the cases η = ±1, we adopt
language from Z/2Z-gradings: If η = 1, then f is called even, and if η = −1, then f
is called odd (in characteristic 2 there is of course no difference between the two
cases). Clearly, ε itself is even.

For an η-homogeneous endomorphism f ∈ End(V ), the endomorphism f2 is
always even.

Let V be an R-module with involution ε. Then V ⊗n carries the involution ε⊗n.
Let f ∈ Hom(V ⊗n, V ) be η-homogeneous: fε⊗n = ηεf . Upon changing ε to λε for
some λ ∈ R, λ2 = 1, f becomes λn−1η-homogeneous. In particular: If n is even,
then an even/odd f is odd/even with respect to −ε. If n is odd, then an even/odd
f remains so for −ε.

2.2. The operators Lk, L
+
k . Given an involution (V, ε), let

Lk, L
+
k : Hom(V ⊗n, V )→ Hom(V ⊗n+k, V ⊗1+k) (k ≥ 0)

be the linear operators

Lk(f) =
∑

a,b≥0, a+b=k

(ε⊗a ⊗ f ⊗ 1⊗b)

L+
k (f) =

∑
a,b≥0, a+b=k

(1⊗a ⊗ f ⊗ 1⊗b)

Here 1 ∈ End(V ) denotes the identity map of V . (Of course L+
k does not depend

on ε.)
If f ∈ Hom(V ⊗n, V ) is η-homogeneous, then Lk(f), L+

k (f) are η-homogeneous
as well (tensor products with even homomorphisms preserve η-homogeneity).

1In scheme language, an involution is an operation of the constant group scheme Z/2Z, while

a Z/2Z-grading is an operation of µ2 = SpecR[Z/2Z]. The homomorphism Z/2Z→ µ2, 1 7→ −1

turns a Z/2Z-grading into an involution.
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2.3. The main computation. Let V be an R-module with involution ε and con-
sider a family

µn : V ⊗n → V (n ≥ 1)

of odd homomorphisms2. Put

Rn =

n∑
k=1

µkLk−1(µn+1−k) : V ⊗n → V (n ≥ 1)

Explicitly,

R1 = µ2
1

R2 = µ1µ2 + µ2(µ1 ⊗ 1 + ε⊗ µ1)

R3 = µ1µ3 + µ3(µ1 ⊗ 1⊗ 1 + ε⊗ µ1 ⊗ 1 + ε⊗ ε⊗ µ1)

+ µ2(µ2 ⊗ 1 + ε⊗ µ2)

R4 = µ1µ4 + µ4(µ1 ⊗ 1⊗3 + ε⊗ µ1 ⊗ 1⊗2 + ε⊗2 ⊗ µ1 ⊗ 1 + ε⊗3 ⊗ µ1)

+ µ3(µ2 ⊗ 1⊗ 1 + ε⊗ µ2 ⊗ 1 + ε⊗ ε⊗ µ2)

+ µ2(µ3 ⊗ 1 + ε⊗ µ3)

A first computation: If R2 = 0, then µ1 is a derivation with respect to the prod-
uct µ2:

µ2
1µ2 = µ2(µ2

1 ⊗ 1 + 1⊗ µ2
1)

Namely R2 = 0 yields

µ2
1µ2 = −µ1µ2(µ1 ⊗ 1 + ε⊗ µ1) = µ2(µ1 ⊗ 1 + ε⊗ µ1)2

and

(µ1 ⊗ 1 + ε⊗ µ1)2 = µ2
1 ⊗ 1 + µ1ε⊗ µ1 + εµ1 ⊗ µ1 + ε2 ⊗ µ2

1

= µ2
1 ⊗ 1 + 1⊗ µ2

1

since µ1 is odd and ε2 = 1.

(2.1) Proposition. The following relation holds for n ≥ 1 (trivially for n = 1):

0 =

n∑
k=1

(
µn+1−kL

+
n−k(Rk)−RkLk−1(µn+1−k)

)
An immediate consequence is

(2.2) Corollary. If
Rn = 0 (n ≥ 2)

then
µ2
1µn = µnL

+
n−1(µ2

1) (n ≥ 1)

The proof of the proposition needs a preparation.
Let

T+V =
⊕
n≥1

V ⊗n

and let
π : T+V → V

be the projection to the first summand.

