THE CHAIN LEMMA FOR KUMMER ELEMENTS OF DEGREE 3

MARKUS ROST

Abstract. Let A be a skew field of degree 3 over a field containing the 3^{rd} roots of unity. We prove a sort of chain equivalence for Kummer elements in A. As a consequence one obtains a common slot lemma for presentations of A as a cyclic algebra.

Chaînes d'éléments de Kummer en degré 3

Résumé. Soit k un corps contenant les racines cubiques de l'unité, et soit A un corps gauche de centre k, avec [A:k] = 9. Nous montrons que deux éléments de Kummer de A peuvent être joints par une chaîne de longueur 4.

Version française abrégée

Soit k un corps contenant une racine primitive n-ème de l'unité ζ , et soit A une k-algèbre centrale simple de degré n. Un élément de Kummer de A est un élément dont le polynôme caractéristique est de la forme $t^n - a$, avec $a \in k^*$. Par une ζ -paire on entend un couple (X, Y) d'éléments de Kummer de A tels que $YX = \zeta XY$. Une telle paire donne une présentation de A comme produit croisé cyclique :

 $A = \langle X, Y \mid X^n = a, Y^n = b, YX = \zeta XY \rangle, \quad \text{avec} \quad a, b \in k^*.$

Soient X, Y deux éléments de Kummer de A, et soit m un entier ≥ 1 . Une chaîne de longueur m joignant X à Y est une suite de m+1 éléments de Kummer :

$$X = Z_0, Z_1, \dots, Z_m = Y$$

tels que (Z_{i-1}, Z_i) soit une ζ -paire pour $i = 1, \ldots, m$.

Supposons que A soit un corps gauche. Si n = 2 (i.e. si A est un corps de quaternions), il est facile de voir que tout couple d'éléments de Kummer peut être joint par une chaîne de longueur 2. Si n = 3, J.-P. Tignol a donné des exemples de couples (X, Y) d'éléments de Kummer tels qu'il n'existe aucune chaîne de longueur 2 joignant X à Y (ni même à un conjugué de Y, cf. Appendice); dans ce qui suit, nous montrons qu'un tel couple peut être joint par une chaîne de longueur 4. La démonstration s'inspire de celle donnée par Petersson-Racine [1] pour un résultat analogue dans les algèbres de Jordan exceptionnelles. Comme conséquence, on obtient un "common slot lemma" pour les algèbres de degré 3.

Date: February 19, 1999.

The text appeared as: C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 3, 185-190.

MARKUS ROST

INTRODUCTION

The well known common slot lemma for quaternion algebras asserts that if (a, b) is split over $k(\sqrt{c})$, then $(a, b) \simeq (a, e) \simeq (c, e)$ for some e.

Till a few years ago not much has been known about similar statements for algebras of degree > 2. Tignol has given an example (cf. Appendix) which shows that a common slot lemma with just one additional "slot" does not hold in general for algebras of degree 3. The first positive result was obtained by Petersson and Racine [1] who proved, taking up a suggestion of J-P. Serre, a common slot lemma for exceptional Jordan algebras over quadratically closed fields.

The major purpose of this Note is to present the Petersson-Racine arguments in the much simpler case of central simple algebras of degree 3. They yield a sort of chain equivalence for Kummer elements. As a consequence one obtains a common slot lemma for such algebras.

I am indebted to Jean-Pierre Tignol for leaving his text on the counterexample as an appendix to this Note.

1. Kummer elements

Let $n \ge 2$ and let k be a field containing a primitive n^{th} root of unity ζ . For a, $b \in k^*$ we denote by (a, b) the k-algebra defined by the presentation

(*)
$$\langle X, Y | X^n = a, Y^n = b, YX = \zeta XY \rangle.$$

Let A be a central simple algebra of degree n over k. A Kummer element in A is an element $X \in A$ whose characteristic polynomial P_X is of the form $P_X(t) = t^n - a$ for some $a \in k^*$.

Lemma 1.1. Let $X \in A$ be a Kummer element and let

$$E(X,\zeta) = \{ Z \in A \mid ZX = \zeta XZ \}.$$

(i)
$$L = k[X]$$
 is the centralizer of X in A.

(ii) There exists $Y \in A^*$ such that $YXY^{-1} = \zeta X$.

(iii) For Y as in (ii) one has $E(X,\zeta) = YL = LY$.

