COMPUTATION OF SOME ESSENTIAL DIMENSIONS

MARKUS ROST

Abstract

In these notes we show that the essential dimension (in the sense of [5]) of PGL_{4} is equal to 5 .
Along the way we discuss (in a rather unsystematic manner) generalities on essential dimension and degree formulas.

Contents

Abstract 1

1. Notations and conventions 2
2. Places 2
3. Picard groups 2
4. Ramification, Specialization, and Essential Dimension 3
5. Side remarks 4
6. The class Θ 5
7. A side remark 7
8. The invariant ρ 8
9. The invariant Q 12
10. The invariant \hat{Q} 13
11. The functor M_{4} 13
12. Computation of ed $\left(\mathrm{PSO}_{6}\right)$ 15
13. Presentations of M and degree formulas 17
14. Complements 18
References 19

Most of the text dates back to August 2000.
I am thankful to V. Chernousov for comments.
There is now the preprint "Essential p-dimension of PGL $\left(p^{2}\right)$ " by A. Merkurjev (Nov. 2008, http://www.math.uni-bielefeld.de/LAG/man/313.html).

Merkurjev also hinted to a serious gap in the proof of Lemma 11.3. In December 2008 I added Lemma 14.1 and complemented the proofs of Lemma 11.3 and Lemma 12.3.

[^0]
1. Notations and conventions

We work over a ground field k. A k-variety is a separated scheme of finite type over k. Let F / k be a finitely generated field extension. By a model of F / k we understand an irreducible k-variety X together with an isomorphism $k(X) \simeq F$.

From section 6 on we assume all fields to be of characteristic $\neq 2$. From section 11 on we assume all fields to contain a square root of -1 .

2. Places

The natural frame work for many of our considerations is the category of fields over k with the k-places as morphisms. In this section we recall some basic notions.

For a valuation v on a field F we use the (mostly standard) notations

$$
\mathfrak{m}_{v} \subset \mathcal{O}_{v} \subset F, \kappa_{v}=\mathcal{O}_{v} / \mathfrak{m}_{v}, U_{v}=\mathcal{O}_{v}^{*} \subset F^{*}, U_{v}^{[1]}=1+\mathfrak{m}_{v} \subset U_{v}
$$

for the valuation ring and its maximal ideal, for the residue field, for the group of units, and for the group of 1-units, respectively. Valuations on F with the same valuation ring will be identified. If k is a subfield of F, then by a valuation on F / k (or by a k-valuation of F) we understand a valuation v with $k \subset \mathcal{O}_{v}$. We write $\mathcal{V}(F / k)$ for the set of all k-valuations on F. If F / k is a finitely generated field extension, then there is a natural identification

$$
\mathcal{V}(F / k)=\lim _{\leftrightarrows} X
$$

where X runs through the proper models of F / k.
Let E, F be field extensions of k. By a k-place $\varphi: F \rightsquigarrow E$ we understand a pair $\left(v_{\varphi}, \alpha_{\varphi}\right)$ where v_{φ} is a valuation on F / k and $\alpha_{\varphi}: \kappa_{v_{\varphi}} \rightarrow E$ is a k-homomorphism. We also use the more geometric notation $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ for k-places and write $\left(v_{f}, \alpha_{f}\right)$ for the corresponding pair. A k-place $f=\left(v_{f}, \alpha_{f}\right)$ is given by a (uniquely determined) family of k-morphisms

$$
f_{X}: \operatorname{Spec} E \rightarrow X
$$

with X running through the proper models of F / k and with $f_{X}=g \circ f_{X^{\prime}}$ for every morphism $g: X^{\prime} \rightarrow X$ of models of F / k. For any X there exist a proper model Y of E such that f_{X} extends to a (uniquely determined) k-morphism

$$
f_{Y, X}: Y \rightarrow X
$$

Passing to the limits we obtain a map

$$
f^{*}: \mathcal{V}(E / k) \rightarrow \mathcal{V}(F / k)
$$

This map sends a valuation v on E to the composite valuation of the valuations v_{f} and $v \mid \kappa_{v_{f}}$.

Let $d \geq 0$ and let $\operatorname{tr} \cdot \operatorname{deg}(E / k) \leq d$, $\operatorname{tr} \cdot \operatorname{deg}(F / k) \leq d$. For a place f : Spec $E \rightsquigarrow$ Spec F we define its d-degree $\operatorname{deg}_{d}(f)$ by $\operatorname{deg}_{d}(f)=[E: F]$ if f is an inclusion of fields of transcendece degre d, and put $\operatorname{deg}_{d}(f)=0$ otherwise.

3. Picard groups

Let A be an abelian group. For a finitely generated field extension F / k we put

$$
\mathbf{P}(F / k, A)=\underset{X}{\lim }(\operatorname{Pic}(X) \otimes A)
$$

where X runs through the proper models of F / k. For a k-place $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ the maps $f_{Y, X}$ define a pullback map $f^{*}: \mathbf{P}(F / k, A) \rightarrow \mathbf{P}(E / k, A)$.

One has

$$
\mathbf{P}(k(t) / k, A)=\operatorname{Pic}\left(\mathbf{P}^{1}\right) \otimes A=A
$$

Let $d=\operatorname{tr} \cdot \operatorname{deg}(F / k)$ and let $u_{i} \in \mathbf{P}(F / k, \mathbf{Z} / n), i=1, \ldots, d$. Then we define

$$
e\left(u_{1}, \ldots, u_{d}\right) \in \mathbf{Z} / n
$$

as follows. Choose a proper model X of F / k and line bundles L_{i} on X which represent the u_{i} and consider the vector bundle $V=L_{1} \oplus \cdots \oplus L_{d}$. Let

$$
\varepsilon: \mathrm{CH}_{d}(V) \simeq \mathrm{CH}_{0}(X) \xrightarrow{\text { deg }} \mathbf{Z}
$$

where the first map is given by homotopy invariance and the second map is the degree map for 0-cycles. We put

$$
e\left(u_{1}, \ldots, u_{d}\right)=\varepsilon([\text { zero section }]) \quad(\bmod n) .
$$

This number does not depend on the choices made and is multi-linear in the u_{i}. Reference ??? Probably in [2].

Remark: For smooth X, the numbers $e\left(u_{1}, \ldots, u_{d}\right)$ are just given by intersecting divisors. This is all we need in the current version of this text, where we make free use of resolution of singularities. In a future version we plan to work with arbitrary varieties and then it will be necessary to have the numbers $e\left(u_{1}, \ldots, u_{d}\right)$ also for non-smooth X.

4. Ramification, Specialization, and Essential Dimension

Let $x \in K_{1} F / n=F^{*} /\left(F^{*}\right)^{n}$.
If v is a valuation on F, we say that x is unramified in v if x is in the subgroup $U_{v} /\left(U_{v}\right)^{n} \subset F^{*} /\left(F^{*}\right)^{n}$. In this case we define the specialization

$$
x(v) \in K_{1} \kappa_{v} / n
$$

of x in v as the image of x under $U_{v} /\left(U_{v}\right)^{n} \rightarrow \kappa_{v}^{*} /\left(\kappa_{v}^{*}\right)^{n}$.
If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a place, we say that x is unramified in f, if x is unramified in v_{f}. In this case we put

$$
f^{*}(x)=\left(\alpha_{f}\right)_{*}\left(x\left(v_{f}\right)\right) \in K_{1} E / n .
$$

We extend these standard considerations to the Milnor K-ring. If v is a valuation on F we define its Milnor K-ring by

$$
K_{*}^{M}(v)=K_{*}^{M} F /\left(1+\mathfrak{m}_{v}\right) \cdot K_{*}^{M} F .
$$

In the case of discrete valuations of rank 1 this ring has been considered in [1], [3, remark at the end of p. 323], [6]. In any case there is a natural injection

$$
\begin{aligned}
K_{*}^{M} \kappa_{v} & \rightarrow K_{*}^{M}(v), \\
\left\{\bar{u}_{1}, \ldots, \bar{u}_{n}\right\} & \mapsto \overline{\left\{u_{1}, \ldots, u_{n}\right\}} .
\end{aligned}
$$

Let A be an abelian group. For $x \in\left(K_{*}^{M} F\right) \otimes A$ we denote by $x(v)$ its image in $K_{*}^{M}(v)$. If $x(v)$ belongs to the subgroup $K_{*}^{M} \kappa_{v}$, we say that x is unramified in v and call $x(v)$ its specialization. These notions extend to places $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ in an obvious way.

In the following we consider various covariant functors $F \mapsto M(F)$ from the category of fields F / k to sets. These functors will be subfunctors of $F \mapsto\left(K_{*}^{M} F\right) \otimes A$
for an appropriate abelian group A. They have the following property: If $x \in M(F)$ is unramified in v (as an element of $\left(K_{*}^{M} F\right) \otimes A$), then $x(v)$ is in $M\left(\kappa_{v}\right)$. A pair (F, x) with $x \in M(F)$ is called versal for M, if for any E / k and $y \in M(E)$ there exists a place $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ such that x is unramified in f and $y=f^{*}(x)$. (This definition is tentative.) The essential dimension of M is the minimum of the transcendence degrees $\operatorname{tr} . \operatorname{deg}(F / k)$ for versal pairs (F, x).

