ON KUMMER CHAINS IN ALGEBRAS OF DEGREE 3

MARKUS ROST
preliminary version

Contents

Introduction 1
Kummer elements 1

1. Chains of length 2 2
2. Chains of length 3 2
Appendix 4
References 4

Introduction

This text is a sequel to [1] and we adopt the conventions of that article.
These are preliminary notes!

Kummer elements

A is a central simple algebra of degree 3 over $k, \zeta \in k$ is a primitive cube root of 1 .

For the characteristic polynomial of $x \in A$ we use the notation

$$
N(t-x)=t^{3}-T(x) t^{2}+Q(x) t-N(x)
$$

where $N: A \rightarrow F$ is the reduced norm of A.
Lemma 1. For Kummer elements $X, Y \in A$ one has

$$
T\left(X Y X Y^{-1}\right)=T(X Y) T\left(X Y^{-1}\right)
$$

Proof. By Lemma 6 (see the appendix) one has

$$
\begin{aligned}
N(x+y)= & N(x)+Q(x) T(y)-T(x) T(x y)+T\left(x^{2} y\right) \\
& +T(x) Q(y)-T(x y) T(y)+T\left(x y^{2}\right)+N(y)
\end{aligned}
$$

Taking $x=X Y, y=Y$ this yields

$$
\begin{aligned}
N(X Y+Y)= & N(X Y)+Q(X Y) \cdot 0-T(X Y) T\left(X Y^{2}\right)+T\left(X Y X Y^{2}\right) \\
& +T(X Y) \cdot 0-T\left(X Y^{2}\right) \cdot 0+0+N(Y)
\end{aligned}
$$

On the other hand

$$
N(X Y+Y)=N(X+1) N(Y)=(N(X)+1) N(Y)=N(X Y)+N(Y)
$$

[^0]Hence

$$
T\left(X Y X Y^{2}\right)=T(X Y) T\left(X Y^{2}\right)
$$

1. Chains of length 2

For Kummer elements $X, Y \in A^{\times}$the symbol

$$
X \xrightarrow{\zeta} Y
$$

stands for

$$
Y X=\zeta X Y
$$

Lemma 2. Suppose there exists a chain

$$
X \xrightarrow{\zeta} U \xrightarrow{\zeta} Y
$$

Then $X Y^{-1}$ is a Kummer element.
Proof. Let $V=X Y^{-1}$. Then $U V U^{-1}=\zeta^{2} V$ and therefore V is a Kummer element.

Lemma 3. Let X, Y be Kummer elements and suppose $X Y^{-1}$ is a Kummer element.

Then $X Y$ and $Y X$ commute. Moreover

$$
N(X) X^{-1} Y X^{-1}=N(Y) Y^{-1} X Y^{-1}=T(X Y)-X Y-Y X
$$

Let

$$
\begin{aligned}
& U=T(X Y)+\left(\zeta-\zeta^{2}\right)\left(\zeta X Y-\zeta^{2} Y X\right) \\
& V=T(X Y)+\left(\zeta^{2}-\zeta\right)\left(\zeta^{2} X Y-\zeta Y X\right)
\end{aligned}
$$

Then

$$
X \xrightarrow{\zeta} U \xrightarrow{\zeta} Y, \quad X \xrightarrow{\zeta^{2}} V \xrightarrow{\zeta^{2}} Y
$$

For generic X, Y, these conditions determine the elements U, V uniquely up to multiplication by scalars.

Proof. ...

2. Chains of length 3

Let

$$
\mathcal{K}=\{[X] \in \mathbf{P}(A) \mid T(X)=Q(X)=0, N(X) \neq 0\}
$$

be the variety of (projective) Kummer elements. Let further

$$
\mathcal{K}_{r}=\left\{\left(\left[X_{i}\right]\right)_{i=0, \ldots, r} \in \mathbf{P}(A)^{r+1} \mid X_{i-1} \xrightarrow{\zeta} X_{i}, i=1, \ldots, r\right\}
$$

be the variety of chains of length r and let

$$
\begin{gathered}
h_{r}: \mathcal{K}_{r} \rightarrow \mathcal{K} \times \mathcal{K} \\
h_{r}\left(\left(\left[X_{i}\right]\right)_{i=0, \ldots, r}\right)=\left(\left[X_{0}\right],\left[X_{r}\right]\right)
\end{gathered}
$$

be the projections.

Theorem 4. (1) The morphism h_{2} is generically an immersion.
(2) $\operatorname{deg}\left(h_{3}\right)=2$
(3) For $r \geq 4$, the morphism h_{r} has a rational section.
(1) follows from Lemma 3, and (3) is shown in [1].

