COMPUTATION OF SOME ESSENTIAL DIMENSIONS

MARKUS ROST

Abstract

In these notes we show that the essential dimension (in the sense of [5]) of PGL_4 is equal to 5.

Along the way we discuss (in a rather unsystematic manner) generalities on essential dimension and degree formulas.

Contents

Abstract		1
1.	Notations and conventions	2
2.	Places	2
3.	Picard groups	2
4.	Ramification, Specialization, and Essential Dimension	3
5.	Side remarks	4
6.	The class Θ	5
7.	A side remark	7
8.	The invariant ρ	8
9.	The invariant Q	12
10.	The invariant \hat{Q}	13
11.	The functor M_4	13
12.	Computation of $ed(PSO_6)$	15
13.	Presentations of M and degree formulas	17
14.	Complements	18
References		19

Most of the text dates back to August 2000.

I am thankful to V. Chernousov for comments.

There is now the preprint "Essential *p*-dimension of $PGL(p^2)$ " by A. Merkurjev (Nov. 2008, http://www.math.uni-bielefeld.de/LAG/man/313.html).

Merkurjev also hinted to a serious gap in the proof of Lemma 11.3. In December 2008 I added Lemma 14.1 and complemented the proofs of Lemma 11.3 and Lemma 12.3.

Date: Dec 13, 2008.

1. NOTATIONS AND CONVENTIONS

We work over a ground field k. A k-variety is a separated scheme of finite type over k. Let F/k be a finitely generated field extension. By a model of F/k we understand an irreducible k-variety X together with an isomorphism $k(X) \simeq F$.

From section 6 on we assume all fields to be of characteristic $\neq 2$. From section 11 on we assume all fields to contain a square root of -1.

2. Places

The natural frame work for many of our considerations is the category of fields over k with the k-places as morphisms. In this section we recall some basic notions. For a valuation v on a field F we use the (mostly standard) notations

$$\mathfrak{m}_v \subset \mathcal{O}_v \subset F, \, \kappa_v = \mathcal{O}_v/\mathfrak{m}_v, \, U_v = \mathcal{O}_v^* \subset F^*, \, U_v^{[1]} = 1 + \mathfrak{m}_v \subset U_v$$

for the valuation ring and its maximal ideal, for the residue field, for the group of units, and for the group of 1-units, respectively. Valuations on F with the same valuation ring will be identified. If k is a subfield of F, then by a valuation on F/k (or by a k-valuation of F) we understand a valuation v with $k \subset \mathcal{O}_v$. We write $\mathcal{V}(F/k)$ for the set of all k-valuations on F. If F/k is a finitely generated field extension, then there is a natural identification

$$\mathcal{V}(F/k) = \lim X$$

where X runs through the proper models of F/k.

Let E, F be field extensions of k. By a k-place $\varphi \colon F \rightsquigarrow E$ we understand a pair $(v_{\varphi}, \alpha_{\varphi})$ where v_{φ} is a valuation on F/k and $\alpha_{\varphi} \colon \kappa_{v_{\varphi}} \to E$ is a k-homomorphism. We also use the more geometric notation $f \colon \text{Spec } E \rightsquigarrow \text{Spec } F$ for k-places and write (v_f, α_f) for the corresponding pair. A k-place $f = (v_f, \alpha_f)$ is given by a (uniquely determined) family of k-morphisms

$$f_X \colon \operatorname{Spec} E \to X$$

with X running through the proper models of F/k and with $f_X = g \circ f_{X'}$ for every morphism $g: X' \to X$ of models of F/k. For any X there exist a proper model Y of E such that f_X extends to a (uniquely determined) k-morphism

$$f_{Y,X} \colon Y \to X$$

Passing to the limits we obtain a map

$$f^*: \mathcal{V}(E/k) \to \mathcal{V}(F/k).$$

This map sends a valuation v on E to the composite valuation of the valuations v_f and $v|_{\kappa_{v_f}}$.

