COHOMOLOGICAL INVARIANTS $(\bmod 2)$ FOR TWISTED C_{4}

MARKUS ROST

Introduction

These are first notes. For now see "Essential dimension of twisted C_{4} " [2] for the set up and notations.

So let k be a field with char $k \neq 2$ and let G be a Galois module over k with

$$
G(\bar{k})=\mathbf{Z} / 4 \mathbf{Z}
$$

Let further

$$
H(k)=H_{\mathrm{et}}^{*}(k, \mathbf{Z} / 2 \mathbf{Z})
$$

denote the Galois cohomology ring mod 2.
The purpose of this text is to prove
Proposition 1. Any normalized invariant for G in $\bmod 2$ Galois cohomology is a linear combination of η_{1}, η_{2} with coefficients from $H(k)$.

A proof is presented in the next section. Afterwards we present without proof an extension to more general coefficients together with a precise computation of the group of invariants with coefficients in $H(k)$.

1. Proof of Proposition 1

We start with the exact sequence (see [2])

$$
K^{*} \xrightarrow{\pi} k^{*} \times \frac{K^{*}}{k^{*}} \xrightarrow{\delta_{k}} H^{1}(k, G) \rightarrow 0
$$

Here

$$
\pi(\lambda)=\left(N_{K / k}(\lambda),\left[\lambda^{2}\right]\right)
$$

It follows that a generic parameter space for G-torsors is given by

$$
k^{*} \times \frac{K^{*}}{k^{*}}
$$

or rather

$$
X=\mathbf{G}_{\mathrm{m}} \times\left(\mathbf{P}^{1} \backslash \operatorname{Spec} K\right)
$$

Hence a generic G-torsor lives over $k(x, y)$ where we use the (rational) coordinates

$$
(x,[1+y \sqrt{d}]) \in X
$$

In order to determine all cohomological invariants $(\bmod 2)$, as a first step one has to determine the unramified cohomology of X. The unramified cohomology of \mathbf{G}_{m} (with function field $k(x)$) is

$$
H(k) \oplus(x) H(k) \subset H(k(x))
$$

[^0]The unramified cohomology of the torus $T=\mathbf{P}^{1} \backslash \operatorname{Spec} K$ (with function field $k(y)$) is

$$
H(k) \oplus\left(1-y^{2} d\right) H(k) \subset H(k(y))
$$

or more precisely:

$$
H(k) \oplus\left(1-y^{2} d\right)(H(k) /(d) H(k)) \subset H(k(y))
$$

(Proof: Use the standard Milnor/Arason exact sequence for $H(k(t))$ and the fact that the kernel of the norm $H(K) \rightarrow H(k)$ is the image of $H(k)$ in $H(K)$.)

It follows that the unramified cohomology of X is

$$
H(k) \oplus(x) H(k) \oplus\left(1-y^{2} d\right) H(k) \oplus\left(x, 1-y^{2} d\right) H(k) \subset H(k(x, y))
$$

(For any variety T the unramified cohomology of $\mathbf{G}_{\mathrm{m}} \times T$ is $U_{T} \oplus(x) U_{T}$ where U_{T} is the unramified cohomology of T.)

The final step is to determine all those classes in this group which are invariant under the action of K^{\times}(the Weil-restriction of \mathbf{G}_{m} with respect to K / k) on X described by the group morphism π above. Writing $\lambda=s+t \sqrt{d}$, one gets that the square class (x) is changed by

$$
(x) \mapsto(x)+\left(s^{2}-t^{2} d\right)
$$

and that $1-y^{2} d$ is changed by the SQUARE of the norm of λ, so that the square class $\left(1-y^{2} d\right)$ is NOT CHANGED at all.

This shows already that the subgroup

$$
H(k) \oplus\left(1-y^{2} d\right) H(k)
$$

is invariant. It yields the constant invariant and the class η_{1}.
It remains to consider the invariant elements in

$$
(x) H(k) \oplus\left(x, 1-y^{2} d\right) H(k)
$$

Take an element

$$
\phi=(x) \alpha+\left(x, 1-y^{2} d\right) \beta
$$

and assume it is invariant. Invariance means that

$$
0=\left(s^{2}-t^{2} d\right) \alpha+\left(s^{2}-t^{2} d, 1-y^{2} d\right) \beta \in H(k(x, y, s, t))
$$