As for the morphism h_{3}, the fibre over the generic point $([X],[Y]) \in \mathcal{K} \times \mathcal{K}$ has the following description:

$$
\begin{array}{r}
0=t^{2}-t\left(3+\zeta T\left(X Y X^{-1} Y^{-1}\right)+\zeta^{2} T\left(Y X Y^{-1} X^{-1}\right)\right) \\
+T(X Y) T\left(X^{-1} Y^{-1}\right) T\left(X Y^{-1}\right) T\left(X^{-1} Y\right)
\end{array}
$$

One finds:
Lemma 5. For Kummer elements $X, Y \in A$ one has

$$
\begin{aligned}
& 3+T\left(X Y X^{-1} Y^{-1}\right)+T\left(Y X Y^{-1} X^{-1}\right)= \\
& T(X Y) T\left(X^{-1} Y^{-1}\right)+T\left(X Y^{-1}\right) T\left(X^{-1} Y\right)
\end{aligned}
$$

Proof. One uses again the formula for $N(x+y)$ in Lemma 6, this time with $x=X$ and $y=1+Y+Y^{2}$. Note here that $N\left(1+Y+Y^{2}\right)=1-2 N(Y)+N(Y)^{2}$ for Kummer elements (which can be also deduced formally from Lemma 6).

The function $T\left(X Y X^{-1} Y^{-1}\right)$ is not in the function field K generated by $T(X Y)$, $T\left(X^{-1} Y^{-1}\right), T\left(X Y^{-1}\right), T\left(X^{-1} Y\right)$, because these functions are invariant under reversing the product in the algebra A, while $T\left(X Y X^{-1} Y^{-1}\right)$ is not. However, if I am not mistaken, $T\left(X Y X^{-1} Y^{-1}\right)$ satisfies a quadratic equation over K.

Todo: Find this relation, and give a nice description.
Perhaps one can deduce it again from Lemma 6 which seems to be really useful. For instance using the last expression (of degree 4) one finds $Q(X Y)=T\left(X^{2} Y^{2}\right)$ for Kummer elements in a degree 3 algebra.

Maybe it is a good idea to consider the cubic subalgebras

$$
L=k \oplus X k \oplus X^{2} k, \quad H=k \oplus Y k \oplus Y^{2} k
$$

of A and to analyze for $\lambda_{i} \in L$ and $\mu_{i} \in H$ the product

$$
N\left(\lambda_{1}\right) N\left(\mu_{1}\right) N\left(\lambda_{2}\right) \cdots N\left(\mu_{r}\right)=N\left(\lambda_{1} \mu_{1} \lambda_{2} \cdots \mu_{r}\right)
$$

by expanding the right hand side using Lemma 6 with respect to sums of noncommutative monomials in X, Y.

Appendix

This is copied from [2].
Let F be a field and let A be a central simple algebra of degree 4 over F. For the characteristic polynomial of $x \in A$ we use the notation

$$
N(t-x)=t^{4}-T(x) t^{3}+Q(x) t^{2}-S(x) t+N(x)
$$

where $N: A \rightarrow F$ is the reduced norm of A.
Lemma 6. For $x, y \in A$ one has

$$
\begin{aligned}
& T(x+y)=T(x)+T(y) \\
& Q(x+y)=Q(x)+T(x) T(y)-T(x y)+Q(y) \\
& S(x+y)=S(x)+Q(x) T(y)-T(x) T(x y)+T\left(x^{2} y\right) \\
& \quad+T(x) Q(y)-T(x y) T(y)+T\left(x y^{2}\right)+S(y) \\
& N(x+y)= \\
& \quad N(x)+S(x) T(y)-Q(x) T(x y)+T(x) T\left(x^{2} y\right)-T\left(x^{3} y\right) \\
& \quad+Q(x) Q(y)-T(x) T(x y) T(y)+T(x) T\left(x y^{2}\right)+T\left(x^{2} y\right) T(y) \\
& \quad+Q(x y)-T\left(x^{2} y^{2}\right) \\
& \\
& \quad+T(x) S(y)-T(x y) Q(y)+T\left(x y^{2}\right) T(y)-T\left(x y^{3}\right)+N(y)
\end{aligned}
$$

Proof. In the power series ring $A[[t]]$ one has

$$
1+t(x+y)=(1+t x)\left[1-t^{2} \frac{x}{1+t x} \frac{y}{1+t y}\right](1+t y)
$$

The middle term expands as follows:

$$
1-t^{2} \frac{x}{1+t x} \frac{y}{1+t y}=1-t^{2} x y+t^{3} x(x+y) y-t^{4} x\left(x^{2}+x y+y^{2}\right) y+\cdots
$$

Taking norms gives in $F[[t]] /\left(t^{5}\right)$

$$
\begin{array}{r}
N(1+t(x+y))=N(1+t x) N(1+t y)\left[1-t^{2} T(x y)+t^{3} T\left(x^{2} y+x y^{2}\right)\right. \\
\left.+t^{4}\left(Q(x y)-T\left(x^{3} y+x^{2} y^{2}+x y^{3}\right)\right)\right]
\end{array}
$$

Multiplying out yields the claims.

References

[1] M. Rost, The chain lemma for Kummer elements of degree 3, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 3, 185-190.
[2] \qquad , Quadratic elements in a central simple algebra of degree four, Preprint, 2003, 〈www. math.uni-bielefeld.de/~rost/lines.html \rangle.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

E-mail address: rost@math.uni-bielefeld.de
URL: http://www.math.uni-bielefeld.de/~rost

[^0]: Date: January 29, 2005.

