
DEGREE FORMULA

(poorly ordered collection of Markus’ e-mail messages1)

1. The ideal I

For an algebraic variety X over F denote by I(X) the ideal in Z generated
by deg(x) for all x ∈ X(0).

Example 1.1. 1. Let X be anisotropic smooth projective quadric. Then
I(X) = 2Z.

2. Let X be the Severi-Brauer variety of a central simple F -algebra A. Then
I(X) = ind(A) · Z.

For a field extension L/F , denote by I(L) the ideal in Z generated by the
degrees [F (v) : F ] for all valuation v on L over F such that the residue field
F (v) is a finite extension of F .

Proposition 1.2. (1) If for a variety X over F , X(F ) 6= ∅, then I(X) = Z;
(2) If there is a morphism f : Y → X, then I(Y ) ⊂ I(X);
(3) Let X be an irreducible variety over F and L = F (X).

(a) If X is proper then I(L) ⊂ I(X).
(b) If X is smooth then I(X) ⊂ I(L).
(c) If X is proper and smooth, then I(X) = I(L). In particular, I(X) is a

birational invariant of a proper smooth variety X.
(4) Let morphism f : Y → X be a birational isomorphism of irreducible proper
varieties with X smooth, then I(Y ) = I(X).
(5) If f : Y → X is a rational morphism of proper varieties with Y smooth,
then I(Y ) ⊂ I(X).

Proof. (3a) Let v be a valuation of L over F . Since X is proper, the valuation
ring of v dominates a point x ∈ X. In particular, F (x) is a subfield of F (v)
over F . Hence x is a closed point and deg x divides [F (v) : F ].

(3b) Let x ∈ X be a closed point. Since x is a smooth point, there is a
valuation v of L over F with the residue field F (x).

(4) Let L = F (X) = F (Y ). By (2), I(Y ) ⊂ I(X) and by (3a,c), I(X) =
I(L) ⊂ I(Y ).

(5) Let Y1 be the graph of f in the product Y ×X. We have two projections
f1 : Y1 → Y and g : Y1 → X with f1 a birational isomorphism. By (4),
I(Y1) = I(Y ) and by (2), I(Y1) ⊂ I(X).
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2. Definition of the invariant ηp(X)

Let p be a prime number, F a field. We assume that char(F ) 6= p and
µp ⊂ F . We fix a primitive p-th root of unity ξ.

Let X be quasi-projective variety over F . The group G = Z/pZ acts by
cyclic permutations on the product

Xp = X × X × · · · × X.

The factor variety Xp/G we denote by CpX. The image X of the diagonal
X ⊂ Xp under the natural morphism Xp → CpX is a closed subvariety in
CpX, isomorphic to X. In particular, I(X) = I(X).

Consider a G-action on the trivial linear bundle Xp × A1 over Xp by

(x1, x2, . . . , xp, t) 7→ (x2, . . . , xp, x1, ξt).

The projection Xp \X → CpX \ X is unramified, hence the restriction of the
factor vector bundle (Xp×A1)/G to CpX \X is a linear bundle over CpX \X.
Denote it by LX .

Let d = dim X. The image of the zero section of the vector bundle L⊕pd
X of

rank pd over CpX \ X defines an element

lX ∈ CHpd(L
⊕pd).

By homotopy invariance,

CHpd(L
⊕pd
X ) = CH0(C

pX \ X),

so that we will also assume that lX ∈ CH0(C
pX \ X). If X is projective, we

have the degree homomorphism

deg : CH0(C
pX \ X) - Z/I(X).

Thus, the image of lX defines an element

ηp(X) ∈ Z/I(X).

Note that X is projective but not necessarily smooth variety over F .
Unfortunately, the invariant ηp(X) is always of exponent p, even when

Z/I(X) is large.

Lemma 2.1. p · lX = 0 ∈ CH0(C
pX \ X). In particular,

p · η(X) = 0 ∈ Z/I(X).

Proof. The class lX in CHpd(L
⊕pd) is the direct image of the image of the zero

section of the trivial vector bundle under

(Xp \ X) × Apd → L⊕pd

of degree p.
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3. Degree formula

Theorem 3.1. (Regular Degree Formula) Let f : Y → X be a morphism of
projective varieties of dimension d. Then I(Y ) ⊂ I(X) and

ηp(Y ) = deg(f) · ηp(X) ∈ Z/I(X).

Proof. Denote by Ỹ the inverse image of X under Cpf : CpY → CpX, so that

Y ⊂ Ỹ . In particular,

I(Y ) = I(Y ) ⊂ I(Ỹ ) ⊂ I(X) = I(X).

We have an open embedding

j : Cp(Y ) \ Ỹ →֒ Cp(Y ) \ Y

and a proper morphism

i : Cp(Y ) \ Ỹ - Cp(X) \ X.

Denote by W the restriction of the vector bundle L⊕pd
Y on CpY \ Ỹ . Clearly,

W is the inverse image of L⊕pd
X with respect to i. We have the following

commutative diagram

CHpd(L
⊕pd
Y )

j∗
- CHpd(W )

i∗
- CHpd(L

⊕pd
X )

|| || ||

CH0(C
pY \ Y )

j∗
- CH0(C

pY \ Ỹ )
i∗
- CH0(C

pX \ X)

Z/I(Y )

deg

?