2Note that n = 1 is included. The object (V, (µn : V ⊗n → V )n≥1) could be called an (odd)

extended multi-algebra, but I am not sure yet. One may introduce the notation d = µ1 right away.
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Consider

B : T+V → T+V

with components

Bm,n : V ⊗n → V ⊗m

Bm,n = Lm−1(µn+1−m) (1 ≤ m ≤ n)

Bm,n = 0 (m > n)

Thus B is the infinite upper triangular matrix
µ1 µ2 µ3 · · ·
0 L1(µ1) L1(µ2)
0 0 L2(µ1)
0 0 0

. . .


The square B2 has components

Rm,n = (B2)m,n : V ⊗n → V ⊗m

Rm,n =
∑

m≤k≤n

Lm−1(µk+1−m)Lk−1(µn+1−k) : V ⊗n → V ⊗m (1 ≤ m ≤ n)

Note that the Rn defined above form the first row of B2:

Rn = R1,n (n ≥ 1)

(2.3) Lemma.
Rm,n = L+

m−1(Rn+1−m) (1 ≤ m ≤ n)

Proof of Proposition (2.1): One exploits associativity: (B2)B = B(B2).

(pB3)n = ((pB2)(B))n =

n∑
k=1

RkLk−1(µn+1−k)

(pB3)n = ((pB)(B2))n =

n∑
k=1

µkRk,n

=

n∑
k=1

µkL
+
k−1(Rn+1−k)

by Lemma (2.3). The claim follows by reindexing k ↔ n+ 1− k the last sum. �

(2.4) Remark. Lemma (2.3) has a simple proof once T+V has been set up as
a coalgebra: B is an odd coderivation, so B2 is an even coderivation. Coderiva-
tions can be reconstructed from its first row by the operators Lk resp. L+

k , whence
Lemma (2.3). See also section 6.1.

The following ad hoc proof of Lemma (2.3) is straightforward but naturally
tedious. I hope I got it readable.

Clearly the indicated proof using coderivations is more satisfying. On the other
hand, explaining the details of the framework of coderivations takes much more
space than the proof given here. Also, it is good to see once an explicit proof, if
only to appreciate the general setup.
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Proof of Lemma (2.3): One has

Rm,n =
∑

m≤k≤n

∑
a+1+b=m
c+1+d=k

(ε⊗a ⊗ µk+1−m ⊗ 1⊗b)(ε⊗c ⊗ µn+1−k ⊗ 1⊗d)

Restricting the sum to the case c ≥ a, d ≥ b yields with c = a+ r, d = b+ s∑
m≤k≤n

∑
a+1+b=m
r+s=k−m

(ε⊗a ⊗ µk+1−m ⊗ 1⊗b)(ε⊗a ⊗ ε⊗r ⊗ µn+1−k ⊗ 1⊗s ⊗ 1⊗b)

=
∑

m≤k≤n

∑
a+1+b=m
r+s=k−m

(1⊗a ⊗ µk+1−m(ε⊗r ⊗ µn+1−k ⊗ 1⊗s)⊗ 1⊗b)

=
∑

m≤k≤n

∑
a+1+b=m

(1⊗a ⊗ µk+1−mLk−m(µn+1−k))⊗ 1⊗b)

=
∑

m≤k≤n

L+
m−1(µk+1−mLk−m(µn+1−k))

=
∑

1≤j≤n−m+1

L+
m−1(µjLj−1(µn+1−m+1−j)) = L+

m−1(Rn+1−m)

with j = k + 1−m.
Hence the remaining terms should cancel.
Restricting to the case a > c yields with a = c+ 1 + r∑
m≤k≤n

∑
c+1+r+1+b=m

c+1+d=k

(ε⊗c ⊗ ε⊗ ε⊗r ⊗ µk+1−m ⊗ 1⊗b)(ε⊗c ⊗ µn+1−k ⊗ 1⊗d)