Let $d \ge 0$ and let tr. deg $(E/k) \le d$, tr. deg $(F/k) \le d$. For a place f: Spec $E \rightsquigarrow$ Spec F we define its d-degree deg $_d(f)$ by deg $_d(f) = [E : F]$ if f is an inclusion of fields of transcendece degre d, and put deg $_d(f) = 0$ otherwise.

3. PICARD GROUPS

Let A be an abelian group. For a finitely generated field extension F/k we put

$$\mathbf{P}(F/k, A) = \varinjlim_{X} (\operatorname{Pic}(X) \otimes A)$$

where X runs through the proper models of F/k. For a k-place $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ the maps $f_{Y,X}$ define a pullback map $f^*: \mathbf{P}(F/k, A) \to \mathbf{P}(E/k, A)$.

One has

$$\mathbf{P}(k(t)/k, A) = \operatorname{Pic}(\mathbf{P}^{1}) \otimes A = A.$$

Let $d = \text{tr.} \deg(F/k)$ and let $u_i \in \mathbf{P}(F/k, \mathbf{Z}/n), i = 1, \dots, d$. Then we define

$$e(u_1,\ldots,u_d) \in \mathbf{Z}/n$$

as follows. Choose a proper model X of F/k and line bundles L_i on X which represent the u_i and consider the vector bundle $V = L_1 \oplus \cdots \oplus L_d$. Let

$$\varepsilon \colon \operatorname{CH}_d(V) \simeq \operatorname{CH}_0(X) \xrightarrow{\operatorname{deg}} \mathbf{Z}$$

where the first map is given by homotopy invariance and the second map is the degree map for 0-cycles. We put

$$e(u_1, \ldots, u_d) = \varepsilon([\text{zero section}]) \pmod{n}.$$

This number does not depend on the choices made and is multi-linear in the u_i . Reference ??? Probably in [2].

Remark: For smooth X, the numbers $e(u_1, \ldots, u_d)$ are just given by intersecting divisors. This is all we need in the current version of this text, where we make free use of resolution of singularities. In a future version we plan to work with arbitrary varieties and then it will be necessary to have the numbers $e(u_1, \ldots, u_d)$ also for non-smooth X.

4. RAMIFICATION, SPECIALIZATION, AND ESSENTIAL DIMENSION

Let $x \in K_1 F/n = F^*/(F^*)^n$.

If v is a valuation on F, we say that x is unramified in v if x is in the subgroup $U_v/(U_v)^n \subset F^*/(F^*)^n$. In this case we define the specialization

$$x(v) \in K_1 \kappa_v / r$$

of x in v as the image of x under $U_v/(U_v)^n \to \kappa_v^*/(\kappa_v^*)^n$.

If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a place, we say that x is unramified in f, if x is unramified in v_f . In this case we put

$$f^*(x) = (\alpha_f)_* (x(v_f)) \in K_1 E/n.$$

We extend these standard considerations to the Milnor K-ring. If v is a valuation on F we define its Milnor K-ring by

$$K^M_*(v) = K^M_*F / (1 + \mathbf{m}_v) \cdot K^M_*F.$$

In the case of discrete valuations of rank 1 this ring has been considered in [1], [3, remark at the end of p. 323], [6]. In any case there is a natural injection

$$K^M_* \kappa_v \to K^M_*(v),$$

$$\{\bar{u}_1, \dots, \bar{u}_n\} \mapsto \overline{\{u_1, \dots, u_n\}}.$$

Let A be an abelian group. For $x \in (K^M_*F) \otimes A$ we denote by x(v) its image in $K^M_*(v)$. If x(v) belongs to the subgroup $K^M_*\kappa_v$, we say that x is unramified in v and call x(v) its specialization. These notions extend to places $f: \text{Spec } E \rightsquigarrow \text{Spec } F$ in an obvious way.

