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1. Basic Notions

Let R be a ring and let G = GL2(R).

A row (P,Q) with P , Q ∈ R is called unimodular if there exists R,
S ∈ R with PR + QS = 1. A row is unimodular if and only if it is a
row of an element of G.

An element ofG is called elementary if it is in the subgroup generated
by upper and lower triangular matrices.
Two rows are called (elementary) equivalent if one can be obtained

from the other by multiplication with an elementary element of G.
A row is called elementary if it is equivalent to (1, 0). A row is

elementary if and only if it is a row of an elementary element of G.
Similar notions are understood for columns.

An element ofG is elementary if and only if any of its rows or columns
is elementary.

Every element of GL2(Z) is elementary.
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2. Introduction

It is not known whether every element of GL2(Z[t
±1]) is elemen-

tary [1].
These notes present some considerations for rows consisting of linear

polynomials.
In section 3 a simple criterion for unimodularity of such rows is given.
A first challenge was the question whether the row

(13 + 11t, 112)

is elementary.
It was shown by Matt Zaremsky that this indeed the case (thanks

to Kai-Uwe Bux for showing me Zaremsky’s notes).
We extend Zaremsky’s calculations to some further examples, see

Corollary 4.7, Corollary 5.1 and Remark 6.3.
The material from section 6 on can be considered as an appendix. It

contains some musings about the method, driven mainly by curiosity
about an underlying identity, see Remarks 6.2 and 7.2.

3. Unimodular rows given by linear polynomials

All statements are understood for the group GL2(Z[t
±1]).

We consider rows of the form (a+ bt, c+ dt) with a, b, c, d ∈ Z and
give a simple criterion for unimodularity.
I don’t know whether all unimodular rows of this type are elementary.
Note that such a row is equivalent to one of the form (a+ bt, c) (use

multiplication with a matrix from GL2(Z)).

Lemma 3.1. Let a, b, c ∈ Z. The row (a+ bt, c) is unimodular if and

only if every prime divisor of c divides either a or b.

Proof. The row is (a+ bt, c) is unimodular if and only if there exists P ,
Q ∈ Z[t±1] with

(a+ bt)P = 1 + cQ

which means that the image of a+ bt in the ring

(Z/cZ)[t±1]

is invertible.
The claim holds∗ for c = 0 and we assume c 6= 0.

∗The group of units of Z[t±1] is ±tZ. Further, 0 is the only integer divisible by
infinitely many prime numbers and ±1 are the only integers not divisible by any
prime number.
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To detect invertibility one may pass to the reduction (quotient by
the nilradical). Since

(Z/cZ)red =
∏

p|c

Fp

where p runs through the prime divisors of c and since

(Fp[t
±1])× = F×

p t
Z

the claim follows. �

Corollary 3.2. Let a, b, c, d ∈ Z. The row

(a+ bt, c + dt)

is unimodular if and only if

(1) gcd(a, b, c, d) = 1
(2) Every prime divisor p of ad − bc divides gcd(a, c) gcd(b, d).

Proof. All statements are invariant under row changes

(P,Q) 7→ (Q,P )

(P,Q) 7→ (P + nQ,Q), n ∈ Z

Hence we may assume d = 0.
Then condition (2) reads as

p | bc ⇒ p | gcd(a, c)b

which is the same as
p | c ⇒ p | ab

Under condition (1) this is the criterion of Lemma 3.1 �

Example 3.1. The row (2 + 3t, 12) is unimodular. Indeed

(2 + 3t)(6− 9t− 4t2)− 12(1− 3t2 − t3) = t2

It is elementary, see Example 5.1.

Example 3.2. Let a, b be coprime integers. The rows

(a+ bt, a2), (a+ bt, ab), (a + bt, b2)

are unimodular by Lemma 3.1. They are equivalent, as one can see
from

(

1 0
c −t

)(

a+ bt
bc

)

=

(

a+ bt
ac

)

Example 3.3 (Zaremsky). The row (4t+ 7, 16) is elementary: one has
(

1 −t2

0 1

)(

1 0
2 1

)(

1 t−1

0 1

)(

1 0
−2 1

)(

4t+ 7
16

)

=

(

−1 + 2t−1

4t−1

)

and may then proceed as in Example 3.2.
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4. The matrices An and Bn

For a column

α =

(

a
b

)

we use the notation†

α# =
(

b −a
)

Clearly α#α = 0 and the matrix
(

1 0
0 1

)

+ αα# =

(

1 + ab −a2

b2 1− ab

)

fixes α and has determinant 1. Moreover
(

β#

−α#

)

(

α β
)

= det
(

α β
)

(

1 0
0 1

)