Later we consider also functors of the form $M(F)=H^{1}(F, G)$ where G is linear algebraic group over k. For the notion of essential dimension of these functors, see [5].

5. Side remarks

The material of this section will not be used in later sections.
Problem. For a linear algebraic group G over k let $M_{G}(F)=H^{1}(F, G)$. Give a neat definition of $M_{G}(v)$, in analogy with $K_{*}^{M}(v)$. Describe $M_{G}(v)$ using Bruhat-Tits theory.

Here is a further type of functors for which the notion of essential dimension is meaningful (these will not be considered later). Let $u \in K_{n}^{M} k / p$ and define $M_{u}(F) \subset\{*\}$ to be nonempty if and only if $u_{F}=0$. In this case ed $\left(M_{u}\right)$ should be defined as the minimal transcendence degree of a generic splitting field of u. Recent considerations show that for a nontrivial symbol u one may expect $\operatorname{ed}\left(M_{u}\right)=p^{n}-1$. This can be proven for $p=2$ or $n \leq 3$. In general one does not even know whether $\operatorname{ed}\left(M_{u}\right)<\infty$.

I don't know a good definition of functors on fields which is appropriate for the notion of essential dimension and covers all known examples. One feature appearing in all examples is the existence of a pair of morphisms $X_{1} \rightrightarrows X_{0}$ such that the set of all F-rational points $X_{0}(F)$ parametrizes all elements of $M(F)$ (let's say by a function $x \mapsto \alpha(x))$ and such that if $\alpha(x)=\alpha\left(x^{\prime}\right)$ then there exist $y \in X_{1}(F)$ mapping to $\left(x, x^{\prime}\right)$. Moreover, for any $z \in M(F)$ and any open subset $U \subset X_{0}$ one may find $x \in U(F)$ with $\alpha(x)=z$.

In some cases one can compute essential dimensions by ramification methods. For instance, one concludes $\operatorname{ed}\left(\mathrm{PGL}_{2}\right) \geq 2$ from the fact that the quaternion algebra $Q(s, t)$ over $k((s))((t))$ is doubly ramified. One may try to define a notion of "essential valuation dimension" of M related to ramifications over complete valuation rings. Here is a tentative definition. Let F / k be a field extension, let $F_{n}=F\left(\left(t_{1}\right)\right) \cdots\left(\left(t_{n}\right)\right)$, and let v_{n} be the valuation of F_{n} / F. Let us say that $x \in M\left(F_{n}\right)$ is totally ramified, if for any subfield $F \subset E \subset F_{n}$ such that x is in the image of $M(E) \rightarrow M\left(F_{n}\right)$, the rank of $v_{n} \mid E$ is n. Let us define $\operatorname{evd}(M)$ as the maximal n for which there exist F and a totally ramified element $x \in M\left(F_{n}\right)$.

Certainly one has evd \leq ed. Here is an example with $\operatorname{evd}(M)<\operatorname{ed}(M)$ (without proof): Let p be a prime with char $k \neq p$, let l / k be a field extension of degree p and let

$$
M(F)=N_{F \otimes l / F}\left(K_{1}(F \otimes l) / p\right) \subset K_{1} F / p
$$

be the "group of norms from l / k in K_{1} / p ". One finds $\operatorname{ed}(M)=p-1$ and $\operatorname{evd}(M)=$ 1.

Other computations are $\operatorname{evd}\left(\mathrm{PGL}_{2}\right)=2$ and, at least if char $k \neq 2$ and -1 is a square, $\operatorname{evd}\left(\mathrm{PGL}_{4}\right)=4$.

Problem. Give a neat definition of "essential valuation dimension" (or whatever you want to name it).

6. The class Θ

For a field F / k let

$$
M_{0}(F)=\left\{\left(x_{1}, x_{2}\right) \in K_{1} F / 2 \oplus K_{1} F / 2 \mid x_{1} x_{2}=0\right\}
$$

Thus an element $x=\left(x_{1}, x_{2}\right)$ of $M_{0}(F)$ is given by a pair of elements $a, b \in F^{*}$ such that the quaternion algebra $Q(a, b)$ is split.

Elements in $K_{1} F / 2$ will be denoted by $\{a\}, a \in F^{*}$ and $\{a, b\} \in K_{2} F / 2$ denotes the product of $\{a\},\{b\}$.
Proposition 6.1. For finitely generated fields F / k and for elements $x \in M_{0}(F)$ there exist unique elements $\Theta(x) \in \mathbf{P}(F / k, \mathbf{Z} / 2)$ such that:

- (Functoriality) If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, and if $x \in M_{0}(F)$ is unramified in f, then

$$
f^{*}(\Theta(x))=\Theta\left(f^{*}(x)\right)
$$

- (Normalization) Let $F_{u}=k(t)$ and $x_{u}=(\{t\},\{1-t\})$. Then

$$
\Theta\left(x_{u}\right) \in \mathbf{P}\left(F_{u} / k, \mathbf{Z} / 2\right)=\mathbf{Z} / 2
$$

is the nontrivial element.
We denote the generator of $\mathbf{P}\left(F_{u} / k, \mathbf{Z} / 2\right)$ by $[*]$.
Proof of uniqueness of Θ. If F is finite, then $\mathbf{P}(F / k, \mathbf{Z} / 2)=0$. Hence $\Theta(x)=0$ in this case and we may assume that F is infinite. Then for $x=(\{a\},\{b\}) \in M_{0}(F)$ there exist $u, v \in F^{*}$ with $b=u^{2}\left(1-a v^{2}\right)$. Let $f: \operatorname{Spec} F \rightsquigarrow \operatorname{Spec} F_{u}$ be the place with $f^{*}(t)=a v^{2}$. Then x_{u} is unramified in f and $f^{*}\left(x_{u}\right)=x$. By functoriality one must have $\Theta(x)=f^{*}([*])$.

Along the way have proved that $\left(F_{u}, k_{u}\right)$ is versal for M_{0}, at least for infinite k.
Lemma 6.2. Let X be a smooth proper model of F / k and let

$$
f, f^{\prime}: X \rightarrow \mathbf{P}^{1}
$$

be morphisms with $f^{*}\left(x_{u}\right)=f^{\prime *}\left(x_{u}\right)$. Then the two maps

$$
f^{*}, f^{\prime *}: \operatorname{Pic}\left(\mathbf{P}^{1}\right) / 2 \rightarrow \operatorname{Pic}(X) / 2
$$

coincide.
Proof. Put $x=\left(x_{1}, x_{2}\right)=f^{*}\left(x_{u}\right)=f^{\prime *}\left(x_{u}\right)$. For the divisors of the components of x we have

$$
\begin{aligned}
\operatorname{div}\left(x_{1}\right) & =f^{*}[0]-f^{*}[\infty] \\
\operatorname{div}\left(x_{2}\right) & =f^{*}[1]-f^{*}[\infty]
\end{aligned}
$$

in $\bigoplus_{z \in X^{(1)}} \mathbf{Z} / 2$ and similarly for f^{\prime}. Hence

$$
f^{*}[\infty]=\sum_{\substack{z \in X^{(1)} \\ \partial_{z}\left(x_{1}\right)=\partial_{z}\left(x_{2}\right) \neq 0}}[z] \in \bigoplus_{z \in X^{(1)}} \mathbf{Z} / 2
$$

where $\partial_{z}: K_{1} F / 2 \rightarrow K_{0} \kappa(z) / 2$ is the residue map at z. This expresses $f^{*}[\infty]$ entirely in terms of x, and by the same argument for f^{\prime} we get $f^{*}[\infty]=f^{\prime *}[\infty]$.

To prove the existence of the class Θ, we have to show that for any F and $x=\left(x_{1}, x_{2}\right) \in M_{0}(F)$ and any two places $f, f^{\prime}: \operatorname{Spec} F \rightsquigarrow \operatorname{Spec} F_{u}$ with $x=$ $f^{*}\left(x_{u}\right)=f^{\prime *}\left(x_{u}\right)$ one has $f^{*}([*])=f^{\prime *}([*])$. Assuming resolution of singularities, this follows from Lemma 6.2, by extending f, f^{\prime} to morphisms $X \rightarrow \mathbf{P}^{1}$ on a smooth model of F / k.

I am pretty sure that one can avoid here resolution of singularities by using instead canonical flatening [4]. Anyway, there is a simpler direct way by investigating the possible choices f, f^{\prime} more closely.
Lemma 6.3. Let $t, t^{\prime} \in F^{*}$ with $t \neq t^{\prime}$ and assume $\{t\}=\left\{t^{\prime}\right\}$ and $\{1-t\}=\left\{1-t^{\prime}\right\}$ in $K_{1} F / 2$. Then there exist $\alpha, \beta \in F^{*}$ with $1 \neq \alpha^{2} \neq \beta^{2} \neq 1$ such that

$$
t=\frac{1-\beta^{2}}{\alpha^{2}-\beta^{2}}, \quad t^{\prime}=\alpha^{2} \frac{1-\beta^{2}}{\alpha^{2}-\beta^{2}}
$$

Proof. By assumption we have $t^{\prime}=t \alpha^{2}$ and $1-t^{\prime}=(1-t) \beta^{2}$ for some $\alpha, \beta \in F^{*}$. Hence $1-t \alpha^{2}=(1-t) \beta^{2}$ and the claim is immediate.

