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Abstract. Let A be a skew field of degree 3 over a field containing the 3rd roots
of unity. We prove a sort of chain equivalence for Kummer elements in A. As a
consequence one obtains a common slot lemma for presentations of A as a cyclic
algebra.

Châınes d’éléments de Kummer en degré 3

Résumé. Soit k un corps contenant les racines cubiques de l’unité, et soit A un
corps gauche de centre k, avec [A : k] = 9. Nous montrons que deux éléments de
Kummer de A peuvent être joints par une châıne de longueur 4.

Version française abrégée

Soit k un corps contenant une racine primitive n-ème de l’unité ζ, et soit A une
k-algèbre centrale simple de degré n. Un élément de Kummer de A est un élément
dont le polynôme caractéristique est de la forme tn−a, avec a ∈ k∗. Par une ζ-paire
on entend un couple (X,Y ) d’éléments de Kummer de A tels que Y X = ζXY . Une
telle paire donne une présentation de A comme produit croisé cyclique :

A = 〈X,Y | Xn = a, Y n = b, Y X = ζXY 〉, avec a, b ∈ k∗.

Soient X, Y deux éléments de Kummer de A, et soit m un entier ≥ 1. Une
châıne de longueur m joignant X à Y est une suite de m+1 éléments de Kummer :

X = Z0, Z1, . . . , Zm = Y

tels que (Zi−1, Zi) soit une ζ-paire pour i = 1, . . . , m.
Supposons que A soit un corps gauche. Si n = 2 (i.e. si A est un corps de

quaternions), il est facile de voir que tout couple d’éléments de Kummer peut être
joint par une châıne de longueur 2. Si n = 3, J.-P. Tignol a donné des exemples de
couples (X,Y ) d’éléments de Kummer tels qu’il n’existe aucune châıne de longueur 2
joignant X à Y (ni même à un conjugué de Y , cf. Appendice) ; dans ce qui suit,
nous montrons qu’un tel couple peut être joint par une châıne de longueur 4. La
démonstration s’inspire de celle donnée par Petersson-Racine [1] pour un résultat
analogue dans les algèbres de Jordan exceptionnelles. Comme conséquence, on
obtient un “common slot lemma” pour les algèbres de degré 3.
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Introduction

The well known common slot lemma for quaternion algebras asserts that if (a, b)
is split over k(

√
c), then (a, b) ' (a, e) ' (c, e) for some e.

Till a few years ago not much has been known about similar statements for
algebras of degree > 2. Tignol has given an example (cf. Appendix) which shows
that a common slot lemma with just one additional “slot” does not hold in general
for algebras of degree 3. The first positive result was obtained by Petersson and
Racine [1] who proved, taking up a suggestion of J-P. Serre, a common slot lemma
for exceptional Jordan algebras over quadratically closed fields.

The major purpose of this Note is to present the Petersson-Racine arguments in
the much simpler case of central simple algebras of degree 3. They yield a sort of
chain equivalence for Kummer elements. As a consequence one obtains a common
slot lemma for such algebras.

I am indebted to Jean-Pierre Tignol for leaving his text on the counterexample
as an appendix to this Note.

1. Kummer elements

Let n ≥ 2 and let k be a field containing a primitive nth root of unity ζ. For a,
b ∈ k∗ we denote by (a, b) the k-algebra defined by the presentation

〈X,Y | Xn = a, Y n = b, Y X = ζXY 〉.(∗)
Let A be a central simple algebra of degree n over k. A Kummer element in A is

an element X ∈ A whose characteristic polynomial PX is of the form PX(t) = tn−a
for some a ∈ k∗.

Lemma 1.1. Let X ∈ A be a Kummer element and let

E(X, ζ) = {Z ∈ A | ZX = ζXZ }.
(i) L = k[X] is the centralizer of X in A.
(ii) There exists Y ∈ A∗ such that Y XY −1 = ζX.
(iii) For Y as in (ii) one has E(X, ζ) = Y L = LY .

Proof. (i) follows from dimk L = degA, (ii) from the Skolem-Noether theorem, and
(iii) from (i) and (ii).

By a ζ-pair we understand a pair (X,Y ) of invertible elements X, Y ∈ A such
that Y X = ζXY .