- Z/I(Ỹ )

deg

?

- Z/I(X).

deg

?

The image j∗(lY ) ∈ CHpd(W ) is the class l′ of the image of the zero section

of W . Then i∗ maps l′ to the image of the zero section of L⊕pd
X and the degree

of i|Z is equal to deg(Cpf) = deg(f)p, hence

i∗j
∗(lY ) = i∗(l

′) = deg(f)p · lX .

Finally, we can replace deg(f)p by deg(f) in view of Lemma 2.1.

Remark 3.2. In fact, we have proved a stronger version of the degree formula
on the level of Chow groups:

i∗j
∗(lY ) = deg(f) · lX ∈ CH0(C

pX \ X).
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Theorem 3.3. (Rational Degree Formula) Let f : Y → X be a rational mor-
phism of projective varieties of dimension d with Y smooth. Then I(Y ) ⊂ I(X)
and

ηp(Y ) = deg(f) · ηp(X) ∈ Z/I(X).

Proof. The inclusion I(Y ) ⊂ I(X) holds by Proposition 1.2(5). Let Y1 be the
graph of f in Y × X. Applying Theorem 3.1 to the birational isomorphism
Y1 → Y (of degree 1), we get

ηp(Y1) = ηp(Y ) ∈ Z/I(Y ) = Z/I(Y1).

On the other hand, applying Theorem 3.1 to the projection Y1 → X(of degree
= deg(f)), we get

ηp(Y1) = deg(f) · ηp(X) ∈ Z/I(X).

Corollary 3.4. The class ηp(X) ∈ Z/I(X) is a birational invariant of a
smooth projective variety X.

Problem 3.5. How to define the invariant ηp(X) ∈ Z/I(X) out of the func-
tion field E = F (X)? (Note that I(X) = I(E).)

Here is the main application:

Theorem 3.6. Let X and Y be two irreducible projective varieties with Y
smooth. Assume that X has a rational point over F (Y ). Then I(Y ) ⊂ I(X)
and if ηp(Y ) 6= 0 ∈ Z/I(X), the following holds:
(1) dim(X) ≥ dim(Y ).
(2) If dim(X) = dim(Y ), then Y has a closed point over F (X) of degree prime
to p.

Proof. There exists a rational morphism f : Y → X. By Proposition 1.2(5),
I(Y ) ⊂ I(X).

(1) Assume that n = dim(Y ) − dim(X) > 0. Consider the composition

g : Y
f
- X →֒ X × Pn

F .

Clearly, deg(g) = 0 and I(X × Pn
F ) = I(X). By Theorem 3.3, applied to g,

ηp(Y ) = 0 ∈ Z/I(X), a contradiction.
(2) By the degree formula, applied to f , and Lemma 2.1, the degree deg(f)

is not divisible by p. Hence the generic point of Y determines a point over
F (X) of degree = deg(f).

Remark 3.7. The first statement of Theorem 3.6(1) shows that a variety Y
cannot be “compressed” to a variety X of smaller dimension if ηp(Y ) 6= 0 ∈
Z/I(X).

One can give another definition of ηp(X) by using Chern class operations as
defined in [2, Ch. 3] for arbitrary (not necessarily smooth) varieties. For any
vector bundle E over a variety V we have Chern class operations
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cp(L)∩? : CHk(V ) - CHk−p(V ), u 7→ cp(E) ∩ u.

In particular, the operation c1(L)∩? for a linear vector bundle L over V is the
intersection with the Cartier divisor associated to L.

By [2, Ex. 3.3.2], the class of lX in CH0(C
pX \ X) is equal to

cpd(L
⊕pd
X ) ∩ [CpX \ X].

By Whitney formula [2, Th. 3.2 (e)],

cpd(L
⊕pd
X ) = c1(LX)pd.

Thus, we can give an equivalent definition:

ηp(X) = deg
(
c1(LX)pd ∩ [CpX \ X]

)
∈ Z/I(X).

One can give another proof of Theorem 3.1 using standard properties of
Chern class operations (projection formula, inverse image under a flat mor-
phism) given in [2, Th. 3.2].

4. Computation of η2 for a quadric

Let Q = Q(V, q) be anisotropic smooth projective quadric of dimension d,
so that I(Q) = 2Z.

Proposition 4.1.

η2(Q) =

{
1 + 2Z, if d = 2k − 1 for some k,

2Z, otherwise.

Proof. Each pair of distinct points in Q determines a line in P(V ), i.e. a plane
in V . Thus we have a rational morphism

α : C2Q - Gr(2, V ).

Clearly, α is a birational isomorphism! Indeed, let U be the open subvariety
in C2Q consisting of all pairs of points ([v], [u]) such that [v] 6= [u] and the
restriction of the quadratic form q on the 2-dimensional subspace generated
by v and u is nondegenerate. Then the restriction α|U is an open immersion
identifying U with the open subvariety of Gr(2, V ) consisting of all planes
W ⊂ V such that the restriction q|W is nondegenerate. The inverse rational
morphism α−1 takes a plane W ⊂ V to the intersection P(W ) ∩ Q. If q|W
is nondegenerate, this intersection is an effective 0-cycle of degree 2, i.e. is a
point of C2X.