Let $P \rightarrow{\underset{\tilde{P}}{ }}^{2}$ be the blow up in the 4 points $[0,0,1],[0,1,0],[1,0,0]$, and $[1,1,1]$. Let further $\tilde{P} \rightarrow \mathbf{P}^{2}$ be the blow up in the 7 points $[0,0,1],[0,1,0],[1,0,0]$, and $[\pm 1, \pm 1,1]$.
Lemma 6.4. The rational maps

$$
\begin{gathered}
\mathbf{P}^{2} \xrightarrow{g} \mathbf{P}^{2} \xrightarrow{h} \mathbf{P}^{1} \times \mathbf{P}^{1}, \\
g([\alpha, \beta, 1])=\left[\alpha^{2}, \beta^{2}, 1\right], \\
h([a, b, 1])=([1-b, a-b],[a(1-b), a-b])
\end{gathered}
$$

extend to everywhere defined morphisms

$$
\tilde{P} \xrightarrow{\bar{g}} P \xrightarrow{\bar{h}} \mathbf{P}^{1} \times \mathbf{P}^{1} .
$$

Proof. The verification is left to the reader.
Let $\pi, \pi^{\prime}: \tilde{P} \rightarrow \mathbf{P}^{1}$ be given by $\bar{h} \circ \bar{g}$ followed by the projections. Note that $\pi^{*}\left(x_{u}\right)=\pi^{\prime *}\left(x_{u}\right) \in M_{0}(k(\tilde{P})) / 2$. By Lemma 6.2 we find that the two maps

$$
\pi^{*}, \pi^{\prime *}: \operatorname{Pic}\left(\mathbf{P}^{1}\right) / 2 \rightarrow \operatorname{Pic}(\tilde{P}) / 2
$$

coincide. (Of course one may check this also directly).
Proof of existence of Θ. We have to show that for any F and $x=\left(x_{1}, x_{2}\right) \in M_{0}(F)$ and any two places $f, f^{\prime}: \operatorname{Spec} F \rightsquigarrow \operatorname{Spec} F_{u}$ with $x=f^{*}\left(x_{u}\right)=f^{\prime *}\left(x_{u}\right)$ one has $f^{*}([*])=f^{*}([*])$.

By Lemma 6.3 there exist a morphism $\hat{f}: \operatorname{Spec} F \rightarrow \tilde{P}$ such that $f=\pi \circ \hat{f}$ and $f^{\prime}=\pi^{\prime} \circ \hat{f}$. The claim follows now from $\pi^{*}=\pi^{\prime *}$ on $\operatorname{Pic}\left(\mathbf{P}^{1}\right) / 2$.

The proof of Proposition 6.1 is now complete. The functoriality of Θ can also be described in the ramified situation:

Lemma 6.5. If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, and if $x \in M_{0}(F)$ is ramified in f, then $f^{*}(\Theta(x))=0$.
Proof. Indeed, let $g:$ Spec $F \rightsquigarrow \operatorname{Spec} F_{u}$ be a place with $x=g^{*}\left(x_{u}\right)$. If x is ramified in f, then x_{u} is ramified in $g \circ f$ and therefore $g \circ f$ must map to one of $0,1, \infty$. But then $(g \circ f)^{*}([*])=0$.

The functor M_{0} can be described in a more symmetric way as follows. For a field F / k let

$$
M_{0}^{\prime}(F)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\left(K_{1} F / 2\right)^{3} \mid x_{1}+x_{2}+x_{3}=\{-1\}, x_{i} x_{j}=0 \text { for } i \neq j\right\}
$$

Then each of the projections $M_{0}^{\prime}(F) \rightarrow M_{0}(F),\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{i}, x_{j}\right), i \neq j$, is a bijection. If v is a valuation of rank 1 and if $x=\left(x_{1}, x_{2}, x_{3}\right)$ is ramified in v, then exactly one of the x_{i} is unramified in v and for this component one has $x_{i}(v)=0$.

Let $\Sigma(F)$ be the set of all $\left(x_{1}, x_{2}, x_{3}\right) \in M_{0}^{\prime}(F)$ with $x_{i}=0$ for at least one i. If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, and if $x \in \Sigma(F)$ is unramified in f, then $f^{*}(x) \in \Sigma(E)$.

These remarks and Lemma 6.5 suggest the following definition. Let $\bar{M}_{0}(F)$ be the quotient of $M_{0}^{\prime}(F)$ by collapsing the set $\Sigma(F)$ to a point (denoted by 0). Define the map

$$
f^{*}: \bar{M}_{0}(F) \rightarrow \bar{M}_{0}(E)
$$

on the unramified elements of $M_{0}(F)$ as before (and passing to the quotient) and sending all other elements to 0 . Then we have

Proposition 6.6. For finitely generated fields F / k and for elements $x \in \bar{M}_{0}(F)$ there exist unique elements $\bar{\Theta}(x) \in \mathbf{P}(F / k, \mathbf{Z} / 2)$ such that:

- (Functoriality) If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, then

$$
f^{*}(\bar{\Theta}(x))=\bar{\Theta}\left(f^{*}(x)\right)
$$

- (Normalization) Let $F_{u}=k(t)$ and $x_{u}=(\{t\},\{1-t\})$. Then

$$
\bar{\Theta}\left(x_{u}\right) \in \mathbf{P}\left(F_{u} / k, \mathbf{Z} / 2\right)=\mathbf{Z} / 2
$$

is the nontrivial element.

7. A side remark

In the later sections we will meet the following construction. Let $x \in K_{1} F / 2$ and let X be a proper smooth model of F / k. We choose a function $a \in F^{*}$ with $x=\{a\}$ and write

$$
\operatorname{div}(a)=A+2 V
$$

where A is a divisor with odd multiplicities (the latter means $A \in \bigoplus_{z \in X^{(1)}}(1+2 \mathbf{Z})$).
At this point we just want give some comments on this situation.
Let $\pi: Y \rightarrow X$ be the normal closure of X in $F[t] /\left(t^{2}-a\right)$. Then π is etale of degree 2 outside its locus of ramification Δ. Since A has odd multiplicities, one has $\operatorname{supp}(A) \subset \Delta$. Further, π defines a μ_{2}-torsor over $X \backslash \Delta$ and therefore a line bundle L on $X \backslash \Delta$ via $\mu_{2} \rightarrow \mathbf{G}_{\mathrm{m}}$. The class of this line bundle and the class of V in $\operatorname{Pic}(X \backslash \Delta)=\mathrm{CH}^{1}(X \backslash \Delta)$ coincide.

The situation can be made more clean as follows. Assume that A is a divisor with all multiplicities equal to 1 and that A is a smooth divisor with normal crossings (this can be arranged using resolution of singularities). After blowing up the crossings, we may even assume that A is a smooth subvariety of codimension 1 (with no crossings). Then π is flat and the class of V in $\operatorname{Pic}(X)$ is given by the class of the line bundle $\bar{L}=\pi_{*}\left(\mathcal{O}_{Y}\right) / \mathcal{O}_{X}$.

In the following we will often use resolution of singularities in order to talk about the divisor V. Very probably this can be replaced by using flatening theorems [4]. One arranges that π is flat and then works with the line bundle \bar{L} instead of V.

8. The invariant ρ

Let $z_{1}, z_{2} \in K_{1} k / 2$ be fixed elements. We denote by k_{1}, k_{2} the corresponding quadratic extensions of k. Further let $K=k_{1} \otimes k_{2}$ and let k_{3} be the third quadratic subextension of K / k. We define $I=I\left(z_{1}, z_{2}\right) \subset K_{0} k=\mathbf{Z}$ as the subgroup generated by the norms from the k_{i}. Thus $I=2 \mathbf{Z}$ if K is a field, and $I=\mathbf{Z}$ otherwise.

For a field F / k let

$$
\begin{gathered}
M_{1}(F) \subset\left(K_{1} F / 2\right)^{4} \\
M_{1}(F)=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \mid x_{1} x_{2}=y_{1} y_{2}=0, x_{i}+y_{i}+z_{i}=0 \text { for } i=1,2\right\} .
\end{gathered}
$$

Our aim is to define for fields F / k with $\operatorname{tr} \cdot \operatorname{deg}(F / k) \leq 2$ and for $\omega \in M_{1}(F)$ an invariant $\rho(\omega) \in \mathbf{Z} / I$.

We study a versal parameter space for elements in M_{1} in some detail. Let c, $d \in k^{*}$ with $z_{1}=\{c\}$ and $z_{2}=\{d\}$.

Let

$$
\begin{gathered}
T=T\left(z_{1}, z_{2}\right) \subset \mathbf{P}^{1} \times \mathbf{P}^{2} \\
T=\left\{([s, t],[x, y, z]) \mid x^{2} s-y^{2} t c-z^{2}(s-t) d=0\right\}
\end{gathered}
$$

Lemma 8.1. T is a smooth proper irreducible surface. The tupel

$$
\omega_{T}=(\{t / s\},\{c t / s\},\{1-(t / s)\},\{d(1-(t / s))\})
$$

is an element of $M_{1}(k(T))$. For any F / k and any $\omega \in M_{1}(F)$ there is a k-place $f: \operatorname{Spec} F \rightsquigarrow \operatorname{Spec} k(T)$ with $x=f^{*}\left(\omega_{T}\right)$.