=
∑

m≤k≤n

∑
c+r+b+2=m

(1⊗c ⊗ εµn+1−k ⊗ εr ⊗ µk+1−m ⊗ 1⊗b)

observing d = r + (k + 1−m) + b.
Restricting to the case b > d yields with b = r + 1 + d∑
m≤k≤n

∑
a+1+d+1+r=m

c+1+d=k

(ε⊗a ⊗ µk+1−m ⊗ 1⊗r ⊗ 1⊗ 1⊗d)(ε⊗c ⊗ µn+1−k ⊗ 1⊗d)

= −
∑

m≤k≤n

∑
a+d+r+2=m

(1⊗a ⊗ εµk+1−m ⊗ εr ⊗ µn+1−k ⊗ 1⊗d)

Here one combines as before (noting c = a+ (k+ 1−m) + r) and uses additionally
that the µi are odd (whence the sign).

The change of variables k ↔ n−k+m, a↔ c, d↔ b shows that the two subsums
do indeed cancel. �
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§3. The associahedral chain complex

Let A be the free multi-algebra on one generator, say A = A{•}, with products

µn : A⊗n → A (n ≥ 2)

We consider the involution ε given by the shifted degree grading defined by 1 + deg
(see section 1.5). Then all µn are odd.

In following, Rn, Lk, L+
k are as defined in section 2 (with V = A).

In case one likes to stay with the unshifted degree grading, one has to replace ε
with −ε everywhere.

Clearly, if an endomorphism A → A is homogeneous with respect to deg, then
its degree doesn’t change under the shift of gradings deg→ 1 + deg.

(3.1) Theorem. There exists a unique endomorphism

µ1 : A→ A

with

µ1(•) = 0

Rn = 0 (n ≥ 1)

where the Rn are defined as in the previous section.
In particular µ2

1 = 0 (since R1 = µ2
1).

The endomorphism µ1 is homogeneous of degree 0 with respect to the length
grading and of degree −1 with respect to the degree grading.

Proof : A has basis M{•}. One defines µ1 on the basis elements by induction on
the length, starting from µ1(•) = 0.

For n ≥ 2 the condition Rn = 0 means

µ1µn = −µnLn−1(µ1)−
n−1∑
k=2

µkLk−1(µn+1−k)

Denote the right hand side by Φn. Note that µ1 appears in Φn only in the first
term. Let

α = (α1, . . . , αn) (αi ∈MX)

be a non-atomic element. Since len(αi) < len(α), one can rely on µ1(αi). Therefore
Ln−1(µ1)(α1 ⊗ · · · ⊗ αn) is known. Define

µ1(α) = Φn(α1 ⊗ · · · ⊗ αn)

With this definition of µ1 one has Rn = 0 (n ≥ 2), since this holds on basis
elements. By Corollary (2.2) one has

µ2
1µn = µnL

+
n−1(µ2

1)

Again by induction on the length this shows µ2
1 = 0.

Similarly one argues for the gradings: Let d be an integer and consider a grading
such that the µn (n ≥ 2) have degree d. Assume that µ1 has degree d on elements α
with len(α) < k. Then µ1µn = Φn has degree 2d on elements α1 ⊗ · · · ⊗ αn
(len(αi) < k) and therefore µ1 has degree d on µn(α1, . . . , αn). �
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Let Ar ⊂ A be the component corresponding to len = r + 2. For instance, A0

has basis
••

A1 has basis

•••
•(••), (••)•

and A2 has basis

••••
•(•••), (••)••, •(••)•, ••(••), (•••)•

•((••)•), •(•(••)), (••)(••), ((••)•)•, (•(••))•

(3.2) Definition. The r-dimensional associahedral chain complex is the complex

Ar
d−→ Ar

where d is the restriction of µ1 in Theorem (3.1).