Remark 4.2. If dim(Q) = 1, i.e. if Q is a conic, α is an isomorphism between
C2Q and Gr(2, V ) = P(V ∗). In the split case this isomorphism looks as follows:
C2P1

F ≃ P2
F .

Let E be the canonical linear bundle over Gr(2, V ) (the second exterior
power of rank 2 tautological vector bundle). Denote by L′ the restriction of
the linear bundle LQ to the open subvariety U ⊂ C2Q.
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Lemma 4.3. (α|U)∗(E) ≃ L′.

Proof. Let U ′ be the inverse image of U under the natural morphism Q2 →
C2Q. We have the following morphism of vector bundles:

β : U ′ × A1
F → E, ([v], [u], t) 7→ (〈v, u〉, t

v ∧ u

b(v, u)
)

where b is the polar form of q. The action of G = Z/2Z on U ′ × A1
F by

([v], [u], t) 7→ ([u], [v],−t) commutes with the trivial action of G on E. Hence
β induces an isomorphism L′ → E over α|U .

Clearly, 2Z = I(Q) = I(C2Q \ U). Lemma 4.3 and the commutativity of
the diagram

CH0

(
Gr(2, V )

) α|∗U
- CH0(U)

Z

deg

?

- Z/2Z

deg

?

imply that
η2(Q) = deg(c1E)2d + 2Z.

Let
i : Gr(2, V ) →֒ P(∧2V )

be the canonical closed embedding. The vector bundle E on Gr(2, V ) is the
inverse image under i of the tautological vector bundle on P(∧2V ). Thus, the
degree deg(c1E)2d is equal to the degree of the subvariety i(Gr(2, V )) in the
projective space P(∧2V ). It is the Catalan number [2, Ex. 14.7.11]

1

d + 1

(
2d

d

)
.

One easily checks that this number is odd iff d = 2k − 1 for some k.

Theorem 4.4. Let Q = Q(V, q) be a smooth projective quadric of dimension
d ≥ 2k − 1 and let X be a variety over F such that I(X) ⊂ 2Z and X has a
point over F (Q). Then
(1) dim(X) ≥ 2k − 1.
(2) If dim(X) = 2k − 1, then Q has a point over F (X).

Proof. Let Q′ be a subquadric in Q of dimension 2k − 1. Clearly, there is a
rational morphism f : Q′ → X.

(1) Since η2(Q
′) = 1 + I(Q′) 6= 0 ∈ Z/I(X), by Theorem 3.6(1),

dim(X) ≥ dim(Q′) = 2k − 1.

(2) By Theorem 3.6(2), Q′ has a point of odd degree over F (X). By
Springer’s Theorem, Q′ and hence Q has a point over F (X).
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Remark 4.5. One can replace the condition that X has a point over F (Q)
by the weaker one: X has an odd degree 0-cycle over F (Q).

Corollary 4.6. (Hoffmann) Let Q1 and Q2 be two anisotropic quadrics. If
dim(Q1) ≥ 2k − 1 and Q2 is isotropic over F (Q1), then dim(Q2) ≥ 2k − 1.

Corollary 4.7. (Izhboldin) Let Q1 and Q2 be two anisotropic quadrics. If
dim(Q1) = 2k − 1 and Q2 is isotropic over F (Q1), then Q1 is isotropic over
F (Q2).

5. Computing η2 for smooth varieties

Let X be a smooth proper variety. Denote by c′ the total characteristic class
opposite to the Chern class c, i.e.

1 + c′1 + c′2 + · · · = (1 + c1 + c2 + . . . )−1.

In other words, c′d(E) = cd(−E) for any vector bundle over X. The class c′d is
known as the Segre class (denoted sd in [2, Ch. 3]; by the letter sd we denote
the additive class of degree d).

Denote by TX the tangent bundle over X.

Theorem 5.1. Let X be a proper smooth variety of dimension d. Then the
degree of the 0-cycle c′d(TX) = cd(−TX) is even and

η2(X) =
deg c′d(TX)

2
∈ Z/I(X).

Proof. We would like first to compactify smoothly C2X \ X and extend the
line bundle LX to the compactification. Note that C2X is smooth only if
dim(X) = 1.

Let W be the blow up of the diagonal X in X2. The G-action on X2 extends
to one on W . The subvariety W G coincides with the exceptional divisor

P
(
(TX ⊕ TX)/TX

)
= P(TX).

Since W G is of codimension 1 in W , W/G is smooth and therefore can be
taken as a smooth compactification of C2X \ X.

Now we would like to construct a canonical extension L′ of LX to the whole
W/G. There is a canonical linear bundle OW (1) over the blow up W with the
induced G-action. The group G acts by −1 on the restriction O

P(TX) of OW (1)
on the exceptional divisor P(TX). The restriction of OW (1) to the complement
of the exceptional divisor W \ P(TX) ≃ X2 \ X is the trivial vector bundle
with the trivial G-action. Now we modify the G-action on OW (1) by −1. New
G-action of the restriction of OW (1) on the exceptional divisor P(TX) is trivial,
hence O(1) descends to a linear vector bundle L′ on W/G which is a desired
extension of LX on C2X \ X.