Proof. The verification is left to the reader.
Let further $\tilde{T}=\tilde{T}\left(z_{1}, z_{2}\right) \rightarrow T$ be the blow up in the 3 points $P_{1}=([1,1],[0,0,1])$, $P_{2}=([1,0],[0,1,0]), P_{3}=([0,1],[1,0,0])$. Lemma 8.1 remains valid with T replaced by \tilde{T}.
Lemma 8.2. There exist smooth 1-dimensional closed subvarieties $D_{1}, D_{2}, D_{3} \subset \tilde{T}$ such that:

- There are the following equalities of $(\bmod 2)$-divisors

$$
\begin{aligned}
\operatorname{div}(\{t / s\}) & =D_{2}+D_{3}, \\
\operatorname{div}(\{1-(t / s)\}) & =D_{1}+D_{3} .
\end{aligned}
$$

- There is a k-morphism $D_{i} \rightarrow \operatorname{Spec} k_{i}$ for $i=1,2,3$.
- The D_{i} are pairwise disjoint.
- For the self intersection number of D_{i} one has $D_{i} \cdot D_{i} \equiv 4 \bmod 8$.

Proof. First compute the divisors of $\{t / s\}$ and $\{1-(t / s)\}$ on T. Consider the three divisors

$$
\begin{aligned}
& \bar{D}_{2}=\{t=0\}, \\
& \bar{D}_{3}=\{s=0\}, \\
& \bar{D}_{1}=\{t=s\} .
\end{aligned}
$$

One has

$$
\begin{aligned}
\operatorname{div}_{T}(\{t / s\}) & =\bar{D}_{2}-\bar{D}_{3} \\
\operatorname{div}_{T}(\{1-(t / s)\}) & =\bar{D}_{1}-\bar{D}_{3}
\end{aligned}
$$

Each of the divisors \bar{D}_{i} consists geometrically of two lines. Their intersection consists of one point P_{i} at which they meet transversally. The two lines of \bar{D}_{i} are defined over k_{i} and permuted by the Galois action of k_{i} / k. Let $D_{i} \subset \tilde{T}$ be the proper transforms of the \bar{D}_{i}. After the blow up, the two lines will be separated, and the D_{i} are smooth. The preimage of \bar{D}_{i} under the blow up is $D_{i}+2 E_{i}$ where E_{i} is the exceptional fiber over the intersection point P_{i}. To compute the self intersection number of D_{i}, note first that $\bar{D}_{i} \cdot \bar{D}_{i}=0$, since \bar{D}_{i} is the preimage of a point under the projection $T \rightarrow \mathbf{P}^{1}$. Thus $\left(D_{i}\right)^{2}=\left(\bar{D}_{i}-2 E_{i}\right)^{2}=\bar{D}_{i}^{2}-4 \bar{D}_{i} \cdot E_{i}+4 E_{i}^{2}=0-0-4=-4$.

In the following we make free use of resolution of singularities in dimension 2 (for simplicity).

Let $\operatorname{tr} \cdot \operatorname{deg}(F / k)=2$, let $\omega=\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in M_{1}(F)$, and choose $a_{1}, a_{2} \in F^{*}$ with $x_{1}=\left\{a_{1}\right\}$ and $x_{2}=\left\{a_{2}\right\}$. Let X be a smooth proper model of F / k. We say that X is ω-regular if there exist integral divisors $C_{i}, V, W \subset X$ such that:

$$
\begin{aligned}
\operatorname{div}\left(a_{1}\right) & =C_{2}+C_{3}+2 V \\
\operatorname{div}\left(a_{2}\right) & =C_{1}+C_{3}+2 W .
\end{aligned}
$$

and such that there exist morphisms supp $\left(C_{i}\right) \rightarrow \operatorname{Spec} k_{i}$.
ω-regular models exist: By resolution of singularities we find X such that there exist a morphism $f: X \rightarrow \tilde{T}$ with $\omega=f^{*}\left(\omega_{T}\right)$. Then we may take $C_{i}=f^{*}\left(D_{i}\right)$.

Here we use the pull back maps for the cycle complexes as defined in [6]. For a morphism $f: X \rightarrow Y$ with Y smooth there exist in particular pull back maps fitting into a commutative diagram

The maps f^{*} depend in general on the choice of a coordination of the tangent bundle of Y, see [6, Section 12].

Note also that if $X^{\prime} \rightarrow X$ is a smooth proper model F / k lying over an ω-regular model X, then X^{\prime} is ω-regular as well. For that one may just take the preimages of the corresponding divisors.

Given an ω-regular model X we put

$$
\rho(\omega)=V \cdot W \quad \bmod I
$$

This class does not depend on the choice of the C_{i}, V, W. Namely let $C_{i}^{\prime}, V^{\prime}, W^{\prime}$ be another choice. Then V and V^{\prime} differ by a sum of divisors which are defined over one of k_{2}, k_{3}. Hence every component of the intersection of $V^{\prime}-V$ with any divisor will be defined over one of k_{2}, k_{3} and therefore of even degree (if k_{2}, k_{3} are fields). Similarly for W and W^{\prime}.

It follows also that $\rho(\omega)$ does not depend on the choice of X. Namely using resolution of singularities, any two models are covered by a smooth model.

If the C_{i} are additionally pairwise disjoint, we have

$$
2 V \cdot 2 W=\left(C_{2}+C_{3}\right) \cdot\left(C_{1}+C_{3}\right)=C_{3}^{2}
$$

and therefore

$$
\rho(\omega)=\frac{C_{3}^{2}}{4} \quad \bmod I
$$

By Lemma 8.2 this shows that $\rho\left(\omega_{T}\right)=1 \bmod I$. Hence $\rho\left(\omega_{T}\right)$ is nontrivial if K is a field.

Proposition 8.3 (Degree formula). Let $\operatorname{tr} \cdot \operatorname{deg}(E / k) \leq 2$, $\operatorname{tr} \cdot \operatorname{deg}(F / k) \leq 2$, let

$$
f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F
$$

be a k-place, and let $\omega \in M_{1}(F)$ be unramified in f. Then

$$
\rho\left(f^{*} \omega\right)=\operatorname{deg}_{2}(f) \rho(\omega) \quad \bmod I
$$

Proof. The intersection number of the pullback of divisors V_{j} under a generically finite map f is the intersection number of the V_{j} times the degree of f.

From the nontriviality of $\rho\left(\omega_{T}\right)$ one finds:
Corollary 8.4. If K is a field, then ω_{T} is not defined over a subfield of $k(T)$ of transcendence degree <2.

Corollary 8.5. If K is a field, then $\operatorname{ed}\left(M_{1}\right)=2$.
The invariant ρ has the following symmetry:
Lemma 8.6. $\rho\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\rho\left(y_{1}, x_{1}, y_{2}, x_{2}\right)$.
Proof. Let

$$
\begin{aligned}
\tau: M_{1}(F) & \rightarrow M_{1}(F), \\
\left(x_{1}, y_{1}, x_{2}, y_{2}\right) & \mapsto\left(y_{1}, x_{1}, y_{2}, x_{2}\right) .
\end{aligned}
$$

τ is an automorphism. There exist a place

$$
\bar{\tau}: \operatorname{Spec} k(T) \rightsquigarrow \operatorname{Spec} k(T)
$$

with $\bar{\tau}^{*}\left(\tau\left(\omega_{T}\right)\right)=\omega_{T}$. Assume that K is a field. Since $\rho\left(\omega_{T}\right) \neq 0$, the degree formula shows that $\rho\left(\tau\left(\omega_{T}\right)\right) \neq 0$. Thus in $\mathbf{Z} / 2$ we must have $\rho\left(\omega_{T}\right)=\rho\left(\tau\left(\omega_{T}\right)\right)$.

The degree formula shows also that $\bar{\tau}$ is of odd degree. One may choose $\bar{\tau}$ as an automorphism of $k(T)$.

One may check the symmetry also directly: If $x_{1}=\left\{a_{1}\right\}$ and $x_{2}=\left\{a_{2}\right\}$, then $y_{1}=\left\{b_{1}\right\}$ and $y_{2}=\left\{b_{2}\right\}$ with $b_{1}=c a_{1}$ and $b_{2}=d a_{2}$. With these choices one has $\operatorname{div}\left(b_{i}\right)=\operatorname{div}\left(a_{i}\right)$.

The following proposition means that $\rho\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ is already determined by $\left(y_{1}, x_{1}, y_{2}+x_{2}\right)$.

Proposition 8.7. Let $\omega=\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in M_{1}(F)$ and let $w \in K_{1} F / 2$ with $x_{1} w=y_{1} w=0$. Then $\omega_{w}=\left(x_{1}, y_{1}, x_{2}+w, y_{2}+w\right)$ is in $M_{1}(F)$ and $\rho\left(\omega_{w}\right)=\rho(\omega)$.

Proof. We assume tr. $\operatorname{deg}(F / k)=2$.
Again let $c \in k^{*}$ with $z_{1}=\{c\}$.
We have $\omega \in M_{1}(F), x_{1} w=0$, and $z_{1} w=0$. Therefore there exist a smooth proper model X of F / k such that there are morphisms $f: X \rightarrow \tilde{T}, g, h: X \rightarrow \mathbf{P}^{1}$ with $f^{*}\left(\omega_{T}\right)=\omega, g^{*}\left(x_{u}\right)=\left(x_{1}, w\right), h^{*}\left(\left\{1-c t^{2}\right\}\right)=w$.