Lemma 1.2. Let (X,Y ) be a ζ-pair.
(i) X and Y are Kummer elements.
(ii) If A = Mn(k) and Xn = Y n = 1, then the pair (X,Y ) is conjugate to the

pair (X0, Y0), where X0 is the diagonal matrix diag(1, ζ, ζ2, . . . , ζn−1) and
where Y0 is the permutation matrix ei 7→ ei−1 with i taken mod n.

(iii) The algebra A has the presentation (∗).

Proof. Since Y XY −1 = ζX, the n different powers of ζ are roots of PX , whence
PX(t) = tn − a for some a ∈ k. Further, X is invertible and therefore a 6= 0.
Similarly one sees PY (t) = tn − b for some b ∈ k∗. This proves (i). For (ii) note
that any matrix X with PX(t) = tn − 1 is conjugate to X0 and we may therefore
assume X = X0. Then necessarily Y = UY0 where U is in the centralizer L = k[X]
of X. One has NL/k(U) = Y n = 1. Therefore there exist V ∈ L∗ such that
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U = V Y0V
−1Y −1

0 . It follows that V −1Y V = Y0, which proves the claim. For (iii)
one may assume that k is algebraically closed and that A = Mn(k). The claim
follows from (ii) after replacing X by X/ n

√
a and Y by Y/ n

√
b.

2. Chains

Let X, Y ∈ A be Kummer elements. By a chain from X to Y of length m we
understand a sequence X = Z0, Z1, . . . , Zm = Y of Kummer elements in A such
that (Zi−1, Zi) is a ζ-pair for i = 1, . . . , m.

Let Z0, . . . , Zm be a chain of Kummer elements in A and let ai = Zni . Then

A ' (ai−1, ai)

for i = 1, . . . , m. This shows that a chain of Kummer elements gives rise to a
sequence of presentations (∗) with “common slots”.

If there exists a chain from X to Y of length m, then there exists also a chain
from X to Y of length m′ for any m′ ≥ m (if X, Y is a chain of length 1, then X,
Y X, Y is a chain of length 2).

Given Kummer elements X and Y , does there exist a chain from X to Y ?
Let us consider the case n = 2. Then A is a quaternion algebra and X ∈ A is a

Kummer element if and only if X is invertible and trace(X) = 0. Given Kummer
elements X and Y , let Z = XY − Y X. If Z is invertible, then X, Z, Y is chain
from X to Y . If Z = 0, then X and Y are scalar multiples of each other and any
Kummer element Z ′ anti-commuting with X gives rise to a chain X, Z ′, Y . It
follows that for quaternion skew fields there exist always chains from X to Y of
length 2. In the case A = M2(k) is not difficult to see that there exist always chains
of length 3 and to give examples of Kummer elements X, Y for which there does
not exist a chain of length 2.

We now assume n = 3.

Proposition 2.1. Let A a skew field of degree 3 over a field containing a primitive
3rd root of unity ζ. Then for any two Kummer elements X, Y ∈ A there exists a
chain of length 4 from X to Y .

As an immediate consequence of the proposition one obtains:

Corollary 2.2. Suppose that (a, b) is split over k( 3
√
c). Then there exist e, f ,

g ∈ k∗ such that

(a, b) ' (a, e) ' (f, e) ' (f, g) ' (c, g).

Proof. Let A = (a, b). If A is split, one takes e = f = g = 1. Assume that A is a
skew field and choose Kummer elements X, Y ∈ A with X3 = a and Y 3 = c. By
Proposition 2.1 there exists a chain X, Z1, Z2, Z3, Y . It suffices to take e = Z3

1 ,
f = Z−3

2 , and g = Z−3
3 .

Tignol’s example in the appendix shows that there exist an algebra A of degree 3
and Kummer elements X, Y ∈ A for which there is no chain of length 2 from X to
any conjugate of Y . The question for chains of length 3 is more delicate: it turns
out that for generic X, Y there exist exactly 2 chains of length 3 which however
might be defined only over a quadratic extension of the ground field. We hope to
provide details for this at another occasion.
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3. Proof of Proposition 2.1

Let k be a field with char k 6= 3 containing a primitive 3rd root of unity ζ.
Moreover let A be a skew field of degree 3 and let X, Y ∈ A be Kummer elements.
Let L = k[X] ⊂ A be the subfield generated by X. Then

A = L⊕ E(X, ζ)⊕ E(X, ζ2).(∗∗)
We show that there exist invertible elements Z1, Z2, Z3 ∈ A such that:

(1) Z1 ∈ E(X, ζ),
(2) Z2Z1 = ζZ1Z2,
(3) Z3Z2 = ζZ2Z3,
(4) Z3 ∈ E(Y, ζ2),
(5) Z2 ∈ X2k ⊕ E(X, ζ2),
(6) Z3 ∈ E(X, ζ)⊕ E(X, ζ2).
Conditions (1)–(4) mean that X, Z1, Z2, Z3, Y is a chain. The additional

conditions (5) and (6) are taken from [1]. Their significance lies in the fact that for
generic X, Y the system of equations (1)–(6) has a solution (Z1, Z2, Z3), Zi 6= 0
which is unique up to scalar factors of the Zi. It would be interesting to understand
more about the geometry of the system (1)–(6). In the following we merely present
a solution.

Lemma 3.1. There exist Z3 6= 0 satisfying (4) and (6).

Proof. One has dimk E(Y, ζ2) = 3 and dimk

(
E(X, ζ)⊕E(X, ζ2)

)
= 6. Both vector

spaces lie in the 8-dimensional vector subspace of A of trace zero elements. Hence
they have a nontrivial intersection.

We choose Z3 as in Lemma 3.1. It remains to find Z1, Z2 ∈ A∗ satisfying (1),
(2), (3), and (5).

Let Z ∈ E(X, ζ), Z 6= 0. Then E(X, ζ) = ZL and E(X, ζ2) = LZ−1. Write

Z3 = Zµ′ + µ′′Z−1

with µ′, µ′′ ∈ L.
If µ′ = 0, then Z3 ∈ E(X, ζ2) and Z1 = Z−1

3 , Z2 = X2 do the job.
If µ′′ = 0, then Z3 ∈ E(X, ζ) and Z1 = Z3X, Z2 = Z2

3X do the job.
Assume that µ′ 6= 0 and µ′′ 6= 0. After replacing Z by Zµ′′ we have Z3 =

Zµ+ Z−1 for some nonzero µ ∈ L.

Lemma 3.2. Let (X,Z) be a ζ-pair, let µ = m0 + m1X + m2X
2, mi ∈ k, and

let T = Zµ + Z−1. Let further c2 be the second coefficient of the characteristic
polynomial of T . Then c2 = −3m0.

Proof. One has trace(T ) = 0 and trace(T 2) = 2 trace(µ) = 6m0. Since 2c2 =
trace(T )2 − trace(T 2), it follows that 2c2 = −6m0. This proves the claim for
char k 6= 2. For char k = 2, consider c2 = −3m0 as a polynomial identity in
the variables mi. It suffices to verify this identity for a standard ζ-pair (X,Z)
in M3(Z[ζ]). This follows from the characteristic 0 case.

For the Kummer element T = Z3 one has c2 = 0 and Lemma 3.2 shows that

µ = m1X +m2X
2, Z3 = Z(m1X +m2X

2) + Z−1

for some m1, m2 ∈ k.
If m1 = 0, then Z1 = Z and Z2 = (ZX)−1 do the job.
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Otherwise let

b = Z−3, c = ζm1b/NL/k(µ), λ = cµX,

Z1 = Zλ, Z2 = X2
(
1 + (Zλ)−1

)
.

With these settings, (1), (2), and (5) are obvious. It remains to verify (3):

(Zµ+ Z−1)X2
(
1 + (Zλ)−1

)
= ζX2

(
1 + (Zλ)−1

)
(Zµ+ Z−1).

To check this, one considers the components with respect to the decomposition (∗∗).
For the first component one gets ZµX2λ−1Z−1 = ζX2λ−1Z−1Zµ, which follows
from µX2λ−1 = Xc−1 and ZX = ζXZ. For the third component one gets
Z−1X2 = ζX2Z−1, which is immediate from ZX = ζXZ. For the second compo-
nent one gets

ZµX2 + Z−1X2λ−1Z−1 = ζX2Zµ+ ζX2λ−1Z−1Z−1.

This is equivalent to both of the following equations:

X2µ+ Z−2X2λ−1Z−1 = ζ2X2µ+ ζ2X2Z−1λ−1Z−2,

(1− ζ2)X2µ = ζ2X2Z−1λ−1Z−2 − Z−2X2λ−1Z−1.

For the right hand side of the last equation one computes

r. h. s. = ζ2X2Z−1(cµX)−1Z−2 − ζ2X2Z−2(cµX)−1Z−1

= c−1XZ−1µ−1Z−2 − c−1ζXZ−2µ−1Z−1

= bc−1X(Z−1µZ)−1 − bc−1ζX(Z−2µZ2)−1.