Proof. (i) follows from $\dim_k L = \deg A$, (ii) from the Skolem-Noether theorem, and (iii) from (i) and (ii).

By a ζ -pair we understand a pair (X, Y) of invertible elements $X, Y \in A$ such that $YX = \zeta XY$.

Lemma 1.2. Let (X, Y) be a ζ -pair.

- (i) X and Y are Kummer elements.
- (ii) If $A = M_n(k)$ and $X^n = Y^n = 1$, then the pair (X, Y) is conjugate to the pair (X_0, Y_0) , where X_0 is the diagonal matrix diag $(1, \zeta, \zeta^2, \ldots, \zeta^{n-1})$ and where Y_0 is the permutation matrix $e_i \mapsto e_{i-1}$ with i taken mod n.
- (iii) The algebra A has the presentation (*).

Proof. Since $YXY^{-1} = \zeta X$, the *n* different powers of ζ are roots of P_X , whence $P_X(t) = t^n - a$ for some $a \in k$. Further, X is invertible and therefore $a \neq 0$. Similarly one sees $P_Y(t) = t^n - b$ for some $b \in k^*$. This proves (i). For (ii) note that any matrix X with $P_X(t) = t^n - 1$ is conjugate to X_0 and we may therefore assume $X = X_0$. Then necessarily $Y = UY_0$ where U is in the centralizer L = k[X] of X. One has $N_{L/k}(U) = Y^n = 1$. Therefore there exist $V \in L^*$ such that $U = VY_0V^{-1}Y_0^{-1}$. It follows that $V^{-1}YV = Y_0$, which proves the claim. For (iii) one may assume that k is algebraically closed and that $A = M_n(k)$. The claim follows from (ii) after replacing X by $X/\sqrt[n]{a}$ and Y by $Y/\sqrt[n]{b}$.

2. Chains

Let $X, Y \in A$ be Kummer elements. By a *chain* from X to Y of length m we understand a sequence $X = Z_0, Z_1, \ldots, Z_m = Y$ of Kummer elements in A such that (Z_{i-1}, Z_i) is a ζ -pair for $i = 1, \ldots, m$.

Let Z_0, \ldots, Z_m be a chain of Kummer elements in A and let $a_i = Z_i^n$. Then

$$A \simeq (a_{i-1}, a_i)$$

for i = 1, ..., m. This shows that a chain of Kummer elements gives rise to a sequence of presentations (*) with "common slots".

If there exists a chain from X to Y of length m, then there exists also a chain from X to Y of length m' for any $m' \ge m$ (if X, Y is a chain of length 1, then X, YX, Y is a chain of length 2).

Given Kummer elements X and Y, does there exist a chain from X to Y?

Let us consider the case n = 2. Then A is a quaternion algebra and $X \in A$ is a Kummer element if and only if X is invertible and trace(X) = 0. Given Kummer elements X and Y, let Z = XY - YX. If Z is invertible, then X, Z, Y is chain from X to Y. If Z = 0, then X and Y are scalar multiples of each other and any Kummer element Z' anti-commuting with X gives rise to a chain X, Z', Y. It follows that for quaternion skew fields there exist always chains from X to Y of length 2. In the case $A = M_2(k)$ is not difficult to see that there exist always chains of length 3 and to give examples of Kummer elements X, Y for which there does not exist a chain of length 2.

We now assume n = 3.

Proposition 2.1. Let A a skew field of degree 3 over a field containing a primitive 3^{rd} root of unity ζ . Then for any two Kummer elements $X, Y \in A$ there exists a chain of length 4 from X to Y.

As an immediate consequence of the proposition one obtains:

Corollary 2.2. Suppose that (a,b) is split over $k(\sqrt[3]{c})$. Then there exist $e, f, g \in k^*$ such that

$$(a,b) \simeq (a,e) \simeq (f,e) \simeq (f,g) \simeq (c,g).$$

Proof. Let A = (a, b). If A is split, one takes e = f = g = 1. Assume that A is a skew field and choose Kummer elements $X, Y \in A$ with $X^3 = a$ and $Y^3 = c$. By Proposition 2.1 there exists a chain X, Z_1, Z_2, Z_3, Y . It suffices to take $e = Z_1^3$, $f = Z_2^{-3}$, and $g = Z_3^{-3}$.

