A "common slot" counterexample in degree 3

Notation: For a, b nonzero elements in a field F containing a primitive cube root of unity ω, the symbol (a, b) denotes the element of the Brauer group of F represented by the F-algebra generated by elements α, β subject to

$$
\alpha^{3}=a, \quad \beta^{3}=b, \quad \beta \alpha=\omega \alpha \beta
$$

Let $a_{1}, b_{1}, a_{2} \in F^{\times}$. If there exist $x, y \in F^{\times}$such that

$$
\begin{equation*}
\left(a_{1}, b_{1}\right)=\left(a_{1}, x\right)+\left(a_{1}, y\right), \quad\left(a_{1}, x\right)=-\left(a_{2}, x\right) \text { and }\left(a_{1}, y\right)=\left(a_{2}, y\right), \tag{*}
\end{equation*}
$$

then the additivity of symbols yields $\left(a_{1}, b_{1}\right)=\left(a_{2}, x^{-1} y\right)$. However, the next example shows that when $\left(a_{1}, b_{1}\right)$ is split by $F\left(\sqrt[3]{a_{2}}\right)$, there need not exist elements x, y satisfying ($*$).

Example: A global field F containing a primitive cube root of unity and elements $a_{1}, b_{1}, a_{2}, b_{2}$ such that $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$, but no couple of elements x, y satisfying $(*)$. In particular (taking $x=1$), the field F does not contain any element y such that

$$
\left(a_{1}, b_{1}\right)=\left(a_{1}, y\right)=\left(a_{2}, y\right)=\left(a_{2}, b_{2}\right)
$$

Let $F=\mathbb{F}_{7}(t)$, where t is an indeterminate, $a_{1}=t$ and $a_{2}=t(1-t)$. Note that $\left(a_{1}, a_{2}\right)=0$. Therefore, for all place v of F, the local invariant $\left(a_{1}, a_{2}\right)_{v}$ is trivial. It follows that in the completion F_{v} of F at v we have either $a_{1} \in F_{v}^{\times 3}$ or $a_{1} \equiv a_{2} \bmod F_{v}^{\times 3}$ or $a_{1} \equiv a_{2}^{2} \bmod F_{v}^{\times 3}$ or $a_{2} \in F_{v}^{\times 3}$, since the (generalized) Hilbert symbol $(,)_{v}:\left(F_{v}^{\times} / F_{v}^{\times 3}\right) \times\left(F_{v}^{\times} / F_{v}^{\times 3}\right) \rightarrow \frac{1}{3} \mathbb{Z} / \mathbb{Z}$ is a nondegenerate alternating pairing.

Consider in particular v_{1} the t-adic place and v_{2} the $(t+3)$-adic place. Since a_{1}, a_{2} are uniformizing parameters at v_{1}, we have $a_{1}, a_{2} \notin F_{v_{1}}^{\times 3}$; but $a_{1} \equiv a_{2} \bmod F_{v_{1}}^{\times 3}$. On the other hand, a_{1} and a_{2} have non-cube residues at v_{2}, hence $a_{1}, a_{2} \notin F_{v_{2}}^{\times 3}$ but $a_{1} \equiv a_{2}^{-1} \bmod F_{v_{2}}^{\times 3}$.

Let now A be the central simple F-algebra with local invariants $1 / 3$ at v_{1}, $2 / 3$ at v_{2} and 0 everywhere else. If v is a place of F where $a_{1} \in F_{v}^{\times 3}$, then $v \neq v_{1}, v_{2}$ hence $[A]_{v}=0$. It follows that A is split by $F\left(\sqrt[3]{a_{1}}\right)$, hence we may find $b_{1} \in F^{\times}$such that $[A]=\left(a_{1}, b_{1}\right)$ in the Brauer group of F. Similarly, A is split by $F\left(\sqrt[3]{a_{2}}\right)$ hence we may find $b_{2} \in F^{\times}$such that $[A]=\left(a_{2}, b_{2}\right)$; thus,

$$
\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) .
$$

Suppose now $x, y \in F^{\times}$satisfy $(*)$. Since $a_{1} \equiv a_{2} \bmod F_{v_{1}}^{\times 3}$, the relation $\left(a_{1}, x\right)_{v_{1}}=-\left(a_{2}, x\right)_{v_{1}}$ implies $\left(a_{1}, x\right)_{v_{1}}=0$. On the other hand, since $a_{1} \equiv$ $a_{2}^{-1} \bmod F_{v_{2}}^{\times 3}$, it follows from $\left(a_{1}, y\right)_{v_{2}}=\left(a_{2}, y\right)_{v_{2}}$ that $\left(a_{1}, y\right)_{v_{2}}=0$, hence $\left(a_{1}, x\right)_{v_{2}}=\left(a_{1}, b_{1}\right)_{v_{2}}=2 / 3$.

For $v \neq v_{1}, v_{2}$, we consider four cases, according to the relation between a_{1} and a_{2} in the group of cube classes:

- if $a_{1} \in F_{v}^{\times 3}$, then clearly $\left(a_{1}, x\right)_{v}=0$.
- if $a_{1} \equiv a_{2} \bmod F_{v}^{\times 3}$, then $\left(a_{1}, x\right)_{v}=0$ as for $v=v_{1}$ above.
- if $a_{1} \equiv a_{2}^{-1} \bmod F_{v}^{\times 3}$, then $\left(a_{1}, x\right)_{v}=\left(a_{1}, b_{1}\right)_{v}$ as for $v=v_{2}$ above, hence $\left(a_{1}, x\right)_{v}=0$.
- if $a_{2} \in F_{v}^{\times 3}$, then $\left(a_{1}, x\right)_{v}=0$ follows from $\left(a_{1}, x\right)=\left(a_{2}, x^{-1}\right)$.

Thus, the invariants of $\left(a_{1}, x\right)$ are:

$$
\left(a_{1}, x\right)_{v_{2}}=2 / 3, \quad \text { and }\left(a_{1}, x\right)_{v}=0 \text { for } v \neq v_{2}
$$

a contradiction to the reciprocity law.

Jean-Pierre Tignol, June 1996.