Now we compute deg c1(L
′)2d. At one hand, since LX is the restriction of L′

on C2X \ X, we have

deg c1(L
′)2d = deg c1(LX)2d = η2(X) ∈ Z/I(X).
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On the other hand, let

i : P(TX) →֒ W

be the closed embedding and

p : W - W/G

the natural projection. We have

p∗c1(L
′) = c1

(
OW (1)

)
= [P(TX)] = i∗(1) ∈ CH1(W ).

By the projection formula,

c1

(
OW (1)

)2d
= i∗(1) · c1

(
OW (1)

)2d−1
= i∗

(
c1

(
O
P(TX)(1)

)2d−1)
∈ CH0(W ).

Let q : P(TX) → X be the natural morphism. The class

q∗
(
c1

(
O
P(TX)(1)

)2d−1)
∈ CH0(X)

is the Segre class c′d(TX) [2, Ch. 3]. Finally,

2 deg c1(L
′)2d = deg c1

(
OW (1)

)2d
= deg c1

(
O
P(TX)(1)

)2d−1
= deg c′d(TX).

Remark 5.2. If p > 2, the blow up W of the diagonal in Xp does not have
smooth orbit space W/G and the linear bundle LX cannot be extended to a
linear bundle on W/G.

Remark 5.3. The number deg cd(−TX) does not change under field exten-
sions and hence can be computed over algebraically closed fields.

Remark 5.4. The Theorem shows that the degree m of the cycle cd(−TX) is
always even. Hence this cycle defines a cycle on the symmetric square C2X of
degree m

2
. In the proof we construct this class “canonically” (it is c1(LX)2d).

The degree formula follows from “canonical” nature of this class. One should
study other cases of divisibility of characteristic numbers.

Example 5.5. Let Q be again a smooth projective quadric Q(V, q) and let
i : Q →֒ P(V ) be the embedding. We have the following exact sequence of
vector bundles

0 - TQ
- i∗T

P(V )
- i∗O

P(V )(2) - 0.

A nasty calculation gives the Catalan number again:

1

2
cd(−TQ) =

(−1)d

d + 1

(
2d

d

)
.

Can one get this computation using Gr(2, V )?
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6. Computing η2 for projective spaces

Proposition 6.1. Let X = Pd
F . Then

deg cd(−TX) = (−1)d

(
2d

d

)
.

Proof. It is known that [−TX ] = −(d+1)[OX(1)]+ [OX ]. We can compute the
total Chern class:

c(−TX) =
1

c
(
OX(1)

)d+1
=

1

(1 + t)d+1
.

Hence

deg cd(−TX) =

(
−d − 1

d

)
= (−1)d

(
2d

d

)
.

Let vp be the p-adic discrete valuation and sp(a) be the sum of digits of a
written in base p.

Corollary 6.2. Let X be a Severi-Brauer variety of dimension d. Then

v2

(
deg cd(−TX)

)
= s2(d), η2(X) = 2s2(d)−1.

Corollary 6.3. (Karpenko) Let A be a division algebra with orthogonal involu-
tion σ, Y the Severi-Brauer variety of A. Then the involution σ is anisotropic
over F (Y ).

Proof. Let X = I(A, σ) ⊂ Y be the involution variety, deg(A) = 2k. Then
I(X) ⊂ I(Y ) = 2kZ. If σ is isotropic over F (Y ) then there is a rational
morphism Y → X. By Corollary 6.2,

v2

(
deg cd(−TY )

)
= s2(2

k − 1) = k,

hence η2(Y ) = 2k−1 is nontrivial in Z/I(X). A contradiction by Theorem
3.6(1).

Remark 6.4. In fact, we proved that the Severi-Brauer variety of a division
algebra of degree 2k cannot be compressed to a variety X of smaller dimension
with I(X) = 2kZ.

Remark 6.5. Let p be any prime integer. We will see later (Corollary 10.6)
that for a Severi-Brauer variety X of dimension d divisible by p − 1,

ηp(X) = p
sp(d)

p−1
−1 ∈ Z/I(X).

As in Corollary 6.3 one can prove that the Severi-Brauer variety of a division
algebra of degree pk cannot be compressed to a variety X of smaller dimension
with I(X) = pkZ.
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7. Todd class

The total Todd class td is the rational characteristic class

td = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
(c1c2) + . . . .

Lemma 7.1. [3, Lemma 1.7.3] The denominator of the Todd class tdd is equal
to ∏

p prime

p[ d
p−1

].

It follows from the RR Theorem that for a smooth proper variety X of
dimension d,

tdd(X)
def
= deg tdd(TX) = χ(X) =

d∑

i=1

(−1)i dim H i(X,OX) ∈ Z

is the Euler characteristic of X.
The structure morphism pX : X → Spec F induces the direct image

pX
∗ : K0(X) - K0(F ) = Z.

We have p∗([OX ]) = χ(X).
Denote by J(X) the image of K0(X)(1) under p∗. Clearly, I(X) ⊂ J(X) and

this is an equality if dim X = 1.

Theorem 7.2. For a morphism f : Y → X of proper smooth varieties of
dimension d,

tdd(Y ) = deg(f) · tdd(X) ∈ Z/J(X).