Moreover we may assume that x_{1}, x_{2}, and w are unramified outside a smooth divisor H with normal crossings. For $n, m, l \in \mathbf{Z} / 2$ let $H(n, m, l) \subset H$ be the subdivisor where x_{1}, x_{2}, w has ramification index n, m, l, repectively.

Lemma 8.8. The 5 sets $H(0,1,0) \cup H(0,0,1) \cup H(0,1,1), H(1,0,0), H(1,0,1)$, $H(1,1,0), H(1,1,1)$ are pairwise disjoint.
Proof. We have

$$
\begin{aligned}
& H(1,0,0) \cup H(1,0,1)=f^{*}\left(D_{2}\right) \\
& H(1,1,0) \cup H(1,1,1)=f^{*}\left(D_{3}\right) \\
& H(0,1,0) \cup H(0,1,1)=f^{*}\left(D_{1}\right)
\end{aligned}
$$

Hence these three sets are pairwise disjoint (see Lemma 8.2).
We have

$$
\begin{aligned}
& H(1,0,0) \cup H(1,1,0)=g^{*}([0]) \\
& H(1,0,1) \cup H(1,1,1)=g^{*}([\infty]) \\
& H(0,0,1) \cup H(0,1,1)=g^{*}([1])
\end{aligned}
$$

Hence these three sets are pairwise disjoint.
The claim is immediate.
Lemma 8.9. There exist morphisms $H(1,0,1) \rightarrow \operatorname{Spec} K, H(1,1,1) \rightarrow \operatorname{Spec} K$.
Proof. $H(1,0,1) \subset f^{*}\left(D_{2}\right)$ maps to Spec k_{2} and $H(1,1,1) \subset f^{*}\left(D_{3}\right)$ maps to $\operatorname{Spec} k_{3}\left(\right.$ see Lemma 8.2). Furthermore $\operatorname{div}(w)=h^{*}\left(\left\{1-c t^{2}=0\right\}\right)$ maps to $\operatorname{Spec} k_{1}$. Thus any of $H(?, ?, 1)$ maps to $\operatorname{Spec} k_{1}$.

To conclude let $a_{1}, a_{2}, b \in F^{*}$ with $x_{1}=\left\{a_{1}\right\}, x_{2}=\left\{a_{2}\right\}$, and $w=\{b\}$.
Then we have integrally

$$
\begin{align*}
\operatorname{div}\left(a_{1}\right) & =[H(1,0,0)+H(1,0,1)]+[H(1,1,0)+H(1,1,1)]+2 V \tag{1}\\
\operatorname{div}\left(a_{2}\right) & =[H(0,1,0)+H(0,1,1)]+[H(1,1,0)+H(1,1,1)]+2 W \\
\operatorname{div}(b) & =H(1,0,1)+H(1,1,1)+H(0,1,1)+H(0,0,1)+2 U
\end{align*}
$$

for some divisors V, W, U.
We have

$$
\rho\left(\omega_{w}\right)-\rho(\omega)=V \cdot U \quad \bmod I
$$

Further, by Lemma 8.8, one has

$$
2 V \cdot 2 U=H(1,0,1)^{2}+H(1,1,1)^{2}
$$

Again by Lemma 8.8 and by Equation (3) one has

$$
\begin{aligned}
H(1,0,1)^{2} & =-H(1,0,1) \cdot[H(1,1,1)+H(0,1,1)+H(0,0,1)+2 U] \\
& =-2 H(1,0,1) \cdot U \\
& \equiv 0 \bmod 8 \\
H(1,1,1)^{2} & =-H(1,1,1) \cdot[H(1,0,1)+H(0,1,1)+H(0,0,1)+2 U] \\
& =-2 H(1,1,1) \cdot U \\
& \equiv 0 \quad \bmod 8
\end{aligned}
$$

For this note also that by Lemma 8.9 one has $H(1, ?, 1) \cdot Y \equiv 0 \bmod 4$ for all divisors Y (if K is a field).

9. The invariant Q

In the following we make use of resolution of singularities in dimension 3 (probably this can be avoided).

For a field F / k let

$$
\begin{gathered}
M_{2}(F) \subset\left(K_{1} F / 2\right)^{6} \\
M_{2}(F)=\left\{\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \mid x_{1} x_{2}=y_{1} y_{2}=z_{1} z_{2}=0,\right. \\
\left.x_{i}+y_{i}+z_{i}=0 \text { for } i=1,2\right\} .
\end{gathered}
$$

Let $\bar{z}_{1}=\{t\}, \bar{z}_{2}=\{1-t\} \in K_{1} k(t) / 2$ and let $T=T\left(\bar{z}_{1}, \bar{z}_{2}\right)$ and $\tilde{T}=\tilde{T}\left(\bar{z}_{1}, \bar{z}_{2}\right)$. \tilde{T} is a 2 -dimensional variety over $k(t)$.
Lemma 9.1. $\operatorname{ed}\left(M_{2}\right) \leq 3$.
Proof. Let \bar{F} be the function field of the variety \tilde{T}. Then $(\bar{F}, \bar{\sigma})$ with $\bar{\sigma}=\left(\omega_{T}, \bar{z}_{1}, \bar{z}_{2}\right)$ is versal.

Let $\bar{T} \rightarrow \mathbf{P}^{1}$ be a proper variety with generic fibre \tilde{T}.
Let $\operatorname{tr} \cdot \operatorname{deg}(F / k)=3$ and let $\sigma=\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \in M_{2}(F)$.
Choose $a_{1}, a_{2} \in F^{*}$ with $x_{1}=\left\{a_{1}\right\}$ and $x_{2}=\left\{a_{2}\right\}$.
Let X be a smooth proper model of F / k such that there exist a morphism $f: X \rightarrow \bar{T}$ with $f^{*}(\bar{\sigma})=\sigma$. Write

$$
\begin{aligned}
& \operatorname{div}\left(a_{1}\right)=A_{1}+2 V \\
& \operatorname{div}\left(a_{2}\right)=A_{2}+2 W
\end{aligned}
$$

for the integral divisors on X. Here we assume that the A_{i} are divisors with odd multiplicities.

We define $Q(\sigma) \in \mathbf{Z} / 2$ by

$$
Q(\sigma)=Q(X, f, \sigma)=V \cdot W \cdot \bar{f}^{*}([*]) \quad \bmod 2
$$

where $\bar{f}: X \xrightarrow{f} \bar{T} \rightarrow \mathbf{P}^{1}$.
If we represent $\bar{f}^{*}([*])$ by the generic fibre of $X \rightarrow \mathbf{P}^{1}$, we see that

$$
\begin{equation*}
Q(X, f, \sigma)=\rho\left(\left(x_{1}, y_{1}, x_{2}, y_{2}\right)\right) \tag{4}
\end{equation*}
$$

where ρ is defined with respect to the ground field $k\left(\mathbf{P}^{1}\right)$ and to $z_{1}=\{t\}, z_{2}=\{1-$ $t\}$. Note that z_{1}, z_{2} are linearly independent square classes and so $I\left(z_{1}, z_{2}\right)=2 \mathbf{Z}$.

Equation (4) shows that $Q\left(X^{\prime}, f, \sigma\right)=Q(X, f, \sigma)$ for any $X^{\prime} \rightarrow X$. Thus $Q(X, f, \sigma)$ does not depend on the choice of X. It does not depend on the choice of f as well, since for X large enough we have $\bar{f}^{*}([*])=\bar{f}^{\prime *}([*])$ in $\operatorname{Pic}(X) / 2$, see section 6 .

Proposition 9.2 (Degree formula). Let $\operatorname{tr} \cdot \operatorname{deg}(E / k) \leq 3$, $\operatorname{tr} . \operatorname{deg}(F / k) \leq 3$, let

$$
f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F
$$

be a k-place, and let $\sigma \in M_{2}(F)$ be unramified in f. Then

$$
Q\left(f^{*} \sigma\right)=\operatorname{deg}_{3}(f) Q(\sigma)
$$

Lemma 9.3. $Q(\bar{\sigma}) \neq 0$
Proof. This follows from $\rho\left(\omega_{T}\right) \neq 0$.

Corollary 9.4. $\bar{\sigma}$ is not defined over a subfield of \bar{F} of transcendence degree $<$ 3.

Corollary 9.5. $\operatorname{ed}\left(M_{2}\right)=3$.
Lemma 9.6. $Q(\sigma)$ is invariant under the permutations $x_{1} \leftrightarrow x_{2}, y_{1} \leftrightarrow y_{2}, z_{1} \leftrightarrow z_{2}$ and $x_{i} \mapsto y_{i} \mapsto z_{i} \mapsto x_{i}$.