Decomposing with respect to the degree these complexes read as

Ar : 0→ Ar,r
d−→ · · · d−→ Ar,0 → 0

Here Ar,0 is the free abelian group on the set of fully parenthesized words of length
r+2 and Ar,r is the free cyclic group generated by the unparenthesized word • · · · •
of length r + 2.

For r = 1, 2 one gets

d(•••) = −(••)•+ •(••)
d(••••) = −(••)••+ •(••)• − ••(••)− (•••)•+ •(•••)

d((••)••) = −((••)•)•+ (••)(••)
d(•(••)•) = −(•(••))•+ •((••)•)
d(••(••)) = −(••)(••) + •(•(••))
d((•••)•) = +((••)•)• − (•(••))•
d(•(•••)) = −•((••)•) + •(•(••))

Note that ε(•) = −• and ε(••) = −••.
The sign game here is confusing, at least to me. Not sure yet how to “fix” this.

A possibility is replacing µn with εµn (n ≥ 2).
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§4. Free multi-magmas II

This section continues §1 and prepares §5.

4.1. The standard embeddings. Let

M+
X = µ2(X ×MX) ⊂MX

M−X = µ2(MX ×X) ⊂MX

Thus M±X consists of the binary words α ∈MX with first resp. second factor atomic.
Their intersection

M+
X ∩M

−
X = µ2(X,X) = X2

is the set of words of length 2.
The sets M±X decompose according to length into the subsets

X+
k = µ2(X ×Xk−1) = M+

X ∩Xk

X−k = µ2(Xk−1 ×X) = M−X ∩Xk

(k ≥ 2)

and µ2 yields injective maps

X ×Xk−1
'−→ X+

k ⊂ Xk

Xk−1 ×X
'−→ X−k ⊂ Xk

(If |X| = 1 and k ≥ 3, the X±k correspond to disjoint (k − 3)-dimensional subasso-
ciahedra of the (k − 2)-dimensional associahedron.)

4.2. The graphs ΓX . Let

ΓX = MX \X = {α ∈MX | len(α) ≥ 2 }

be the set of non-atomic elements and let

BinX = {α ∈ ΓX | ar(α) = 2 }
TinX = {α ∈ ΓX | ar(α) ≥ 3 }

so that

ΓX = BinX qTinX

The elements of BinX are the binary words (cf. 1.1.5). The elements of TinX are
called non-binary words (atoms are excluded).

We understand graphs and related notions as in Serre 1980 (1977, 1968/69) [4,
I.2 Trees, 2.1 Graphs, pp. 13].

The maps

o, t : TinX → BinX

o(α) = µ2(α1, µk−1(α2, . . . , αk))

t(α) = µ2(µk−1(α1, . . . , αk−1), αk)
α = (α1, . . . , αk), k = ar(α)

establish ΓX as oriented graph with BinX as set of vertices and TinX as set of
oriented edges. Thus α ∈ TinX is an edge from o(α) to t(α).

Since o, t don’t change length, the graph ΓX is the disjoint union of the finite
graphs

ΓX,k = ΓX ∩Xk (k ≥ 2)
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(4.1) Proposition. The maps o, t are bijections

o : TinX → BinX \ M−X
t : TinX → BinX \ M+

X

Proof : By uniqueness of presentation as products (cf. arity-decomposition (1.5)),
α can be reconstructed from o(α) and from t(α). Moreover, a binary word is of the
form o(α) resp. o(α) if and only if its second resp. first factor is non-atomic. �

By an intervall (as graph) of length n (n ≥ 0) we understand an oriented graph
isomorphic to the subdivision of the intervall [0, n] by its integer points (these
graphs are called Pathn in [4, p. 14]).

(4.2) Corollary. The oriented graph ΓX is a disjoint union of intervalls.
The isolated vertices of ΓX are the elements of M+

X ∩M
−
X = X2. A connected

component of ΓX of length ≥ 1 starts in M+
X and ends in M−X .