Proof. Clearly,

f∗([OY ]) − deg(f) · [OX ] ∈ K0(X)(1).

We apply then pX
∗ and use pY = pX ◦ f .

Example 7.3. Let Y be the Severi-Brauer variety corresponding to a central
simple algebra of prime degree p. One has J(Y ) = pZ and tdp−1(Y ) = 1. Hence
Y cannot be compressed to a variety X of smaller dimension with J(Y ) = pZ.

Example 7.4. Let X be the product of n Severi-Brauer varieties correspond-
ing to central simple algebras A1, A2, . . . , An of prime degree p. Assume
that these algebras are linearly independent in the Brauer group of F . Then
J(X) = pZ. Let L/F be a field extension such that

1. tr. deg.(L/F ) ≤ n(p − 1);
2. L splits all the Ai.
3. FsepL/Fsep is purely transcendental.
Claim: The degree tr. deg.(L/F ) is exactly n(p − 1), the field L can be

embedded into F (X) over F and for any such an embedding the degree [F (X) :
L] is prime to p.

Proof: Let Y be a projective variety such that L = F (Y ). We may assume
that dim(Y ) = n(p − 1) by replacing Y by Y × Pk for appropriate k. Since
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F (Y ) splits all the Ai, there is a rational morphism f : Y → X. Replacing
Y by the graph of this morphism we may assume that f is regular. Since Y
is rational over Fsep, tdn(p−1)(Y ) = 1. By the degree formula, deg(f) is not
divisible by p.

In particular, X does not contain proper subvarieties rational over Fsep.

Example 7.5. Let L/F be a quadratic field extension and Q be a quaternion
algebra over L. Consider X = RL/F (C) where C is the conic over L corre-
sponding to Q. Clearly td2(X) = 1 since X is rational over Fsep. Assume that
the algebra A = corL/F (Q) of degree 4 over F is a division algebra. We show
that J(X) = 4Z. Indeed,

K0(X) = K0(F ) ⊕ K0(A) ⊕ K0(Q).

The degree

K0(X) - K0(F ) = Z

is the identity on the first component and trivial on the others (look at the
split case). On the other hand, the map to the generic point is given by the
norms. Hence, the first component of any element in K0(X)(1) is divisible by
4.

8. Complex cobordisms

Consider the formal polynomial ring R = Z[c1, c2, . . . ] generated by the
Chern classes. We think of cd having degree 2d, so that R is a graded ring.
Denote by Rd the component of R of degree 2d. It is a free abelian group
generated by cd, . . . , c

d
1. We call the elements of Rd the integral characteristic

classes of degree d. The rational characteristic classes of degree d are the
elements of Rd ⊗ Q.

Let E be a vector bundle over a variety X of dimension d. Then for any
c ∈ Rd ⊗Q the value c(E) is a rational 0-cycle in CH0(X)⊗Q. If X is proper,
we can compute the degree deg c(E) ∈ Q.

Denote by R′
d the subgroup in Rd ⊗ Q consisting of all rational character-

istic classes c such that deg c(−TX) ∈ Z for all smooth proper varieties X of
dimension d over F . Clearly, Rd ⊂ R′

d.

Example 8.1. We know that 1
2

cd ∈ R′
d, where c is the Chern class, defines

an element of R′
d/Rd of exponent 2. Let td′ be the inverse td−1 of the Todd

class. The class td′
d is another example of an element of R′

d.

Let t ∈ R′
d. For a smooth proper variety X of dimension d we can consider

the class t(X) = deg t(−TX) + I(X) ∈ Z/I(X). If t ∈ Rd is an integral class,
then t(E) ∈ CH0(X) for any vector bundle E over X, hence deg t(E) ∈ I(X)
and therefore t(X) = 0 ∈ Z/I(X). Thus, for any smooth proper variety X of
dimension d we have a well defined group homomorphism

R′
d/Rd

- Z/I(X), t + Rd 7→ t(X).
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Problem 8.2. Determine all classes t + Rd which admit the degree formula,
i.e. for a morphism f : Y → X of smooth proper varieties,

t(Y ) = deg(f) · t(X) ∈ Z/I(X).

Probably in some cases one has to enlarge the group I(X) (see the degree
formula for the Todd class).

Example 8.3. The classes 1
2

cd and td′
d admit the degree formula.

First, we would like to determine the factor group R′
d/Rd. Let ΩU

∗ = π∗(MU)
be the complex bordism ring. The Hurewicz ring homomorphism

hd : ΩU
2d

- H2d(BU, Z)

is injective [5, Cor. 20.26]. Using duality between H∗(BU, Z) and H∗(BU, Z)
one can determine h by the formula

[X] 7→ (t 7→ 〈t(−TX), σX〉)

where t ∈ H2d(BU, Z), t(−TX) ∈ H2d(X, Z) and σX ∈ H2d(X, Z) is the funda-
mental class of X.

The ring H∗(BU, Z) is a graded polynomial ring Z[b1, b2, . . . ], deg bd = 2d.
The ring ΩU

∗ is also a polynomial ring Z[M1, M2, . . . ] where the generators Mi

can be chosen such that [4, p. 129]

hi(Mi) =





p(bi + {decomposable terms}), if i = pk − 1

for some prime p and integer k > 0,

bi + {decomposable terms}, otherwise.