Proof. Use the same argument as in the proof of Lemma 8.6.

$$
\text { 10. The invariant } \hat{Q}
$$

For a field F / k let

$$
\begin{gathered}
M_{3}(F) \subset\left(K_{1} F / 2\right)^{3} \oplus K_{2} F / 2 \\
M_{3}(F)=\left\{\left(x_{1}, x_{2}, x_{3}, u\right) \mid x_{1}+x_{2}+x_{3}=0, u \in x_{i} \cdot K_{1} F / 2 \text { for } i=1,2,3\right\}
\end{gathered}
$$

We have a map

$$
\begin{gathered}
\varphi: M_{2}(F) \rightarrow M_{3}(F), \\
\varphi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)=\left(x_{1}, y_{1}, z_{1}, y_{1} x_{2}\right) .
\end{gathered}
$$

Lemma 10.1. The map φ is surjective. One has

$$
\varphi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)=\varphi\left(x_{1}, y_{1}, z_{1}, x_{2}^{\prime}, y_{2}^{\prime}, z_{2}^{\prime}\right)
$$

if and only if there exist $w \in K_{1} F / 2$ and $u \in K_{1} F / 2$ with $x_{1} w=y_{1} w=0$, $y_{1} u=z_{1} u=0$ and $x_{2}^{\prime}=x_{2}+w, y_{2}^{\prime}=y_{2}+w+u, z_{2}^{\prime}=z_{2}+u$.

Proof. Usual biquadratic games.
Corollary 10.2. The pair $(\bar{F}, \varphi(\bar{\sigma}))$ is versal for M_{3}.
Let $\operatorname{tr} \cdot \operatorname{deg}(F / k)=3$ and $\hat{\sigma} \in M_{3}(F)$. We put

$$
\hat{Q}(\hat{\sigma})=Q(\sigma) \in \mathbf{Z} / 2
$$

where $\sigma \in M_{3}(F)$ is any element with $\varphi(\sigma)=\hat{\sigma}$. By Proposition 8.7, Equation (4), Lemma 9.6, and Lemma 10.1 this gives a welldefined invariant.

It is nontrivial on the generic element and obeys a degree formula. From that we may conclude ed $\left(M_{3}\right)=3$ and

Corollary 10.3. $\varphi(\bar{\sigma})$ is not defined over a subfield of \bar{F} of transcendence degree $<$ 3.

11. The functor M_{4}

We consider triples $\Phi=(D, \varphi, \psi)$ where D is a quaternion algebra, and where φ, ψ are skew-hermitian forms over D of dimension 2 and 1, respectively, with $\operatorname{det}(\varphi \perp \psi)=1$. We say that two such triples $(D, \varphi, \psi),\left(D^{\prime}, \varphi^{\prime}, \psi^{\prime}\right)$ are similar, if there exist an isomorphism $\alpha: D \rightarrow D^{\prime}$ such that φ is similar to $\alpha^{*} \varphi^{\prime}$ and ψ is similar to $\alpha^{*} \psi^{\prime}$.

For a field F / k let $M_{4}(F)$ be the set of similarity classes of such triples over F.
Let $(\hat{F}, \hat{\sigma})$ be a versal pair for M_{3} with $\operatorname{tr} . \operatorname{deg}(\hat{F} / k)=3$. Write $\hat{\sigma}=\left(x_{1}, x_{2}, x_{3}, u\right)$. Let D be a quaternion algebra representing u and choose $d_{i} \in D$ with $\operatorname{Trd}\left(d_{i}\right)=0$ and $\left\{\operatorname{Nrd}\left(d_{i}\right)\right\}=x_{i}$. Then $\hat{\Phi}=\left(D,\left\langle d_{1}, s d_{2}\right\rangle,\left\langle d_{3}\right\rangle\right)$ defines an element [$\hat{\Phi}$] of $M_{4}(\hat{F}(s))$ 。

Lemma 11.1. $(\hat{F}(s),[\hat{\Phi}])$ is a versal pair for M_{4}.
Proof. First note in general that, if $d, d^{\prime} \in D$ are trace zero elements with the property $\{\operatorname{Nrd}(d)\}=\left\{\operatorname{Nrd}\left(d^{\prime}\right)\right\}$, then the skew-hermitian forms $\langle d\rangle,\left\langle d^{\prime}\right\rangle$ are similar. (This follows from Skolem-Noether).

By diagonalization, any Φ^{\prime} over any F^{\prime} can be written as ($\left.D^{\prime},\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle,\left\langle d_{3}^{\prime}\right\rangle\right)$ with $d_{i}^{\prime} \in D^{\prime}, \operatorname{Trd}\left(d_{i}^{\prime}\right)=0, \operatorname{Nrd}\left(d_{1}^{\prime}\right) \operatorname{Nrd}\left(d_{2}^{\prime}\right) \operatorname{Nrd}\left(d_{3}^{\prime}\right)=1$. Then

$$
\sigma_{\Phi^{\prime}}=\left(\left\{\operatorname{Nrd}\left(d_{1}^{\prime}\right)\right\},\left\{\operatorname{Nrd}\left(d_{2}^{\prime}\right)\right\},\left\{\operatorname{Nrd}\left(d_{3}^{\prime}\right)\right\},[D]\right)
$$

is an element of $M_{3}\left(F^{\prime}\right)$. It follows that there exist a place $f: \operatorname{Spec} F^{\prime} \rightsquigarrow \operatorname{Spec} \hat{F}$ with $f^{*}(\bar{\sigma})=\sigma_{\Phi^{\prime}}$. Then $f^{*} D=D^{\prime}$, and there exist $c_{i} \in F^{\prime *}$ with $\left\langle c_{i} f^{*} d_{i}\right\rangle \simeq\left\langle d_{i}\right\rangle$ (\simeq denoting isomorphism). Extend the place f to $f: \operatorname{Spec} F^{\prime} \rightsquigarrow \operatorname{Spec} \hat{F}(s)$ by $f^{*}(s)=c_{1}^{-1} c_{2}$. Then (\sim denoting similarity)

$$
f^{*}(\hat{\Phi})=\left(f^{*} D,\left\langle f^{*} d_{1}, c_{1}^{-1} c_{2} f^{*} d_{2}\right\rangle,\left\langle f^{*} d_{3}\right\rangle\right) \sim\left(f^{*} D,\left\langle c_{1} f^{*} d_{1}, c_{2} f^{*} d_{2}\right\rangle,\left\langle c_{3} f^{*} d_{3}\right\rangle\right)
$$

is similar to Φ^{\prime}.
Corollary 11.2. $\operatorname{ed}\left(M_{4}\right) \leq 4$.
Lemma 11.3. $[\hat{\Phi}]$ is not defined over a subfield of $\hat{F}(s)$ of transcendence degree 3 .
Proof. Let $F^{\prime} \subset \hat{F}(s)$ be of trancendence degree 3 and let $\Phi^{\prime}=\left(D^{\prime},\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle,\left\langle d_{3}^{\prime}\right\rangle\right)$ be a triple defined over F^{\prime} with $\Phi_{\hat{F}(s)}^{\prime} \sim \hat{\Phi}$. Let v be the valuation on $\hat{F}((s)) / \hat{F}$. Since $\left\langle d_{1}, s d_{2}\right\rangle$ is ramified in v (because the $\operatorname{Nrd}\left(d_{i}\right)$ are not squares), the valuation v cannot be trivial on F^{\prime}. Then the residue class field κ^{\prime} of $v \mid F^{\prime}$ is a subfield of \hat{F} of transcendence degree (at most) 2. Note that D is unramified.

The proof of the following claim (added in Dec. 2008) had been missing in the version from 2000.

Claim: D^{\prime} is unramified.
Proof of the claim. We have

$$
D_{\hat{F}(s)} \simeq D_{\hat{F}(s)}^{\prime}
$$

(with D defined over \hat{F} and D^{\prime} defined over F^{\prime}) and with respect to an isomorphism

$$
f: D_{\hat{F}(s)}^{\prime} \rightarrow D_{\hat{F}(s)}
$$

one has

$$
\left\langle d_{1}, s d_{2}\right\rangle_{\hat{F}(s)} \sim\left\langle f\left(d_{1}^{\prime}\right), f\left(d_{2}^{\prime}\right)\right\rangle_{\hat{F}(s)}
$$

The elements d_{1}, d_{2} are defined over \hat{F}. Write

$$
f\left(d_{i}^{\prime}\right)=s^{n_{i}} d_{i}^{\prime \prime}
$$

with invertible $d_{i}^{\prime \prime} \in D_{\hat{F}[[s]]}$. The form $\left\langle d_{1}, s d_{2}\right\rangle$ is ramified. Therefore the exponents n_{1}, n_{2} can't have the same parity and it follows that the residue forms $\left\langle d_{1}\right\rangle,\left\langle d_{2}\right\rangle$ coincide with the residue forms $\left\langle\bar{d}_{1}^{\prime \prime}\right\rangle,\left\langle\bar{d}_{2}^{\prime \prime}\right\rangle$, up to permutation and similarity. The similiarity class of a 1-dimensional D-skew-hermitian form $\langle x\rangle$ is determined by the square class of $\operatorname{Nrd}(x)$. Note that $\operatorname{Nrd}\left(d_{i}^{\prime}\right)$ has in $\hat{F}(s)$ the same square class as $\operatorname{Nrd}\left(d_{i}^{\prime \prime}\right)$. It follows that in $\hat{F}((s))$ the square classes of $\operatorname{Nrd}\left(d_{1}\right), \operatorname{Nrd}\left(d_{2}\right)$ coincide with the square classes $\operatorname{Nrd}\left(d_{1}^{\prime}\right), \operatorname{Nrd}\left(d_{2}^{\prime}\right)$, up to permutation.