Proof : One may consider the graphs ΓX,k separately. By Proposition (4.1), every
vertex has valency (number of adjacent edges) ≤ 2. Hence ΓX,k decomposes into
intervalls (using the finiteness of ΓX,k). Again by Proposition (4.1), a vertex with
valency 1 must be in M+

X (as start point) or in M−X (as end point). And a vertex

with valency 0 is in M+
X ∩M

−
X . �

Examples:

• The graph ΓX,2 = X2 consists exactly of the isolated vertices of ΓX . These
are the binary words x1x2 where x1, x2 are atoms.
• The graph ΓX,3 has as edges the ternary words x1x2x3 and as vertices the

start points x1(x2x3) and end points (x1x2)x3 (with atoms xi).
• A connected component of ΓX of length 1 has as edge an element of the

form

µn(x1, α2, . . . , αn−1, xn) (x1, xn ∈ X, αi ∈MX , n ≥ 3)

and any such element appears this way.
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§5. The homotopy

In this section we assume |X| = 1 and write X = {ω}.
The standard embeddings will be considered as maps

i± : M{ω}
'−→M±{ω} ⊂M{ω}

i+(α) = µ2(ω, α)

i−(α) = µ2(α, ω)

The maps i± have degree 0, 1 with respect to the gradings by deg resp. len.
Recall the notation A = A{ω} for the free R-module with basis M{ω}. We

extent i± linearly to morphisms

i± : A→ A

Recall also the differential

d = µ1 : A→ A

from Theorem (3.1).

(5.1) Lemma.

di+ = +i+d

di− = −i−d

Proof : Relation R2 = 0 yields

dµ2 = −µ2(d⊗ 1)− µ2(ε⊗ d)

It suffices to note d(ω) = 0 and ε(ω) = −1. �

Lemma (5.1) says that i+ is a morphism of chain complexes. As for i−, note
that dī− = +ī−d with ī− = εi− = i−ε.

By Proposition (4.1) there is the decomposition

M{ω} = {ω} qM+
{ω} q t(Tin{ω})q Tin{ω}

with t injective. Let U , T denote the free R-modules with basis {ω} q M+
{ω}

resp. Tin{ω}. Then U , T are submodules of A and

Φ0 : U ⊕ T ⊕ T → A

Φ0(u, α, β) = u+ t(α) + β

is an isomorphism.

(5.2) Proposition. The morphism

Φ: U ⊕ T ⊕ T → A

Φ(u, α, β) = u+ d(α) + β

is an isomorphism.
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Proof : Let
A = A/(U + T )

Since Φ0 is bijective, the elements

t(α) mod (U + T ) (α ∈ Tin{ω})

form a basis of A and the Lemma says that also the familiy

d(α) mod (U + T ) (α ∈ Tin{ω})

forms a basis of A.
One has

T =
⊕
I

TI

where I runs through the connected components of Γ{ω} and TI denotes the free
R-module generated by the edges of I.

Fix a connected component I. It is an intervall by Corollary (4.2). Let h be its
length and denote its edges and vertices by α1, . . . , αh ∈ Tin{ω} resp. β0, . . . , βh ∈
Bin{ω} in their natural order.

Since t(αi) = βi, it suffices to show (for each I) that

〈d(α1), . . . , d(αh)〉 = 〈β1, . . . , βh〉 mod (U + T )(∗)

The maps o, t read as

oµr = µ2(1⊗ µr−1)

tµr = µ2(µr−1 ⊗ 1)
(r ≥ 3)

Moreover

0 = Rn = dµn + µ2(µn−1 ⊗ 1) + µ2(µn−1 ⊗ ε) +

n∑
k=3

µkLk−1(µn+1−k)

It follows that
d(αi) = ±βi−1 ± βi mod T (1 ≤ i ≤ h)

Since β0 ∈M+
{ω} ⊂ U , this shows (∗). �

By Lemma (5.1), U is a subcomplex of (A, d).

(5.3) Theorem. (U, d|U) is a strong deformation retract of (A, d).