Tignol's example in the appendix shows that there exist an algebra A of degree 3 and Kummer elements $X, Y \in A$ for which there is no chain of length 2 from X to any conjugate of Y. The question for chains of length 3 is more delicate: it turns out that for generic X, Y there exist exactly 2 chains of length 3 which however might be defined only over a quadratic extension of the ground field. We hope to provide details for this at another occasion.

MARKUS ROST

3. Proof of Proposition 2.1

Let k be a field with char $k \neq 3$ containing a primitive $3^{\rm rd}$ root of unity ζ . Moreover let A be a skew field of degree 3 and let $X, Y \in A$ be Kummer elements. Let $L = k[X] \subset A$ be the subfield generated by X. Then

(**)
$$A = L \oplus E(X, \zeta) \oplus E(X, \zeta^2).$$

We show that there exist invertible elements $Z_1, Z_2, Z_3 \in A$ such that:

(1)
$$Z_1 \in E(X,\zeta),$$

(2) $Z_2 Z_1 = \zeta Z_1 Z_2$,

(3)
$$Z_3 Z_2 = \zeta Z_2 Z_3$$
,

(4)
$$Z_3 \in E(Y, \zeta^2),$$

- (5) $Z_2 \in X^2 k \oplus E(X, \zeta^2),$ (6) $Z_3 \in E(X, \zeta) \oplus E(X, \zeta^2).$

Conditions (1)–(4) mean that X, Z_1 , Z_2 , Z_3 , Y is a chain. The additional conditions (5) and (6) are taken from [1]. Their significance lies in the fact that for generic X, Y the system of equations (1)–(6) has a solution $(Z_1, Z_2, Z_3), Z_i \neq 0$ which is unique up to scalar factors of the Z_i . It would be interesting to understand more about the geometry of the system (1)-(6). In the following we merely present a solution.

Lemma 3.1. There exist $Z_3 \neq 0$ satisfying (4) and (6).

Proof. One has dim_k $E(Y, \zeta^2) = 3$ and dim_k $(E(X, \zeta) \oplus E(X, \zeta^2)) = 6$. Both vector spaces lie in the 8-dimensional vector subspace of A of trace zero elements. Hence they have a nontrivial intersection.

We choose Z_3 as in Lemma 3.1. It remains to find $Z_1, Z_2 \in A^*$ satisfying (1), (2), (3), and (5).

Let $Z \in E(X,\zeta), Z \neq 0$. Then $E(X,\zeta) = ZL$ and $E(X,\zeta^2) = LZ^{-1}$. Write $Z_3 = Z\mu' + \mu''Z^{-1}$

with $\mu', \, \mu'' \in L$.

If $\mu' = 0$, then $Z_3 \in E(X, \zeta^2)$ and $Z_1 = Z_3^{-1}$, $Z_2 = X^2$ do the job. If $\mu'' = 0$, then $Z_3 \in E(X, \zeta)$ and $Z_1 = Z_3X$, $Z_2 = Z_3^2X$ do the job.

Assume that $\mu' \neq 0$ and $\mu'' \neq 0$. After replacing Z by $Z\mu''$ we have $Z_3 =$ $Z\mu + Z^{-1}$ for some nonzero $\mu \in L$.

Lemma 3.2. Let (X,Z) be a ζ -pair, let $\mu = m_0 + m_1 X + m_2 X^2$, $m_i \in k$, and let $T = Z\mu + Z^{-1}$. Let further c_2 be the second coefficient of the characteristic polynomial of T. Then $c_2 = -3m_0$.

Proof. One has trace(T) = 0 and trace $(T^2) = 2 \operatorname{trace}(\mu) = 6m_0$. Since $2c_2 =$ $\operatorname{trace}(T)^2 - \operatorname{trace}(T^2)$, it follows that $2c_2 = -6m_0$. This proves the claim for char $k \neq 2$. For char k = 2, consider $c_2 = -3m_0$ as a polynomial identity in the variables m_i . It suffices to verify this identity for a standard ζ -pair (X,Z)in $M_3(\mathbb{Z}[\zeta])$. This follows from the characteristic 0 case. Π

For the Kummer element $T = Z_3$ one has $c_2 = 0$ and Lemma 3.2 shows that

$$\mu = m_1 X + m_2 X^2, \quad Z_3 = Z(m_1 X + m_2 X^2) + Z^{-1}$$

for some $m_1, m_2 \in k$.