Now, if D^{\prime} would be ramified, one would have by Lemma 14.1 over $\hat{F}((s))$:

$$
\begin{aligned}
{[D] } & =\left(\operatorname{Nrd}\left(d_{1}^{\prime}\right), \operatorname{Nrd}\left(d_{2}^{\prime}\right)\right) \\
& =\left(\operatorname{Nrd}\left(d_{1}\right), \operatorname{Nrd}\left(d_{2}\right)\right)
\end{aligned}
$$

Hence

$$
[D]=\left(\operatorname{Nrd}\left(d_{1}\right), \operatorname{Nrd}\left(d_{2}\right)\right)
$$

over \hat{F}.
This would mean that the versal pair $(\hat{F}, \hat{\sigma})$ for M_{3} would have the form

$$
\hat{\sigma}=\left(x_{1}, x_{2}, x_{3}, x_{1} x_{2}\right)
$$

But for $K=k(u, v)$ the element

$$
\sigma=(\{u\},\{v\},\{u v\}, 0) \in M_{3}(K)
$$

is not of this form.
This ends the proof of the claim.
By standard ramification theory for quadratic forms, the residues of a form up to similarity are well defined, up to a permutation of the first and second residue form. It follows that

$$
\Phi^{\prime} \sim \tilde{\Phi}^{\prime}=\left(\tilde{D}^{\prime},\left\langle\tilde{d}_{1}^{\prime}, s \tilde{d}_{2}^{\prime}\right\rangle,\left\langle\tilde{d}_{3}^{\prime}\right\rangle\right)
$$

with \tilde{D}^{\prime} and \tilde{d}_{i}^{\prime} defined and regular over the ring of $v \mid F^{\prime}$. Taking residues for $\hat{\Phi}$ and $\tilde{\Phi}^{\prime}$, we see that the quadruple $\left(D,\left\langle d_{1}\right\rangle,\left\langle d_{2}\right\rangle,\left\langle d_{3}\right\rangle\right)$ is similar to $\overline{\left(\tilde{D}^{\prime},\left\langle\tilde{d}_{1}^{\prime}\right\rangle,\left\langle\tilde{d}_{2}^{\prime}\right\rangle,\left\langle\tilde{d}_{3}^{\prime}\right\rangle\right)}$ or to $\overline{\left(\tilde{D}^{\prime},\left\langle\tilde{d}_{2}^{\prime}\right\rangle,\left\langle\tilde{d}_{1}^{\prime}\right\rangle,\left\langle\tilde{d}_{3}^{\prime}\right\rangle\right)}$.

Since these quadruples are defined over κ^{\prime}, we have a contradiction to Corollary 10.3 .

12. Computation of ed $\left(\mathrm{PSO}_{6}\right)$

Finally let $M_{5}(F)=H^{1}\left(F, \mathrm{PSO}_{6}\right)$. Then $M_{5}(F)$ consists of similarity classes of pairs (D, ρ), where D is a quaternion algebra, and where ρ is a skew-hermitian forms over D of dimension 3 with $\operatorname{det}(\rho)=1$.

Let $(E,[\hat{\Phi}])$ be a versal pair for M_{4} with $\hat{\Phi}=\left(D,\left\langle d_{1}, d_{2}\right\rangle,\left\langle d_{3}\right\rangle\right)$ and with $\operatorname{tr} \cdot \operatorname{deg}(E / k)=4$, see Lemma 11.1. Then $x=\left[\left(D,\left\langle d_{1}, d_{2}, s d_{3}\right\rangle\right)\right]$ is an element of $M_{5}(E(s))$.
Lemma 12.1. $(E(s), x)$ is a versal pair for M_{5}.
Proof. Similar as for Lemma 11.1.
Corollary 12.2. ed $\left(M_{5}\right) \leq 5$.
Lemma 12.3. x is not defined over a subfield of $E(s)$ of transcendence degree 4.
Proof. Similar as for Lemma 11.3, now using Lemma 11.3 instead of Corollary 10.3.
Added in Dec. 2008:
Consider the versal pair for M_{5} in Lemma 12.1 given by

$$
\Psi=\left(D,\left\langle d_{1}, d_{2}, s d_{3}\right\rangle\right)
$$

over $E(s)$.
Let $E^{\prime} \subset E(s)$ be of trancendence degree 4 and let

$$
\Psi^{\prime}=\left(D^{\prime},\left\langle d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\rangle\right)
$$

be a triple defined over E^{\prime} with

$$
\Psi_{E(s)}^{\prime} \sim \Psi
$$

Let v be the valuation on $E((s)) / E$. Since $\left\langle d_{1}, d_{2}, s d_{3}\right\rangle$ is ramified in v (because the $\operatorname{Nrd}\left(d_{i}\right)$ are not squares), the valuation v cannot be trivial on E^{\prime}. Then the residue class field κ^{\prime} of $v \mid E^{\prime}$ is a subfield of E of transcendence degree (at most) 3. Note that D is unramified.

Claim: D^{\prime} is unramified.
Proof of the claim. We have

$$
D_{E(s)} \simeq D_{E(s)}^{\prime}
$$

(with D defined over E and D^{\prime} defined over E^{\prime}) and with respect to an isomorphism

$$
f: D_{E(s)}^{\prime} \rightarrow D_{E(s)}
$$

one has

$$
\left\langle d_{1}, d_{2}, s d_{3}\right\rangle_{E(s)} \sim\left\langle f\left(d_{1}^{\prime}\right), f\left(d_{2}^{\prime}\right), f\left(d_{3}^{\prime}\right)\right\rangle_{E(s)}
$$

The elements d_{1}, d_{2}, d_{3} are defined over E. Write

$$
f\left(d_{i}^{\prime}\right)=s^{n_{i}} d_{i}^{\prime \prime}
$$

with invertible $d_{i}^{\prime \prime} \in D_{E[[s]]}$. The form $\left\langle d_{1}, d_{2}, s d_{3}\right\rangle$ is ramified. Therefore the exponents n_{1}, n_{2}, n_{3} can't have the same parity. Suppose that n_{1} and n_{2} have the same parity. Then the residue form $\left\langle d_{1}, d_{2}\right\rangle$ coincides with the residue form $\left\langle\bar{d}_{1}^{\prime \prime}, \bar{d}_{2}^{\prime \prime}\right\rangle$ up to similarity:

$$
\left\langle d_{1}, d_{2}\right\rangle \sim\left\langle\bar{d}_{1}^{\prime \prime}, \bar{d}_{2}^{\prime \prime}\right\rangle_{E}
$$

Now, if D^{\prime} would be ramified, one would have by Lemma 14.1 over $E((s))$:

$$
\begin{aligned}
{[D] } & =\left(\operatorname{Nrd}\left(d_{1}^{\prime}\right), \operatorname{Nrd}\left(d_{2}^{\prime}\right)\right) \\
& =\left(\operatorname{Nrd}\left(d_{1}^{\prime \prime}\right), \operatorname{Nrd}\left(d_{2}^{\prime \prime}\right)\right)
\end{aligned}
$$

Taking residues one gets

$$
[D]=\left(\operatorname{Nrd}\left(\bar{d}_{1}^{\prime \prime}\right), \operatorname{Nrd}\left(\bar{d}_{2}^{\prime \prime}\right)\right)
$$

over E.
Therefore the versal pair $(E,[\hat{\Phi}])$ for M_{4} would have the form

$$
\hat{\Phi}=\left(D,\left\langle e_{1}, e_{2}\right\rangle,\left\langle e_{3}\right\rangle\right)
$$

with $a_{i}=e_{i}^{2}$ and $a_{1} a_{2} a_{3}=1$ and

$$
[D]=\left(a_{1}, a_{3}\right)
$$

This would mean that for any field K and any element of $M_{4}(K)$ given by

$$
\Phi=(D, \varphi, \psi)
$$

there exist a 1 -dimensional subform ρ of φ such that

$$
[D]=(\operatorname{det}(\rho), \operatorname{det}(\varphi))
$$

If D is split, this would mean that for any 4 -dimensional (usual) quadratic form φ there exist a 2-dimensional quadratic subform ρ of $\varphi \operatorname{such}$ that $\operatorname{det}(\varphi)$ is a norm from the quadratic extension given by ρ. But then $\operatorname{det}(\varphi)$ would be a similarity factor of φ.

However for a 4-dimensional quadratic form of the form

$$
\varphi=\langle w, u, v, u v\rangle
$$

the determinant is a similarity factor if and only if the Pfister form

$$
\langle\langle u, v, w\rangle\rangle
$$

is split. This is not the case over the field $k(u, v, w)$.
This ends the proof of the claim.
The rest of the proof is similar as for Lemma 11.3
Corollary 12.4. $\operatorname{ed}\left(\mathrm{PGL}_{4}\right)=\operatorname{ed}\left(P S O_{6}\right)=\operatorname{ed}\left(M_{5}\right)=5$.