= αβ# − βα#

We work in the ring Z[t±1]. Let

θ = t− 1

For n ∈ Z let

ϕn =

(

θ
n

)

, ϕ#
n =

(

n −θ
)

Tn =

(

1 0
0 1

)

+ ϕn

(

1 0
)

=

(

t 0
n 1

)

An =

(

1 0
0 1

)

+ ϕnϕ
#
n

=

(

1 + nθ −θ2

n2 1− nθ

)

=

(

1− n + nt −1 + 2t− t2

n2 1 + n− nt

)

Bn =

(

1 0
0 1

)

+ ϕn−1ϕ
#
n

=

(

t 0
0 t

)

+ ϕnϕ
#
n−1

=

(

1 + nθ −θ2

n(n− 1) 1− (n− 1)θ

)

=

(

1− n + nt −1 + 2t− t2

n(n− 1) n− (n− 1)t

)

†If M is a free module of rank 2, then M ≃ M∨⊗Λ2M under v 7→ (w 7→ w∧ v).
Let M have the basis ei (i = 1, 2) with dual basis fi. Then e1 corresponds to
−f2(e1 ∧ e2) and e2 corresponds to f1(e1 ∧ e2).
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In particular

A0 =

(

1 −θ2

0 1

)

B0 =

(

1 −θ2

0 t

)

B1 =

(

t −θ2

0 1

)

One has the following relations.

Lemma 4.1. For n ∈ Z one has

An = t−1TnBn

Bn+1 = AnTn

Proof. The first claim is readily checked. Similar for the second claim
by inspecting

Bn+1 =

(

−n + (n+ 1)t −1 + 2t− t2

n(n+ 1) n+ 1− nt

)

�

Corollary 4.2. For n ∈ Z one has

An+1 = t−1Tn+1AnTn

Bn+1 = t−1TnBnTn

For n ≥ 1 one has

An = t−nTn · · ·T1A0T0 · · ·Tn−1

Bn = t1−nTn−1 · · ·T1B1T1 · · ·Tn−1

�

Since A0 and the Tn are triangular, we have

Corollary 4.3. For n ∈ Z the elements An, Bn of GL2(Z[t
±1]) are

elementary.

Let

ε =

(

1
0

)
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Lemma 4.4. One has

Tnε = ε+ ϕn

Tnϕn = tϕn

Anε = ε+ nϕn

Anϕn = ϕn

Bnε = ε+ nϕn−1

Bnϕn−1 = tϕn−1

Bnϕn = ϕn

Proof. Everything follows from the definitions of Tn, An, Bn and from
ϕ#
n ε = n (one may also consult Lemma 4.1). �

Corollary 4.5. For integers a, b, n the columns
(

a+ b(t− 1)
bn

)

,

(

a+
(

b+ an
)

(t− 1)
(

b+ an
)

n

)

are equivalent.

Proof. Apply An to aε+ bϕn. �

Here a particular case is a = −2, b = n. We consider this more
closely.
Let

σ : Z[t±1] → Z[t±1]

σ(t) = t−1

be the standard involution.

Lemma 4.6. Let

νn = −2ǫ+ nϕn =

(

−n− 2 + nt
n2

)

Then

Bnνn = −2ǫ− nϕn−2 =

(

n− 2− nt
−n(n− 2)

)

and
(

t−1 0
n− 2 −t

)

Bnνn = σ∗νn−2

Proof. The first claim follows from Lemma 4.4 and 2ϕn−1 = ϕn+ϕn−2.
The second claim is easily checked. �

Corollary 4.7. For n ∈ Z the columns νn and σ∗νn−2 are equivalent.

�
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5. Applications

Corollary 5.1. The columns

un =

(

(n + 1) + nt
n2

)

(n ∈ Z)

vn =

(

(n + 2) + nt
n2

)

(n ∈ 1 + 2Z)

wn =

(

(n + 1) + nt
2n2

)

(n ∈ Z)

are elementary.

Proof. The column un is the first column of A−n(−t) and therefore
elementary.
Next note that for n ∈ Z the columns vn and σ∗vn−2 are equivalent.

This follows from Corollary 4.7 by changing the signs of t and of the
first entry.
Therefore v2k+1 is equivalent to v1 (or σ∗v1) which is elementary.

Since 2wn = v2n the same argument shows that wn is equivalent to the
elementary element w0. �

Example 5.1. The row (2+3t, 12) is elementary, since (cf. Example 3.2)

(

1 0
4 −t

)(

2 + 3t
12

)

=

(

2 + 3t
8

)

is essentially w2.