In the following we consider various covariant functors $F \mapsto M(F)$ from the category of fields F/k to sets. These functors will be subfunctors of $F \mapsto (K^M_*F) \otimes A$

for an appropriate abelian group A. They have the following property: If $x \in M(F)$ is unramified in v (as an element of $(K_*^M F) \otimes A$), then x(v) is in $M(\kappa_v)$. A pair (F, x) with $x \in M(F)$ is called *versal* for M, if for any E/k and $y \in M(E)$ there exists a place f: Spec $E \rightsquigarrow$ Spec F such that x is unramified in f and $y = f^*(x)$. (This definition is tentative.) The *essential dimension* of M is the minimum of the transcendence degrees tr. deg(F/k) for versal pairs (F, x).

Later we consider also functors of the form $M(F) = H^1(F, G)$ where G is linear algebraic group over k. For the notion of essential dimension of these functors, see [5].

5. Side remarks

The material of this section will not be used in later sections.

Problem. For a linear algebraic group G over k let $M_G(F) = H^1(F, G)$. Give a neat definition of $M_G(v)$, in analogy with $K^M_*(v)$. Describe $M_G(v)$ using Bruhat-Tits theory.

Here is a further type of functors for which the notion of essential dimension is meaningful (these will not be considered later). Let $u \in K_n^M k/p$ and define $M_u(F) \subset \{*\}$ to be nonempty if and only if $u_F = 0$. In this case $\operatorname{ed}(M_u)$ should be defined as the minimal transcendence degree of a generic splitting field of u. Recent considerations show that for a nontrivial symbol u one may expect $\operatorname{ed}(M_u) = p^n - 1$. This can be proven for p = 2 or $n \leq 3$. In general one does not even know whether $\operatorname{ed}(M_u) < \infty$.

I don't know a good definition of functors on fields which is appropriate for the notion of essential dimension and covers all known examples. One feature appearing in all examples is the existence of a pair of morphisms $X_1 \rightrightarrows X_0$ such that the set of all *F*-rational points $X_0(F)$ parametrizes all elements of M(F) (let's say by a function $x \mapsto \alpha(x)$) and such that if $\alpha(x) = \alpha(x')$ then there exist $y \in X_1(F)$ mapping to (x, x'). Moreover, for any $z \in M(F)$ and any open subset $U \subset X_0$ one may find $x \in U(F)$ with $\alpha(x) = z$.

In some cases one can compute essential dimensions by ramification methods. For instance, one concludes $\operatorname{ed}(\operatorname{PGL}_2) \geq 2$ from the fact that the quaternion algebra Q(s,t) over k((s))((t)) is doubly ramified. One may try to define a notion of "essential valuation dimension" of M related to ramifications over complete valuation rings. Here is a tentative definition. Let F/k be a field extension, let $F_n = F((t_1)) \cdots ((t_n))$, and let v_n be the valuation of F_n/F . Let us say that $x \in M(F_n)$ is totally ramified, if for any subfield $F \subset E \subset F_n$ such that x is in the image of $M(E) \to M(F_n)$, the rank of $v_n | E$ is n. Let us define $\operatorname{evd}(M)$ as the maximal n for which there exist F and a totally ramified element $x \in M(F_n)$.

Certainly one has $\operatorname{evd} \leq \operatorname{ed}$. Here is an example with $\operatorname{evd}(M) < \operatorname{ed}(M)$ (without proof): Let p be a prime with $\operatorname{char} k \neq p$, let l/k be a field extension of degree p and let

$$M(F) = N_{F \otimes l/F} (K_1(F \otimes l)/p) \subset K_1 F/p$$

be the "group of norms from l/k in K_1/p ". One finds ed(M) = p-1 and evd(M) = 1.

Other computations are $evd(PGL_2) = 2$ and, at least if char $k \neq 2$ and -1 is a square, $evd(PGL_4) = 4$.

Problem. Give a neat definition of "essential valuation dimension" (or whatever you want to name it).

6. The class
$$\Theta$$

For a field F/k let

$$M_0(F) = \{ (x_1, x_2) \in K_1 F/2 \oplus K_1 F/2 \mid x_1 x_2 = 0 \}.$$

Thus an element $x = (x_1, x_2)$ of $M_0(F)$ is given by a pair of elements $a, b \in F^*$ such that the quaternion algebra Q(a, b) is split.