If $m_1 = 0$, then $Z_1 = Z$ and $Z_2 = (ZX)^{-1}$ do the job.

Otherwise let

$$b = Z^{-3}, \quad c = \zeta m_1 b / N_{L/k}(\mu), \quad \lambda = c \mu X,$$

 $Z_1 = Z\lambda, \quad Z_2 = X^2 (1 + (Z\lambda)^{-1}).$

With these settings, (1), (2), and (5) are obvious. It remains to verify (3):

$$(Z\mu + Z^{-1})X^{2} (1 + (Z\lambda)^{-1}) = \zeta X^{2} (1 + (Z\lambda)^{-1})(Z\mu + Z^{-1}).$$

To check this, one considers the components with respect to the decomposition (**). For the first component one gets $Z\mu X^2\lambda^{-1}Z^{-1} = \zeta X^2\lambda^{-1}Z^{-1}Z\mu$, which follows from $\mu X^2\lambda^{-1} = Xc^{-1}$ and $ZX = \zeta XZ$. For the third component one gets $Z^{-1}X^2 = \zeta X^2Z^{-1}$, which is immediate from $ZX = \zeta XZ$. For the second component one gets

$$Z\mu X^{2} + Z^{-1}X^{2}\lambda^{-1}Z^{-1} = \zeta X^{2}Z\mu + \zeta X^{2}\lambda^{-1}Z^{-1}Z^{-1}.$$

This is equivalent to both of the following equations:

$$\begin{split} X^2 \mu + Z^{-2} X^2 \lambda^{-1} Z^{-1} &= \zeta^2 X^2 \mu + \zeta^2 X^2 Z^{-1} \lambda^{-1} Z^{-2}, \\ (1-\zeta^2) X^2 \mu &= \zeta^2 X^2 Z^{-1} \lambda^{-1} Z^{-2} - Z^{-2} X^2 \lambda^{-1} Z^{-1}. \end{split}$$

For the right hand side of the last equation one computes

r. h. s. =
$$\zeta^2 X^2 Z^{-1} (c\mu X)^{-1} Z^{-2} - \zeta^2 X^2 Z^{-2} (c\mu X)^{-1} Z^{-1}$$

= $c^{-1} X Z^{-1} \mu^{-1} Z^{-2} - c^{-1} \zeta X Z^{-2} \mu^{-1} Z^{-1}$
= $b c^{-1} X (Z^{-1} \mu Z)^{-1} - b c^{-1} \zeta X (Z^{-2} \mu Z^2)^{-1}$.

We multiply both sides with the conjugates $Z^{-1}\mu Z$ and $Z^{-2}\mu Z^2$ of μ . Then our equation reads as

$$(1 - \zeta^2) X^2 N_{L/k}(\mu) = bc^{-1} X (Z^{-2} \mu Z^2) - bc^{-1} \zeta X (Z^{-1} \mu Z)$$

= $bc^{-1} X (m_1 \zeta X + m_2 \zeta^2 X^2) - bc^{-1} \zeta X (m_1 \zeta^2 X + m_2 \zeta X^2)$
= $bc^{-1} m_1 \zeta X^2 (1 - \zeta^2).$

The equality is now clear.

Appendix

With the kind permission of Jean-Pierre Tignol we reproduce here his text on

A "common slot" counterexample in degree 3

Notation: For a, b nonzero elements in a field F containing a primitive cube root of unity ω , the symbol (a, b) denotes the element of the Brauer group of F represented by the F-algebra generated by elements α , β subject to

$$\alpha^3 = a, \qquad \beta^3 = b, \qquad \beta \alpha = \omega \alpha \beta.$$

Let $a_1, b_1, a_2 \in F^{\times}$. If there exist $x, y \in F^{\times}$ such that

$$(*) \qquad (a_1, b_1) = (a_1, x) + (a_1, y), \quad (a_1, x) = -(a_2, x), \quad (a_1, y) = (a_2, y),$$

then the additivity of symbols yields $(a_1, b_1) = (a_2, x^{-1}y)$. However, the next example shows that when (a_1, b_1) is split by $F(\sqrt[3]{a_2})$, there need not exist elements x, y satisfying (*).