Example 5.2. The row (4−3t, 9) is elementary, since it is essentially u3.
Here is another solution due to Bux:

(

1 t
0 1

)(

1 0
−2 1

)(

−t 1
0 t

)(

1 0
−2 1

)(

4− 3t
9

)

=

(

1
−2 − 3t

)

Example 5.3 (Zaremsky). The row

v11 =

(

13 + 11t
112

)

is elementary. See also Remark 6.3.



8 MARKUS ROST

6. Remarks on Bn

In this section we assume n ≥ 0. Let

Fn(t) =
tn+1 − 1

t− 1

Pn(t) =
dF

dt
Qn(t) = tn−1Pn(t

−1)

so that

Fn(t) = 1 + t + t2 + · · ·+ tn

Pn(t) = 1 + 2t + 3t2 + · · ·+ ntn−1

Qn(t) = n + (n− 1)t+ · · ·+ tn−1

The following computation is easily proved by induction:

Lemma 6.1. One has

TnTn−1 · · ·T1 =

(

tn 0
Pn 1

)

T1T2 · · ·Tn =

(

tn 0
Qn 1

)

�

By Corollary 4.2 one has

(1) tnBn+1 =

(

tn 0
Pn 1

)(

t −(1− t)2

0 1

)(

tn 0
Qn 1

)

Expanding the product on the right yields:

Corollary 6.2. One has

(2) (1− t)2Pn = 1− (n + 1)tn + ntn+1

and

(3) tn+1Pn +Qn − (1− t)2PnQn = tnn(n+ 1)

�

Remark 6.1. Here is a more symmetric variant of (1). The matrix

B̃n+1 =

(

t−1 0
0 1

)

Bn+1

=

(

n+ 1− nt−1 (1− t)(1− t−1)
n(n + 1) n+ 1− nt

)
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can be written as

B̃n+1 =

(

tn 0
0 1

)

B̂n+1

(

1 0
0 t−n

)

where

B̂n+1 =

(

1 0
tPn(t) 1

)(

1 (1− t)(1− t−1)
0 1

)(

1 0
t−1Pn(t

−1) 1

)

Remark 6.2. Relation (2) can be easily verified directly. Namely, in

(1− t)Fn = 1− tn+1

take derivatives

(1− t)Pn − Fn = −(n + 1)tn

and multiply with (1− t):

(1− t)2Pn − (1− tn+1) = −(n + 1)tn + (n+ 1)tn+1

An ad hoc verification of (3) however looks tiresome. I wonder
whether there is some better explanation for (3) (and for all of sec-
tion 4). See also Remark 7.2.

Remark 6.3. The fact that νn and σ∗νn−2 are equivalent (see Corol-
lary 4.7) is basically due to Zaremsky. The matrices

(

t −(1 − t)2

0 1

)

,

(

tn 0
Qn 1

)

appear (for n = 10, 8, 6, 4, 2) essentially in his notes on (13+11t, 112).
Instead of

L =

(

tn 0
Pn 1

)

Zaremsky used the modification

(

1 0
1− n t

)

L =

(

tn 0
Pn−1 + tn−1 t

)

which appears also in Lemma 4.6.
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7. Computations for (xn − yn)/(x− y)

In this section we look at things in homogeneous coordinates. We
start from scratch.
We work in the graded ring Z[x±1, y±1] with x, y of degree 1.
We fix an integer n. Let

f = fn =
xn − yn

x− y
=

n−1
∑

i=0

xiyn−i

By fx, fy we denote the derivatives of f with respect to x, y, respec-
tively.

Lemma 7.1. One has

(x− y)fx = nxn−1 − f(4)

(y − x)fy = nyn−1 − f(5)

yn − (x− y)2fx = xn−1
(

ny − (n− 1)x
)

(6)

xn − (x− y)2fy = yn−1
(

nx− (n− 1)y
)

(7)

xnfx + ynfy − (x− y)2fxfy = n(n− 1)xn−1yn−1(8)

Proof. (4) follows by taking the derivatives with respect to x in

(x− y)f = xn − yn

(4) yields

(x− y)2fx = (x− y)(nxn−1 − f)

= nxn − nyxn−1 − xn + yn

= yn − xn−1
(

ny − (n− 1)x
)

which is (6).
(5) and (7) follow now from f(y, x) = f(x, y).
Let g denote the left-hand side of (8). Using (6), (5) and the general

identity
xfx + yfy = (n− 1)f

for homogeneous functions of degree n− 1, one finds

g = xnfx +
(

yn − (x− y)2fx
)

fy

= xnfx + xn−1
(

ny − (n− 1)x
)

fy

= xn−1
(

xfx + yfy − (n− 1)(x− y)fy
)

= xn−1(n− 1)
(

f + nyn−1 − f
)

