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Introduction

These are first notes. For now see “Essential dimension of twisted C4” [2] for
the set up and notations.

So let k be a field with char k 6= 2 and let G be a Galois module over k with

G(k̄) = Z/4Z

Let further

H(k) = H∗
et(k,Z/2Z)

denote the Galois cohomology ring mod 2.
The purpose of this text is to prove

Proposition 1. Any normalized invariant for G in mod 2 Galois cohomology is a

linear combination of η1, η2 with coefficients from H(k).

A proof is presented in the next section. Afterwards we present without proof
an extension to more general coefficients together with a precise computation of
the group of invariants with coefficients in H(k).

1. Proof of Proposition 1

We start with the exact sequence (see [2])

K∗ π−→ k∗ × K∗

k∗
δk−→ H1(k,G) → 0

Here

π(λ) =
(

NK/k(λ), [λ
2]
)

It follows that a generic parameter space for G-torsors is given by

k∗ × K∗

k∗

or rather

X = Gm × (P1 \ SpecK)

Hence a generic G-torsor lives over k(x, y) where we use the (rational) coordinates

(x, [1 + y
√
d]) ∈ X

In order to determine all cohomological invariants (mod 2), as a first step one
has to determine the unramified cohomology of X . The unramified cohomology of
Gm (with function field k(x)) is

H(k)⊕ (x)H(k) ⊂ H(k(x))
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The unramified cohomology of the torus T = P1 \SpecK (with function field k(y))
is

H(k)⊕ (1 − y2d)H(k) ⊂ H(k(y))

or more precisely:

H(k)⊕ (1− y2d)
(

H(k)/(d)H(k)
)

⊂ H(k(y))

(Proof: Use the standard Milnor/Arason exact sequence for H(k(t)) and the fact
that the kernel of the norm H(K) → H(k) is the image of H(k) in H(K).)

It follows that the unramified cohomology of X is

H(k)⊕ (x)H(k) ⊕ (1− y2d)H(k)⊕ (x, 1 − y2d)H(k) ⊂ H(k(x, y))

(For any variety T the unramified cohomology of Gm ×T is UT ⊕ (x)UT where UT

is the unramified cohomology of T .)
The final step is to determine all those classes in this group which are invariant

under the action of K× (the Weil-restriction of Gm with respect to K/k) on X

described by the group morphism π above. Writing λ = s+ t
√
d, one gets that the

square class (x) is changed by

(x) 7→ (x) + (s2 − t2d)

and that 1− y2d is changed by the SQUARE of the norm of λ, so that the square
class (1− y2d) is NOT CHANGED at all.

This shows already that the subgroup

H(k)⊕ (1− y2d)H(k)

is invariant. It yields the constant invariant and the class η1.

It remains to consider the invariant elements in

(x)H(k) ⊕ (x, 1− y2d)H(k)

Take an element
φ = (x)α + (x, 1− y2d)β

and assume it is invariant. Invariance means that

0 = (s2 − t2d)α+ (s2 − t2d, 1− y2d)β ∈ H(k(x, y, s, t))

Specializing at the place y = 0 yields

0 = (s2 − t2d)α ∈ H(k(x, s, t))

Looking here at the place s = 1, 1− t2d = 0 with residue class field K(x), it follows
that αK = 0, hence

α = (d)α′

so that
φ = (x, d)α′ + (x, 1− y2d)β

This leads to the second invariant

η2 = (x, d)

It remains to show that there are no more invariants, which means now that

(x, 1 − y2d)β = 0

What we know is
0 = (s2 − t2d, 1− y2d)β
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Looking at the pace s = 1, 1− t2d = 0, y = t with residue class field K(x) one sees
that βK = 0, hence

β = (d)β′

Thus, indeed,

(x, 1− y2d)β = (x, 1− y2d)(d)β′ = 0

since (1− y2d, d) = 0.

2. More general coefficients

Let M be a cycle module over k (see [1]). A standard example for a cycle module
in the context of cohomological invariants is the extension of the Brauer group

MBrauer(k) =
⊕

n≥0

Hn(k,Q/Z(n− 1))

with the 4-torsion and 2-torsion subgroups

M4(k) =
⊕

n≥0

Hn(k, µ
⊗(n−1)
4 )

M2(k) = H(k)

For our G all cohomological invariants are killed by 4, so mod 4-cohomology (M =
M4) is a natural choice.

Proposition 2. For the group of normalized invariants for G with coefficients

in M one has the computation

Inv0(G,M) ≃ { (γ, δ) ∈ M(k)⊕M(K) | resK/k(γ) = 2δ, corK/k(δ) = 0 }
A proof and an explicit description of this isomorphism is not given here.
However it is instructive to see how Proposition 1 fits in. So let us look at the

case

M(k) = H(k)

Note that 2H(k) = 0 and recall the exact sequence

H(K)
corK/k−−−−→ H(k)

(d)−−→ H(k)
resK/k−−−−→ H(K)

corK/k−−−−→ H(k)

Proposition 2 yields

Inv0(G,H) = { (γ, δ) ∈ H(k)⊕H(K) | resK/k(γ) = 0, corK/k(δ) = 0 }
= H(k)/corK/k

(

H(K)
)

⊕H(k)/(d)H(k)

The final result in the case M = H is:

Proposition 3. One has

Inv0(G,H) = H(k)/corK/k

(

H(K)
)

⊕H(k)/(d)H(k)

Here a pair (α, β) with

α ∈ H(k) mod corK/k

(

H(K)
)

β ∈ H(k) mod (d)H(k)

corresponds to the invariant

η1β + η2α
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The presentation of η1, η2 in [2] shows that this correspondence is indeed well
defined.

If G = µ4, then K = k × k and d is a square. In this case the norm corK/k is
surjective, (d) = 0 and

H(k)
η1−→ Inv0(µ4, H)

is an isomorphism.
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