Specializing at the place $y=0$ yields

$$
0=\left(s^{2}-t^{2} d\right) \alpha \in H(k(x, s, t))
$$

Looking here at the place $s=1,1-t^{2} d=0$ with residue class field $K(x)$, it follows that $\alpha_{K}=0$, hence

$$
\alpha=(d) \alpha^{\prime}
$$

so that

$$
\phi=(x, d) \alpha^{\prime}+\left(x, 1-y^{2} d\right) \beta
$$

This leads to the second invariant

$$
\eta_{2}=(x, d)
$$

It remains to show that there are no more invariants, which means now that

$$
\left(x, 1-y^{2} d\right) \beta=0
$$

What we know is

$$
0=\left(s^{2}-t^{2} d, 1-y^{2} d\right) \beta
$$

Looking at the pace $s=1,1-t^{2} d=0, y=t$ with residue class field $K(x)$ one sees that $\beta_{K}=0$, hence

$$
\beta=(d) \beta^{\prime}
$$

Thus, indeed,

$$
\left(x, 1-y^{2} d\right) \beta=\left(x, 1-y^{2} d\right)(d) \beta^{\prime}=0
$$

since $\left(1-y^{2} d, d\right)=0$.

2. More general coefficients

Let M be a cycle module over k (see [1]). A standard example for a cycle module in the context of cohomological invariants is the extension of the Brauer group

$$
M_{\text {Brauer }}(k)=\bigoplus_{n \geq 0} H^{n}(k, \mathbf{Q} / \mathbf{Z}(n-1))
$$

with the 4 -torsion and 2 -torsion subgroups

$$
\begin{aligned}
& M_{4}(k)=\bigoplus_{n \geq 0} H^{n}\left(k, \mu_{4}^{\otimes(n-1)}\right) \\
& M_{2}(k)=H(k)
\end{aligned}
$$

For our G all cohomological invariants are killed by 4, so mod 4-cohomology ($M=$ M_{4}) is a natural choice.

Proposition 2. For the group of normalized invariants for G with coefficients in M one has the computation

$$
\operatorname{Inv}_{0}(G, M) \simeq\left\{(\gamma, \delta) \in M(k) \oplus M(K) \mid \operatorname{res}_{K / k}(\gamma)=2 \delta, \operatorname{cor}_{K / k}(\delta)=0\right\}
$$

A proof and an explicit description of this isomorphism is not given here.
However it is instructive to see how Proposition 1 fits in. So let us look at the case

$$
M(k)=H(k)
$$

Note that $2 H(k)=0$ and recall the exact sequence

$$
H(K) \xrightarrow{\operatorname{cor}_{K / k}} H(k) \xrightarrow{(d)} H(k) \xrightarrow{\operatorname{res}_{K / k}} H(K) \xrightarrow{\text { cor }_{K / k}} H(k)
$$

Proposition 2 yields

$$
\begin{aligned}
\operatorname{Inv}_{0}(G, H) & =\left\{(\gamma, \delta) \in H(k) \oplus H(K) \mid \operatorname{res}_{K / k}(\gamma)=0, \operatorname{cor}_{K / k}(\delta)=0\right\} \\
& =H(k) / \operatorname{cor}_{K / k}(H(K)) \oplus H(k) /(d) H(k)
\end{aligned}
$$

The final result in the case $M=H$ is:
Proposition 3. One has

$$
\operatorname{Inv}_{0}(G, H)=H(k) / \operatorname{cor}_{K / k}(H(K)) \oplus H(k) /(d) H(k)
$$

Here a pair (α, β) with

$$
\begin{array}{ll}
\alpha \in H(k) & \bmod \operatorname{cor}_{K / k}(H(K)) \\
\beta \in H(k) & \bmod (d) H(k)
\end{array}
$$

corresponds to the invariant

$$
\eta_{1} \beta+\eta_{2} \alpha
$$

The presentation of η_{1}, η_{2} in [2] shows that this correspondence is indeed well defined.

If $G=\mu_{4}$, then $K=k \times k$ and d is a square. In this case the norm $\operatorname{cor}_{K / k}$ is surjective, $(d)=0$ and

$$
H(k) \xrightarrow{\eta_{1}} \operatorname{Inv}_{0}\left(\mu_{4}, H\right)
$$

is an isomorphism.

References

[1] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393 (electronic).
[2] \qquad Essential dimension of twisted C_{4}, Preprint, 2002, 〈www.math.uni-bielefeld.de/~rost/ ed.html \#C4 \rangle.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

E-mail address: rost at math.uni-bielefeld.de
$U R L$: www.math.uni-bielefeld.de/ ${ }^{\sim}$ rost

[^0]: Date: January 15, 2017.