Consider the following elements in H∗(BU, Z):

xi =





hi(Mi)
p

, if i = pk − 1

for some prime p and integer k > 0,

hi(Mi), otherwise.

By [4, p. 130], H∗(BU, Z) is the polynomial ring Z[x1, x2, . . . ].
Also set

ri =





p, if i = pk − 1

for some prime p and integer k > 0,

1, otherwise.

For any partition α: d = i1 + i2 + · · ·+ ik, i1 ≤ i2 ≤ · · · ≤ ik set

xα = xi1xi2 . . . xik ∈ H2d(BU, Z),

rα = ri1ri2 . . . rik ∈ Z.
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Proposition 8.4. ([4, Cor., page 129])

Coker hd =
∐

α

(Z/rαZ) xα,

where the coproduct is taken over all partitions α of d.

Corollary 8.5. The exponent of the group Coker hd coincides with the denom-
inator of the Todd class tdd.

Proof. Let p be a prime integer, k = [ d
p−1

]. Clearly, for any partition α of

d, vp(xα) ≤ k and there is a partition α : d = (p − 1) + (p − 1) + . . . with
vp(xα) = k. The statement now follows from Lemma 7.1.

Now we dualize h over Z. The group H2d(BU, Z) is canonically isomorphic
to Rd since by [5, Cor. 16.11],

H∗(BU, Z) = Z[c1, c2, . . . ].

Thus, the dual of hd is the embedding

Rd →֒ Hom(ΩU
2d, Z)

being an isomorphism after tensoring with Q. This map takes a characteristic
class t of degree 2d to a homomorphism

ΩU
2d

- Z, [X] 7→ 〈t(−TX), σX〉.(1)

If X is a smooth proper variety and we consider characteristic classes with
values in Chow groups of X the homomorphism (1) takes [X] to deg t(−TX).
Thus, we can identify the group Hom(ΩU

2d, Z) with R′
d.

The pairing
H2d(BU, Z) ⊗ R′

d
- Q

induces an isomorphism

R′
d/Rd ≃ Hom(Coker hd, Q/Z) = (Coker hd)

∗.

Thus, the structure of the finite group R′
d/Rd is similar to that in Proposition

8.4.

Example 8.6. Let d = 1. We have R1 = Zc1, M1 = 2b1 is the generator
of ΩU

2 with M1 = −[P1] by [5, Ex. 16.46]. Hence R′
1 = 1

2
Zc1 and the class

td1 = 1
2
c1 + R1 generates R′

1/R1:

R′
1/R1 = (Z/2Z)td1 = (Z/2Z)(

1

2
c1) = (Z/2Z)(

1

2
s1) = (Z/2Z)(

1

2
c′1),

where c1 = s1 = −c′1. The generator admits the degree formula.

Example 8.7. Let d = 2. We have R2 = Zc2 ⊕ Zc2
1. By [5, Ex. 16.46], the

generators of ΩU
4 can be chosen as follows:

M2 = −[P2] = 3b2 − 6b2
1, M2

1 = [P1 × P1] = 4b2
1.

Hence the group R′
2/R2 which is dual to Coker h2, is cyclic of order 12,

R′
2/R2 = (Z/12Z)td′

2,
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where

td2 =
1

12
(c2

1 + c2), td′
2 =

1

12
(2c2

1 − c2).

Also:
1

2
c′2 + R2 = 6td2 + R2,

1

3
s2 + R2 = 4td2 + R2

both admit degree formulas. What about td2?

Example 8.8. Let d = 3. We have R3 = Zc3 ⊕ Zc1c2 ⊕ Zc3
1. Let Q3 be a

smooth 3-dimensional quadric. One has

h(Q3) = 6b3 − 10b3
1,

h(P3) = −4b3 + 20b1b2 − 20b3
1.

One can choose the following generators of ΩU
6 :

M3 = [Q3] + [P3], M1M2 = [P1 × P2], M3
1 = [P1 × P1 × P1].

One finds

R′
3/R3 = (Z/2Z)(

1

2
c′3) ⊕ (Z/2Z)(

1

2
c3
1) ⊕ (Z/24Z)td′

3.

9. General problem

Let X be a projective variety of dimension d over F . For any characteristic
class t ∈ R′

d denote by It(X) the smallest subgroup in Z containing I(X) such
that for any morphism f : Y → X, where Y is a projective variety of dimension
d, one has

t(Y ) ≡ deg(f) · t(X)
(
mod It(X)

)
.

Clearly, It(X) depends only on t modulo Rd. Denote by ot the l.c.m. of the
orders of t(X) in Z/It(X) for all projective X of dimension d. Thus, if ot 6= 1,
there is a nontrivial degree formula involving the class t.

Problem 9.1. Determine the function

R′
d/Rd

- Z, t + Rd 7→ ot.

Clearly, ot divides the order of t + Rd in R′
d/Rd.

Example 9.2. Let d = 1. The group R′
1/R1 is cyclic of order 2 with the

generator t = c1
2
. For a conic curve X one has t(X) = 1 + 2Z ∈ Z/2Z, hence

ot = 2.