= xn−1(n− 1)nyn−1

�
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Corollary 7.2. For n ∈ Z the matrix

Cn =

(

yn−1
(

nx− (n− 1)y
)

−(x− y)2

n(n− 1)xn−1yn−1 xn−1
(

ny − (n− 1)x
)

)

in GL2(Z[x
±1, y±1]) is elementary. More specifically:

Cn = LMR

with

L =

(

1 0
fx yn−1

)

, M =

(

x −(x− y)2

0 y

)

, R =

(

xn−1 0
fy 1

)

Proof. One has

MR =

(

xn − (x− y)2fy −(x− y)2

yfy y

)

=

(

yn−1
(

nx− (n− 1)y
)

−(x− y)2

yfy y

)

using (7). From this one gets

LMR =

(

yn−1
(

nx− (n− 1)y
)

−(x− y)2

xnfx + ynfy − (x− y)2fxfy yn − (x− y)2fx

)

Now use (8) and (6). �

Remark 7.1. One also has

Cn = L′M ′R′

with

L′ =

(

1 0
fx yn

)

, M ′ =

(

1 −(x− y)2

0 1

)

, R′ =

(

xn 0
fy 1

)

Remark 7.2. It is unsatisfactory to establish (8) and Corollary 7.2 by
mere computations.
I wonder whether there is a geometric argument.
Corollary 7.2 perhaps indicates to look at certain vector bundles.

Maybe the variant Bn (in section 8) is useful here.
Note further that xn − yn defines the subscheme

µn ⊂ Gm = ProjZ[x±1, y±1]

The element fn defines (over Z[n−1]) the subscheme µn \ {1}.
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8. The matrices An and Bn in homogeneous form

Here are variants of Cn with entries of low degree.

Bn =

(

1 0
0 x1−n

)

Cn

(

y1−n 0
0 1

)

=

(

nx− (n− 1)y −(x− y)2

n(n− 1) ny − (n− 1)x

)

=

(

x 0
0 x

)

+

(

x− y
n

)

(n− 1, y − x)

=

(

y 0
0 y

)

+

(

x− y
n− 1

)

(n, y − x)

and

An =

(

1 0
0 x−1

)(

1 0
n y

)

Bn

=

(

1 0
0 x−1

)(

nx− (n− 1)y −(x− y)2

n2x −nx2 + (n+ 1)xy

)

= y

(

1 0
0 1

)

+

(

x− y
n

)

(n, y − x)

and

A′
n = Bn

(

x 0
n 1

)(

y−1 0
0 1

)

=

(

(n+ 1)xy − ny2 −(x− y)2

n2y ny − (n− 1)x

)(

y−1 0
0 1

)

= x

(

1 0
0 1

)

+

(

x− y
n

)

(n, y − x)

In homogeneous coordinates the matrices An, Bn read as follows
(

y 0
0 1

)

An(xy
−1)

(

1 0
0 y

)

=

(

(1− n)y + nx −(x− y)2

n2 (1 + n)y − nx

)

(

y 0
0 1

)

Bn(xy
−1)

(

1 0
0 y

)

=

(

(1− n)y + nx −(x− y)2

n(n− 1) ny + (1− n)x

)

and one has

An = An|x=t,y=1

Bn = Bn|x=t,y=1
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9. More remarks on Bn

Let
Θ = x− y

We invert Θ, that is we work now over

Z[x, y][
1

xy(x− y)
]

Remark 9.1. Geometrically, Θ is a parameter at 1 ∈ Gm. The new
base ring is the homogeneous coordinate ring of P1 \ {0, 1,∞}.

Let

ϕn =

(

Θ
n

)

Then (cf. Lemma 4.4)

Bnϕn−1 = xϕn−1

Bnϕn = yϕn

The ϕn generate the subspace generated by
(

Θ
0

)

,

(

0
1

)

With respect to these elements, Bn has the form
(

Θ 0
0 1

)−1

Bn

(

Θ 0
0 1

)

=

(

nx− (n− 1)y y − x
n(n− 1)(x− y) ny − (n− 1)x

)

Here all entries are of degree 1.
Consider

Ω =

(

1 0
Θ−1 1

)

One has
Ωϕn = ϕn+1

It follows that
Bn+1 = ΩBnΩ

−1

Since

B1 =

(

x −Θ2

0 y

)

=

(

1 Θ
0 1

)(

x 0
0 y

)(

1 Θ
0 1

)−1

one gets

Bn+1 =

(

Θ 0
1 Θ

)n(

1 Θ
0 1

)(

x 0
0 y

)(

1 Θ
0 1

)−1(

Θ 0
1 Θ

)−n
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