We multiply both sides with the conjugates Z−1µZ and Z−2µZ2 of µ. Then our
equation reads as

(1− ζ2)X2NL/k(µ) = bc−1X(Z−2µZ2)− bc−1ζX(Z−1µZ)

= bc−1X(m1ζX +m2ζ
2X2)− bc−1ζX(m1ζ

2X +m2ζX
2)

= bc−1m1ζX
2(1− ζ2).

The equality is now clear.

Appendix

With the kind permission of Jean-Pierre Tignol we reproduce here his text on

A “common slot” counterexample in degree 3

Notation: For a, b nonzero elements in a field F containing a primitive cube root of
unity ω, the symbol (a, b) denotes the element of the Brauer group of F represented
by the F -algebra generated by elements α, β subject to

α3 = a, β3 = b, βα = ωαβ.

Let a1, b1, a2 ∈ F×. If there exist x, y ∈ F× such that

(a1, b1) = (a1, x) + (a1, y), (a1, x) = −(a2, x), (a1, y) = (a2, y),(∗)

then the additivity of symbols yields (a1, b1) = (a2, x
−1y). However, the next

example shows that when (a1, b1) is split by F ( 3
√
a2), there need not exist elements

x, y satisfying (∗).
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Example: A global field F containing a primitive cube root of unity and elements
a1, b1, a2, b2 such that (a1, b1) = (a2, b2), but no couple of elements x, y satisfy-
ing (∗). In particular (taking x = 1), the field F does not contain any element y
such that

(a1, b1) = (a1, y) = (a2, y) = (a2, b2).

Let F = F7(t), where t is an indeterminate, a1 = t and a2 = t(1− t). Note that
(a1, a2) = 0. Therefore, for all places v of F , the local invariant (a1, a2)v is trivial. It
follows that in the completion Fv of F at v we have either a1 ∈ F×3

v or a1 ≡ a2 mod
F×3
v or a1 ≡ a2

2 mod F×3
v or a2 ∈ F×3

v , since the (generalized) Hilbert symbol
( , )v : (F×v /F

×3
v )× (F×v /F

×3
v )→ 1

3Z/Z is a nondegenerate alternating pairing.
Consider in particular v1 the t-adic place and v2 the (t+3)-adic place. Since a1, a2

are uniformizing parameters at v1, we have a1, a2 /∈ F×3
v1

; but a1 ≡ a2 mod F×3
v1

.
On the other hand, a1 and a2 have non-cube residues at v2, hence a1, a2 /∈ F×3

v2

but a1 ≡ a−1
2 mod F×3

v2
.

Let now A be the central simple F -algebra with local invariants 1/3 at v1, 2/3
at v2 and 0 everywhere else. If v is a place of F where a1 ∈ F×3

v , then v 6= v1, v2

hence [A]v = 0. It follows that A is split by F ( 3
√
a1), hence we may find b1 ∈ F×

such that [A] = (a1, b1) in the Brauer group of F . Similarly, A is split by F ( 3
√
a2)

hence we may find b2 ∈ F× such that [A] = (a2, b2); thus,

(a1, b1) = (a2, b2).

Suppose now x, y ∈ F× satisfy (∗). Since a1 ≡ a2 mod F×3
v1

, the relation (a1, x)v1 =
−(a2, x)v1 implies (a1, x)v1 = 0. On the other hand, since a1 ≡ a−1

2 mod F×3
v2

, it
follows from (a1, y)v2 = (a2, y)v2 that (a1, y)v2 = 0, hence (a1, x)v2 = (a1, b1)v2 =
2/3.

For v 6= v1, v2, we consider four cases, according to the relation between a1

and a2 in the group of cube classes:
• if a1 ∈ F×3

v , then clearly (a1, x)v = 0.
• if a1 ≡ a2 mod F×3

v , then (a1, x)v = 0 as for v = v1 above.
• if a1 ≡ a−1

2 mod F×3
v , then (a1, x)v = (a1, b1)v as for v = v2 above, hence

(a1, x)v = 0.
• if a2 ∈ F×3

v , then (a1, x)v = 0 follows from (a1, x) = (a2, x
−1).

Thus, the invariants of (a1, x) are:

(a1, x)v2 = 2/3, and (a1, x)v = 0 for v 6= v2,

a contradiction to the reciprocity law.

Jean-Pierre Tignol, June 1996.
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