13. Presentations of M and degree formulas

In the following we discuss some general aspects about essential dimensions and "degree formulas".
Definition 13.1 (tentative). A presentation of M consists of a pair of morphisms

$$
X_{1} \xrightarrow[\pi_{1}]{\stackrel{\pi_{0}}{\longrightarrow}} X_{0}
$$

of k-varieties and a function α on X_{0} with $\alpha(x) \in M(\kappa(x))$ such that:

- Let $x \in X_{0}$ and let v be a valuation on $\kappa(x)$ with center $y \in X_{0}$. Then $\alpha(x)$ is unramified in v and for its specialization one has $\alpha(v)=\alpha(y)_{\kappa(y)}$.
- For any F / k and $\beta \in M(F)$ and any open dense subvariety $U \subset X_{0}$ there exists $f: \operatorname{Spec} F \rightarrow U$ with $\beta=f^{*}(\alpha)$.
- For every $y \in X_{1}$ one has $\pi_{0}^{*}\left(\alpha\left(\pi_{0}(y)\right)=\pi_{1}^{*}\left(\alpha\left(\pi_{1}(y)\right)\right.\right.$ in $M(\kappa(y))$.
- For any F / k and any two morphisms $f_{0}, f_{1}: \operatorname{Spec} F \rightarrow X_{0}$ with $f_{0}^{*}(\alpha)=$ $f_{1}^{*}(\alpha)$ there exists $f: \operatorname{Spec} F \rightarrow X_{1}$ with $f_{i}=\pi_{i} \circ f$.

Example. Let $G \subset \mathrm{GL}_{n}$ be a linear algebraic group over k and let $M_{G}(F)=$ $H^{1}(F, G)$. There is natural presentation of M_{G} with $X_{0}=\mathrm{GL}_{n} / G$ and $X_{1}=$ $\mathrm{GL}_{n} \times \mathrm{GL}_{n} / G$.

Example. In section 6 we have seen that $\pi, \pi^{\prime}: \tilde{P} \rightarrow \mathbf{P}^{1}$ is a presentation of M_{0}.
Exercise. Describe presentations of the functors M_{1}, M_{2}, \ldots of the preceding sections.

Let $\pi_{0}, \pi_{1}: X_{1} \rightrightarrows X_{0}, \alpha$ be a presentation of M with X_{0} irreducible of dimension d. Choose a completion $\bar{\pi}_{0}, \bar{\pi}_{1}: \bar{X}_{1} \rightrightarrows \bar{X}_{0}$ and consider

$$
\delta=\left(\bar{\pi}_{1}\right)_{*}-\left(\bar{\pi}_{0}\right)_{*}: \mathrm{CH}_{d}\left(\bar{X}_{1}\right) \rightarrow \mathrm{CH}_{d}\left(\bar{X}_{0}\right)=\mathbf{Z} .
$$

Suppose that $\operatorname{im} \delta \subset n \mathbf{Z}$. Then for F / k with $\operatorname{tr} \cdot \operatorname{deg}(F / k) \leq d$ and $\beta \in M(F)$ we have a invariant

$$
Q(\beta) \in \mathbf{Z} / n
$$

defined by $Q(\beta)=0$ if $\operatorname{tr} . \operatorname{deg}(F / k)<d$ and otherwise by $Q(\beta)=f_{*}([X])$ if X is a proper modell of F / k and $f: X \rightarrow X_{0}$ is a morphism with $\beta=f^{*}(\alpha)$. This invariant obeys the degree formula

$$
Q\left(f^{*} \beta\right)=\operatorname{deg}_{d}(f) Q(\beta)
$$

These considerations seem to provide a natural frame work for a systematic treatment of degree formulas in the context of these notes.

Example. For the presentation $\pi, \pi^{\prime}: \tilde{P} \rightarrow \mathbf{P}^{1}$ of M_{0} in section 6 one finds $n=2$.

14. Complements

Recall that we work in characteristic different from 2 and that -1 is a square.
Lemma 14.1. Let R be a complete discrete valuation ring with fraction field K. Let E be a quaternion algebra over K which is ramified with respect to R. Let $e_{i} \in E(i=1,2,3)$ with $\operatorname{Trd}\left(e_{i}\right)=0$ and

$$
\operatorname{Nrd}\left(e_{1}\right) \operatorname{Nrd}\left(e_{2}\right) \operatorname{Nrd}\left(e_{3}\right)=1
$$

Then

$$
[E]=\left(\operatorname{Nrd}\left(e_{i}\right), \operatorname{Nrd}\left(e_{j}\right)\right)
$$

for $i \neq j$.
Proof. First note that

$$
\left(\operatorname{Nrd}\left(e_{i}\right), \operatorname{Nrd}\left(e_{j}\right)\right)
$$

is independent of the choices of i, j. This follows from the product relation and from $(a, a)=0$.

Let π be a prime element of R and denote by $\kappa=R / \pi R$ the residue class field of R. For $a \in R$ denote by $\bar{a} \in \kappa$ its residue.

Since E is ramfied there exists $a, b \in R^{\times}$such that

$$
[E]=(a, \pi b)
$$

and such that the square class (\bar{a}) is nontrivial.
Let $1, X, Y, X Y$ be a basis of E with $X^{2}=a, Y^{2}=\pi b$ and $X Y+Y X=0$. Then

$$
e_{i}=\pi^{n_{i}}\left(X \alpha_{i}+Y \beta_{i}+X Y \gamma_{i}\right)
$$

with $n_{i} \in \mathbf{Z}$ and $\alpha_{i}, \beta_{i}, \gamma_{i} \in R$ such that

$$
\left(\bar{\alpha}_{i}, \bar{\beta}_{i}, \bar{\gamma}_{i}\right) \neq 0
$$

in κ^{3} for $i=1,2,3$.
One now analyzes the product relation $\operatorname{Nrd}\left(e_{1}\right) \operatorname{Nrd}\left(e_{2}\right) \operatorname{Nrd}\left(e_{3}\right)=1$. One has

$$
\begin{equation*}
-\operatorname{Nrd}\left(e_{i}\right)=\pi^{2 n_{i}}\left(a \alpha_{i}^{2}+\pi b\left(\beta_{i}^{2}-a \gamma_{i}^{2}\right)\right) \tag{5}
\end{equation*}
$$

Suppose $\bar{\alpha}_{i}=0$ for some i. Then $\bar{\beta}_{i} \neq 0$ or $\bar{\gamma}_{i} \neq 0$ and since \bar{a} is not a square, it follows that $\left(\beta_{i}^{2}-a \gamma_{i}^{2}\right)$ is a unit of R. Write $\alpha_{i}=\pi \alpha_{i}^{\prime}$ with $\alpha_{i}^{\prime} \in R$. Then one has

$$
\begin{equation*}
-\operatorname{Nrd}\left(e_{i}\right)=\pi^{2 n_{i}+1}\left(\pi a \alpha_{i}^{\prime 2}+b\left(\beta_{i}^{2}-a \gamma_{i}^{2}\right)\right) \tag{6}
\end{equation*}
$$

with the second factor a R-unit.
Suppose $\bar{\alpha}_{i}=0$ for exactly one or for all 3 of the indices $i=1,2,3$. Then (5) and (6) show that

$$
1=\prod_{i=1}^{3} \operatorname{Nrd}\left(e_{i}\right)=\pi^{m} \cdot \text { unit }
$$

with m odd, a contradiction.
Suppose $\bar{\alpha}_{i} \neq 0$ for $i=1,2,3$. Then $n_{1}+n_{2}+n_{3}=0$ and

$$
-1=-\overline{\operatorname{Nrd}\left(e_{1}\right) \operatorname{Nrd}\left(e_{2}\right) \operatorname{Nrd}\left(e_{3}\right)}=\prod_{i=1}^{3}\left(\bar{\alpha}_{i}\right)^{2} \bar{a}=\bar{a}^{3} \prod_{i=1}^{3}\left(\bar{\alpha}_{i}\right)^{2}
$$

Hence \bar{a} would be a square, a contradiction.

Suppose $\bar{\alpha}_{1} \neq 0$ and $\bar{\alpha}_{i}=0$ for $i=2,3$. Then

$$
\begin{aligned}
& -\operatorname{Nrd}\left(e_{1}\right)=\pi^{2 n_{i}} a \alpha_{1}^{2} U \\
& -\operatorname{Nrd}\left(e_{2}\right)=\pi^{2 n_{2}+1} b\left(\beta_{2}^{2}-a \gamma_{2}^{2}\right) V
\end{aligned}
$$

with $U, V \in R$ such that $\bar{U}=\bar{V}=1$. Since R is complete, U and V are squares. One finds

$$
\begin{aligned}
\left(\operatorname{Nrd}\left(e_{1}\right), \operatorname{Nrd}\left(e_{2}\right)\right) & =\left(a, \pi b\left(\beta_{2}^{2}-a \gamma_{2}^{2}\right)\right) \\
& =[E]+\left(a, \beta_{2}^{2}-a \gamma_{2}^{2}\right) \\
& =[E]
\end{aligned}
$$

References

[1] H. Bass and J. Tate, The Milnor ring of a global field, Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) (H. Bass, ed.), Lecture Notes in Mathematics, vol. 342, Springer, Berlin, 1973, pp. 349-446.
[2] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
[3] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344.
[4] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1-89.
[5] Z. Reichstein, On the notion of essential dimension for algebraic groups, preprint, 1998, http://ucs.orst.edu/~reichstz/.
[6] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393 (electronic).
Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA

E-mail address: rost@math.ohio-state.edu
URL: http://math.ohio-state.edu/~rost

[^0]: Date: Dec 13, 2008.