Proof : Since

dΦ(u, v, w) = d(u) + d(w) = Φ(d(u), w, 0)

one has

d′ = Φ−1dΦ =

d|U 0 0
0 0 idT
0 0 0

 ∈ End(U ⊕ T ⊕ T )

Let

H =

0 0 0
0 0 0
0 idT 0

 ∈ End(U ⊕ T ⊕ T )

Then
d′H +Hd′ = id− pU

where pU is the projection onto the first summand U .
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Hence H is a homotopy contracting (U ⊕T ⊕T, d′) to (U, d), constant (=trivial)
on (U, d). It follows that ΦHΦ−1 a homotopy contracting (A, d) to (U, d), constant
on (U, d). �

(5.4) Corollary. The complexes Ar are acyclic: ker d/ im d = R generated by the
fully parenthesized word

(ω(ω · · · (ω(ωω)) · · · ))
obtained by iterated multiplication with ω from the left.

Proof : Decomposing in Theorem 5.3 according to length shows that

Ar
i+−→ Ar+1 (r ≥ −1)

are homotopy equvalences. �
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§6. Future plans

6.1. Coalgebras and signed coderivations. For the associahedral applications
it seems that one should restrict right away to the non-counital tensor coalgebra T+,
the positive-dimensional part of the full tensor coalgebra T•.

The coderivations

B : T+V → T+V

are naturally upper triangular matrices⊕
n≥1

V ⊗n →
⊕
n≥1

V ⊗n

I found it illustrative to look also at the dual notion, derivations. Note that lower
triangular matrices are maps ∏

n≥1

V ⊗n →
∏
n≥1

V ⊗n

A standard observation: A coderivation

B : T+V → T+V

is determined by π ◦B where π : T+V → V is the projection to the first summand.
Given π ◦B one may write down B using the Lk (odd case) or L+

k (even case).
Let

π ◦B = (µ1, µ2, µ3, . . .)

be as in section 2. Since B is an odd coderivation, B2 is an even coderivation.

Lemma (2.3) is just the description of B2 in terms of π ◦B2.

Now comes the interesting (and new?) argument.
A∞-algebras are defined by B2 = 0 which is equivalent to

π ◦B2 = (R1, R2, R3, . . .) = 0

Let

D : T+V → T+V

be the coderivation determined by

π ◦D = (µ1, 0, 0, . . .)

Then D is the diagonal part of B.
Consider the equation:

B2 = D2

This equation is a weaker version of B2 = 0. It is equivalent to

π ◦ (B2 −D2) = (0, R2, R3, . . .) = 0

One has

0 = (B2)B −B(B2) = (D2)B −B(D2)

Applying π yields Corollary (2.2):

µ2
1µn = µnL

+
n−1(µ2

1)

(The expression is so simple, since D2 is diagonal.)
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The equation B2 = 0 can’t be easily resolved, mainly because of its first member
µ2
1 = 0. The condition B2 = D2 drops exactly that. The catch is that it still

implies that µ2
1 is a kind of even derivation with respect to all multifold products

µn (n ≥ 2).
And that is enough to define µ1 in the case of a free multi-algebra AX , starting

from µ1|X.

Making the coderivation framework precise takes some work. I have learned
a lot from [6], [1], [3], but I think the coderivation stuff needs a further detailed
exposition. Of course it is mostly about signs.

Dear reader: Please tell me if you know suitable references.

6.2. Construct the cubical associahedron. Corollary 4.2 and Theorem 5.3 sug-
gest a way to construct the associahedron as a cube. I am optimistic that I can
work this out, but maybe first I want to digest existing constructions. (Meanwhile
I realized that such constructions are more or less known since the 1990’s.)

Till then: Enjoy the drawings on my home page.

6.3. Rooted plane trees. Goals:
Define the associahedral chain complex in terms of trees, as considered in “Notes

on the associator” [pdf].
Compare the three constructions (with coderivations, cubical, trees). Signs!

6.4. Polygon triangulations. This would be basically about [2]. I have done
some work, but nothing ready yet.

6.5. XXX. XXX!

http://www.math.uni-bielefeld.de/~rost/assoc.html#assoc1
http://www.math.uni-bielefeld.de/~rost/assoc.html#assoc1
https://www.math.uni-bielefeld.de/~rost/data/assoc1.pdf
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