Elements in $K_1F/2$ will be denoted by $\{a\}, a \in F^*$ and $\{a, b\} \in K_2F/2$ denotes the product of $\{a\}, \{b\}$.

Proposition 6.1. For finitely generated fields F/k and for elements $x \in M_0(F)$ there exist unique elements $\Theta(x) \in \mathbf{P}(F/k, \mathbf{Z}/2)$ such that:

• (Functoriality) If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, and if $x \in M_0(F)$ is unramified in f, then

$$f^*(\Theta(x)) = \Theta(f^*(x)).$$

• (Normalization) Let $F_u = k(t)$ and $x_u = (\{t\}, \{1-t\})$. Then $\Theta(x_u) \in \mathbf{P}(F_u/k, \mathbf{Z}/2) = \mathbf{Z}/2$

is the nontrivial element.

We denote the generator of $\mathbf{P}(F_u/k, \mathbf{Z}/2)$ by [*].

Proof of uniqueness of Θ . If F is finite, then $\mathbf{P}(F/k, \mathbf{Z}/2) = 0$. Hence $\Theta(x) = 0$ in this case and we may assume that F is infinite. Then for $x = (\{a\}, \{b\}) \in M_0(F)$ there exist $u, v \in F^*$ with $b = u^2(1 - av^2)$. Let f: Spec $F \rightsquigarrow$ Spec F_u be the place with $f^*(t) = av^2$. Then x_u is unramified in f and $f^*(x_u) = x$. By functoriality one must have $\Theta(x) = f^*([*])$.

Along the way have proved that (F_u, k_u) is versal for M_0 , at least for infinite k.

Lemma 6.2. Let X be a smooth proper model of F/k and let

 $f, f' \colon X \to \mathbf{P}^1$

be morphisms with $f^*(x_u) = f'^*(x_u)$. Then the two maps

$$f^*, f'^* \colon \operatorname{Pic}(\mathbf{P}^1)/2 \to \operatorname{Pic}(X)/2$$

coincide.

Proof. Put $x = (x_1, x_2) = f^*(x_u) = f'^*(x_u)$. For the divisors of the components of x we have

$$div(x_1) = f^*[0] - f^*[\infty] div(x_2) = f^*[1] - f^*[\infty]$$

in $\bigoplus_{z \in X^{(1)}} \mathbf{Z}/2$ and similarly for f'. Hence

$$f^*[\infty] = \sum_{\substack{z \in X^{(1)} \\ \partial_z(x_1) = \partial_z(x_2) \neq 0}} [z] \in \bigoplus_{z \in X^{(1)}} \mathbf{Z}/2$$

where $\partial_z \colon K_1 F/2 \to K_0 \kappa(z)/2$ is the residue map at z. This expresses $f^*[\infty]$ entirely in terms of x, and by the same argument for f' we get $f^*[\infty] = f'^*[\infty]$. \Box

To prove the existence of the class Θ , we have to show that for any F and $x = (x_1, x_2) \in M_0(F)$ and any two places $f, f': \operatorname{Spec} F \rightsquigarrow \operatorname{Spec} F_u$ with $x = f^*(x_u) = f'^*(x_u)$ one has $f^*([*]) = f'^*([*])$. Assuming resolution of singularities, this follows from Lemma 6.2, by extending f, f' to morphisms $X \to \mathbf{P}^1$ on a smooth model of F/k.

I am pretty sure that one can avoid here resolution of singularities by using instead canonical flatening [4]. Anyway, there is a simpler direct way by investigating the possible choices f, f' more closely.

Lemma 6.3. Let $t, t' \in F^*$ with $t \neq t'$ and assume $\{t\} = \{t'\}$ and $\{1-t\} = \{1-t'\}$ in $K_1F/2$. Then there exist $\alpha, \beta \in F^*$ with $1 \neq \alpha^2 \neq \beta^2 \neq 1$ such that

$$t = \frac{1 - \beta^2}{\alpha^2 - \beta^2}, \quad t' = \alpha^2 \frac{1 - \beta^2}{\alpha^2 - \beta^2}.$$

Proof. By assumption we have $t' = t\alpha^2$ and $1 - t' = (1 - t)\beta^2$ for some $\alpha, \beta \in F^*$. Hence $1 - t\alpha^2 = (1 - t)\beta^2$ and the claim is immediate.