MARKUS ROST

Example: A global field F containing a primitive cube root of unity and elements a_1, b_1, a_2, b_2 such that $(a_1, b_1) = (a_2, b_2)$, but no couple of elements x, y satisfying (*). In particular (taking x = 1), the field F does not contain any element y such that

$$(a_1, b_1) = (a_1, y) = (a_2, y) = (a_2, b_2).$$

Let $F = \mathbb{F}_7(t)$, where t is an indeterminate, $a_1 = t$ and $a_2 = t(1-t)$. Note that $(a_1, a_2) = 0$. Therefore, for all places v of F, the local invariant $(a_1, a_2)_v$ is trivial. It follows that in the completion F_v of F at v we have either $a_1 \in F_v^{\times 3}$ or $a_1 \equiv a_2 \mod F_v^{\times 3}$ or $a_1 \equiv a_2 \mod F_v^{\times 3}$ or $a_1 \equiv a_2 \mod F_v^{\times 3}$, since the (generalized) Hilbert symbol $(,)_v : (F_v^{\times}/F_v^{\times 3}) \times (F_v^{\times}/F_v^{\times 3}) \to \frac{1}{3}\mathbb{Z}/\mathbb{Z}$ is a nondegenerate alternating pairing.

Consider in particular v_1 the t-adic place and v_2 the (t+3)-adic place. Since a_1, a_2 are uniformizing parameters at v_1 , we have $a_1, a_2 \notin F_{v_1}^{\times 3}$; but $a_1 \equiv a_2 \mod F_{v_1}^{\times 3}$ On the other hand, a_1 and a_2 have non-cube residues at v_2 , hence a_1 , $a_2 \notin F_{v_2}^{\times 3}$ but $a_1 \equiv a_2^{-1} \mod F_{v_2}^{\times 3}$.

Let now A be the central simple F-algebra with local invariants 1/3 at v_1 , 2/3at v_2 and 0 everywhere else. If v is a place of F where $a_1 \in F_v^{\times 3}$, then $v \neq v_1, v_2$ hence $[A]_v = 0$. It follows that A is split by $F(\sqrt[3]{a_1})$, hence we may find $b_1 \in F^{\times}$ such that $[A] = (a_1, b_1)$ in the Brauer group of F. Similarly, A is split by $F(\sqrt[3]{a_2})$ hence we may find $b_2 \in F^{\times}$ such that $[A] = (a_2, b_2)$; thus,

$$(a_1, b_1) = (a_2, b_2).$$

Suppose now $x, y \in F^{\times}$ satisfy (*). Since $a_1 \equiv a_2 \mod F_{v_1}^{\times 3}$, the relation $(a_1, x)_{v_1} = -(a_2, x)_{v_1}$ implies $(a_1, x)_{v_1} = 0$. On the other hand, since $a_1 \equiv a_2^{-1} \mod F_{v_2}^{\times 3}$, it follows from $(a_1, y)_{v_2} = (a_2, y)_{v_2}$ that $(a_1, y)_{v_2} = 0$, hence $(a_1, x)_{v_2} = (a_1, b_1)_{v_2} = 0$. 2/3.

For $v \neq v_1, v_2$, we consider four cases, according to the relation between a_1 and a_2 in the group of cube classes:

- if $a_1 \in F_v^{\times 3}$, then clearly $(a_1, x)_v = 0$. if $a_1 \equiv a_2 \mod F_v^{\times 3}$, then $(a_1, x)_v = 0$ as for $v = v_1$ above. if $a_1 \equiv a_2^{-1} \mod F_v^{\times 3}$, then $(a_1, x)_v = (a_1, b_1)_v$ as for $v = v_2$ above, hence $(a_1, x)_v = 0.$
- if $a_2 \in F_v^{\times 3}$, then $(a_1, x)_v = 0$ follows from $(a_1, x) = (a_2, x^{-1})$.

Thus, the invariants of (a_1, x) are:

$$(a_1, x)_{v_2} = 2/3$$
, and $(a_1, x)_v = 0$ for $v \neq v_2$,

a contradiction to the reciprocity law.

Jean-Pierre Tignol, June 1996.

References

[1] H. P. Petersson and M. L. Racine, An elementary approach to the Serre-Rost invariant of Albert algebras, Indag. Mathem., N.S. 7 (1996), no. 3, 343-365.

NWF I - MATHEMATIK, UNIVERSITÄT REGENSBURG, D-93040 REGENSBURG, GERMANY E-mail address: markus.rost@mathematik.uni-regensburg.de URL: http://www.physik.uni-regensburg.de/~rom03516