Example 9.3. Let d = 2. The group R′
2/R2 is cyclic of order 12 with the

generator t = td′
2. Example of a Severi-Brauer variety of a csa of degree 3

shows that 3|ot and Example 7.5 shows that 4|ot. Thus, ot = 12.
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10. Steenrod operations

Let p be a prime number. We consider the action of the Steenrod algebra
modulo p on the Thom class T in the cohomology ring

H∗(MU, Z/pZ).

For an operation A, denote by c(A) the image of A(T ) under the canonical
isomorphism

H∗(MU, Z/pZ) ≃ H∗(BU, Z/pZ) = Z/pZ[c1, c2, . . . ].

Example 10.1. Let P i be the Steenrod power. Then c(P i) = (b−1)i(p−1)

where b is the total characteristic class defined by

b = (1 + tp−1
1 )...(1 + tp−1

n )

where

c = (1 + t1)...(1 + tn)

is the total Chern class. In particular, b = c, the Chern class, if p = 2.

Example 10.2. Let qi be the Quillen operation of degree pi−1. Then c(qi) =
spi−1 is the additive class.

Let X be a smooth variety over a field F . In [1], P. Brosnan defines Steenrod
operations

P i : CH∗(X) - CH∗−i(p−1)(X)/p

which satisfy the following properties:
• (functoriality with respect to proper morphisms) Let f : Y → X be a

proper morphism of smooth varieties. Then the following diagram commutes
[1, Prop. 8.11]:

CH∗(Y )
P i
- CH∗−i(p−1)(Y )/p

CH∗(X)

f∗

? P i
- CH∗−i(p−1)(X)/p.

f∗

?

• Let dim(X) = d. The image of the the class [X] under

P i : CHd(X) - CHd−i(p−1)(X)/p

equals bi(p−1)(−TX) by [1, Prop. 8.4].

Theorem 10.3. (1) Let X be a smooth variety of dimension d divisible by
p − 1. Then deg bd(−TX) is divisible by p, i.e. 1

p
bd is a rational class in R′

d.

(2) For a proper morphism f : Y → X of smooth varieties of dimension d
divisible by p − 1,

f∗
(
bd(−TY )

)
≡ deg(f) · bd(−TX)

(
mod p CH0(X)

)
.
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Proof. Both statements follow from the properties above applied to the oper-
ation P i for i = d

p−1
and morphisms X → Spec F and f : Y → X.

In view of Example 10.1, this Theorem implies Theorem 5.1 in the case
p = 2 for smooth projective varieties.

Remark 10.4. Let X be a smooth variety of dimension d divisible by p − 1.
One can show that

ηp(X) =
deg bd(−TX)

p
∈ Z/I(X).

Thus, Theorem 10.3 implies Theorem 3.1 for smooth varieties.

We generalize now Proposition 6.1:

Proposition 10.5. Let X = Pd where d = i(p − 1). Then

deg bd(−TX) = (−1)i

(
pi

i

)
.

Corollary 10.6. Let X be a Severi-Brauer variety of dimension d divisible by
p − 1. Then

ηp(X) = p
sp(d)

p−1
−1.

Proof. Let d = i(p − 1). Then

vp

(
pi

i

)
=

sp(d) + sp(i) − sp(pi)

p − 1
=

sp(d)

p − 1
.

11. General formula

We would like to define things algebraically and give topological explana-
tions.

Let H∗Z[b1, b2, . . . ] be the polynomial ring. We assume that H∗ is graded in
such a way that bi is of degree i.

Explanation: In topology, it is the homology ring H∗(BU, Z) = H∗(MU, Z)
(the difference is that the degree of bi in topology is 2d).

For any partition α: d = i1 + i2 + · · · + ik, i1 ≤ i2 ≤ · · · ≤ ik set

bα = b1 . . . bi1b
2
i1+1 . . . b2

i2
b3
i2+1 . . . bk

ik
.

The elements bα for a basis of the polynomial ring over Z, and more precisely,
the bα with |α| = d form a basis of Hd.

Consider another polynomial ring H∗ = Z[c1, c2, . . . ] with the same grading
deg(ci) = i. For any partition α as above we define the symmetric polynomial

Pα =
∑

Xα1
1 Xα2

2 . . .Xαk

k

and set
cα = Pα(c1, c2, . . . , ck).

The cα with |α| = d form a basis of Hd.
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We consider a pairing between Hd and Hd such that the bα and cα form dual
bases.

Explanation: H∗ is the cohomology ring H∗(BU, Z) = H∗(MU, Z) with
the standard pairing with the homology ring.

Let

exp(x) = x + b1x
2 + b2x

3 + . . .

be the formal power series over the ring H∗ and

log(x) = x + m1x
2 + m2x

3 + . . .

be the formal inverse of exp. Clearly,

H∗ = Z[m1, m2, . . . ]

is a graded polynomial ring. For example,

m1 = −b1,

m2 = 2b2
1 − b2,

m3 = −5b3
1 + 5b1b2 − b3, . . .

