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Introduction

In this extremely preliminary notes we discuss proofs of the Cassels-Pfister The-
orem (in short CPT; it is formulated here as Proposition 2) and a variant of it for
division algebras (Proposition 1).

The “standard” argument to the CPT is by means of an explicit sequence of re-
flections which finally transform the given rational vector into a polynomial vector.
This proof can be found in [3] (and where else?).

This argument appears also in Serre’s book [4] (and where else?) in the proof
that an integer is a sum of 3 integer squares if it is a sum of 3 rational squares.

The sequence of reflections appearing in this argument are defined by a very
straight algorithm. What is however not obvious a priori is that this algorithm
actually succeeds. To me, it looks like a miracle.

We have included the standard computation used for this below as “Other Proof
of Proposition 2”.

Another proof of showing that the algorithm succeeds is contained here as the
first proof of Proposition 2. It uses the CPT for the trivial case when the ground
field is algebraically closed. (According to Jean-Pierre Tignol, I had presented that
argument in Oberwolfach in the evening of May 21, 1992). This argument involves
Clifford algebras and applies also to division algebras.

The case of division algebras is treated in Proposition 1.
There are also other approaches which are less miracolous.
One can prove the CPT using Harder’s theorem (this seems to go back to Gerstein

[1]): The given rational vector lies in a maximal F [t]-order. Any maximal order
is regular (see [6]). Finally, by Harder’s theorem (see [3] and where else?), any
regular quadratic form over the affine line is constant (extended from the ground
field). Thus there is an isometry over the rational function field which transforms
the maximal order into the standard order.

The latter argument is very appealing because it deduces the CPT from a general
fact: The triviality of G-bundles over the affine line (at least if F is perfect, see
[2]).

It is perhaps worthwhile to look at this argument for the representation of inte-
gers as sums of 3 squares. It should work also for central simple algebras. I have
not looked into this.

For the case of central simple algebras there is also another further argument in
Tignol’s paper [6] which “was probably known to Hasse” (according to Tignol).
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Details

Proposition 1. Let A be a division algebra finite-dimensional over its center F .
Let x ∈ A(t) and suppose that there exists an extension K/F such that x is conjugate
in A⊗K(t) to an element in A⊗K[t]. Then x is conjugate in A(t) to an element
in A[t].

Proof. Let u, α ∈ A⊗K[t] with
xα = αu

Write x as
x = y +

r

P
y, r ∈ A[t], P ∈ F [t], deg r < degP

If r = 0, then x is a polynomial. Otherwise let

x′ = rxr−1

α′ =
rα

P

Then

x′α′ = α′u

The claim follows by induction on degα, since

α′ =
rα

P
= αu− yα

is a polynomial with degα′ < degα. �

Proposition 2. Let ϕ : V → F be a quadratic form over a field F with charF 6= 2.
Let x ∈ V (t) with ϕ(x) ∈ F [t]. Then there exists y ∈ V [t] with ϕ(x) = ϕ(y).

Proof. Basically the same argument as for Proposition 1 can be used.
We work in the Clifford algebra C(V ). Recall that for an anisotropic vector

z ∈ V the reflection at z can be written in C(V ) as

v 7→ zvz−1

Proposition 2 is clear if ϕ is isotropic. Let us assume ϕ is anisotropic. There
exists an extension K/F and an element u ∈ V ⊗ K[t] with ϕ(x) = ϕ(u). For
instance, one may choose any field extension K over which ϕ is isotropic.

Since ϕ(x) = ϕ(u), there exists a product of (at most two) reflections which
transforms u into x. Hence there exist α ∈ C

(
V ⊗K[t]

)
such that

xα = αu

Write x as

x = y +
r

P
y, r ∈ V [t], P ∈ F [t], deg r < degP

If r = 0, then x is a polynomial. Otherwise let

x′ = rxr−1

α′ =
rα

P

Then

x′α′ = α′u
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The claim follows by induction on degα, since

α′ =
rα

P
= αu− yα

is a polynomial with degα′ < degα. �

Here is a version more close to the standard proof of Proposition 2.

Other Proof of Proposition 2. Let 〈v, w〉 be the symmetric bilinear form determined
by ϕ(v) = 〈v, v〉.

Write x as

x = y +
r

P
y, r ∈ V [t], P ∈ F [t], deg r < degP

We have

〈x, x〉 = 〈y, y〉+ 2
〈y, r〉
P

+
〈r, r〉
P 2

Therefore

P ′ =
〈r, r〉
P

= P (〈x, x〉 − 〈y, y〉)− 2〈y, r〉

is a polynomial with degP ′ < degP .
If r = 0, then x is a polynomial. Otherwise consider the reflection

sr(v) = v − 2
〈v, r〉
〈r, r〉

r

We get for x′ = sr(x) the expression

x′ = sr(y)− r

P

= y −
(

2
〈y, r〉
〈r, r〉

+
1
P

)
r

= y − 〈x, x〉 − 〈y, y〉
P ′

r

It is now clear how to proceed by induction on degP . �
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