Consider the formal power series in two variables

µ(x, y) = exp(log x + log y)

over the ring H∗. Clearly, µ is a commutative formal group law over H∗. The
map exp is an isomorphism of the additive group law x + y and the group law
µ. Denote the coefficient of µ by aij ∈ Hi+j−1, i.e.

µ(x, y) = x + y +
∑

i≥1,j≥1

aijx
iyj.

For example,

a11 = 2b1,

a12 = 3b2 − 2b2
1,

a13 = 4b3 − 8b1b2 + 4b3
1,

a22 = 6b3 − 6b1b2 + 2b3
1, . . .

Denote by L the graded subring in H∗ generated by the coefficients aij . By
definition, the group law µ is defined over L. It is the universal formal group
law. The ring L is called the Lazard ring.

Let X be an algebraic proper smooth variety over F of dimension d. Denote
by [X] the element in Hd such that

〈cα, [X]〉 = deg cα(−TX)

for any partition α with |α| = d. It turns out that [X] ∈ Ld (algebraic proof?).

Example 11.1. [Pd] = (d + 1)md.
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Explanation: The Lazard ring is identified with the complex cobordism
ring ΩU

∗ . The map X 7→ [X] is the injective Hurewicz homomorphism

h : ΩU
∗

- H∗.

The formula above looks as follows:

〈cα, h[X]〉 = 〈cα(−TX), σX〉,

where σX is the fundamental class of X in H2d(X, Z).
Let X be an algebraic proper smooth variety over F of dimension d. We

define the (graded) ideal M(X) in L generated by the classes [Y ] ∈ L for
all smooth proper varieties Y with dim(Y ) < d and such that there exists a
morphism Y → X.

Conjecture 11.2. (General Degree Formula2) For any morphism f : Y → X
of proper smooth varieties of dimension d,

[Y ] = deg(f) · [X] ∈ Ld/M(X)d.

Let t : Ld → Z be a homomorphism. Applying t to the degree formula, we
get a degree formula

t[Y ] = deg(f) · t[X] ∈ Z/t(M(X)d).

In section (8) we identified such homomorphisms t with rational character-
istic classes in R′

d.

Example 11.3. Let t = 1
2
cd (c is the Chern class). The group M(X)d is gen-

erated by the classes [Y ×Z] of varieties of dimension d, where k = dim(Y ) < d
and there is a morphism Y → X. Let p and q be two projections of Y ×Z on
Y and Z respectively. Then

TY ×Z = p∗(TY ) ⊗ q∗(TZ).

The highest Chern class is multiplicative, hence

1

2
deg cd(−TY ×Z) = deg ck(−TY ) ·

1

2
deg cd−k(−TZ).

Clearly, deg ck(−TY ) ∈ I(Y ). Since there is a morphism Y → X, deg ck(−TY ) ∈
I(X). Thus t(M(X)d) = I(X) and we get the degree formula 3.1 in the case
of smooth varieties and p = 2.

Similar argument works for the class t = 1
p
bd to give Theorem 3.1 for any

prime p.

Example 11.4. Let t = td′
d. Since the Todd class is multiplicative, similar

argument gives t(M(X)d) = J(X) and one obtains the degree formula in
Theorem 7.2.

2More generally one can expect that for any morphism f : Y → X of proper smooth
varieties (not necessarily of the same dimension) with X irreducible one has

[Y ] = deg(f) · [X ] ∈ L/M(X),

where deg(f) denotes the class of the generic fibre.
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12. Landweber-Novikov operations

Let E be a C-oriented spectrum. We have a natural isomorphism

E∗(BU) ≃ E∗(MU).

The ring E∗(BU) is the polynomial ring over E∗(pt) in the “Chern classes”
c1, c2, . . . . The corresponding elements in E∗(MU) we denote s1, s2, . . . . For
any partition α of d one can define in a standard way the elements sα ∈
E2d(MU).

Now set E = MU ; we get the elements sα ∈ MU2d(MU) corresponding to
the Conner-Floyd classes cα ∈ MU2d(BU). The class sα can be considered as
an operation

MU - S2|α|MU.

In particular, sα acts on L∗ = MU−∗(pt) by endomorphisms

Ln
- Ln−|α|.

Example 12.1. The operations sα act nicely on the classes of projective
spaces:

sα[Pn] = 〈cα, b−n−1〉[Pn−|α|],

where b =
∑∞

i=0 bi.

Example 12.2. The action of sα on L∗ extends (uniquely) to an action on
H∗:

sα(b) =
∑

i≥0

〈cα, bi〉b
i+1,

sα(xy) =
∑

(β,γ)=α

(sβx)(sγy).

Fix a dimension n. For any partition α choose an element

xα ∈ MU2n−2|α|(pt) = L|α|−n ⊂ H|α|−n.

We view the multiplication by xα as an operation

MU - S2n−2|α|MU.

We can consider the infinite sum ∑

α

xαsα(2)

as an operation
MU - S2nMU.

Theorem 12.3. (Landweber-Novikov) Any cohomology operation on the spec-
trum MU is of the form (2) for uniquely determined elements xα.

Conjecture 12.4. For any smooth proper variety X, the ideal M(X) in L is
invariant under Landweber-Novikov operations.3

3One may hope to prove these conjectures using Voevodsky’s stable homotopy theory of
schemes.
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