Let $P \to \mathbf{P}^2$ be the blow up in the 4 points [0, 0, 1], [0, 1, 0], [1, 0, 0], and [1, 1, 1]. Let further $\tilde{P} \to \mathbf{P}^2$ be the blow up in the 7 points [0, 0, 1], [0, 1, 0], [1, 0, 0], and $[\pm 1, \pm 1, 1]$.

Lemma 6.4. The rational maps

$$\begin{aligned} \mathbf{P}^2 \xrightarrow{g} \mathbf{P}^2 \xrightarrow{h} \mathbf{P}^1 \times \mathbf{P}^1, \\ g([\alpha, \beta, 1]) &= [\alpha^2, \beta^2, 1], \\ h([a, b, 1]) &= ([1 - b, a - b], [a(1 - b), a - b]) \end{aligned}$$

extend to everywhere defined morphisms

$$\tilde{P} \xrightarrow{\bar{g}} P \xrightarrow{h} \mathbf{P}^1 \times \mathbf{P}^1$$

Proof. The verification is left to the reader.

Let π , $\pi': \tilde{P} \to \mathbf{P}^1$ be given by $\bar{h} \circ \bar{g}$ followed by the projections. Note that $\pi^*(x_u) = \pi'^*(x_u) \in M_0(k(\tilde{P}))/2$. By Lemma 6.2 we find that the two maps

$$\pi^*, \pi'^* \colon \operatorname{Pic}(\mathbf{P}^1)/2 \to \operatorname{Pic}(\tilde{P})/2$$

coincide. (Of course one may check this also directly).

Proof of existence of Θ . We have to show that for any F and $x = (x_1, x_2) \in M_0(F)$ and any two places $f, f': \operatorname{Spec} F \to \operatorname{Spec} F_u$ with $x = f^*(x_u) = f'^*(x_u)$ one has $f^*([*]) = f'^*([*]).$

By Lemma 6.3 there exist a morphism $\hat{f}: \operatorname{Spec} F \to \tilde{P}$ such that $f = \pi \circ \hat{f}$ and $f' = \pi' \circ \hat{f}$. The claim follows now from $\pi^* = \pi'^*$ on $\operatorname{Pic}(\mathbf{P}^1)/2$.

The proof of Proposition 6.1 is now complete. The functoriality of Θ can also be described in the ramified situation:

Lemma 6.5. If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, and if $x \in M_0(F)$ is ramified in f, then $f^*(\Theta(x)) = 0$.

Proof. Indeed, let g: Spec $F \rightsquigarrow$ Spec F_u be a place with $x = g^*(x_u)$. If x is ramified in f, then x_u is ramified in $g \circ f$ and therefore $g \circ f$ must map to one of 0, 1, ∞ . But then $(g \circ f)^*([*]) = 0$.

The functor M_0 can be described in a more symmetric way as follows. For a field F/k let

 $M'_0(F) = \{ (x_1, x_2, x_3) \in (K_1 F/2)^3 \mid x_1 + x_2 + x_3 = \{-1\}, x_i x_j = 0 \text{ for } i \neq j \}.$

Then each of the projections $M'_0(F) \to M_0(F)$, $(x_1, x_2, x_3) \mapsto (x_i, x_j)$, $i \neq j$, is a bijection. If v is a valuation of rank 1 and if $x = (x_1, x_2, x_3)$ is ramified in v, then exactly one of the x_i is unramified in v and for this component one has $x_i(v) = 0$.

Let $\Sigma(F)$ be the set of all $(x_1, x_2, x_3) \in M'_0(F)$ with $x_i = 0$ for at least one *i*. If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a *k*-place, and if $x \in \Sigma(F)$ is unramified in f, then $f^*(x) \in \Sigma(E)$.

These remarks and Lemma 6.5 suggest the following definition. Let $\overline{M}_0(F)$ be the quotient of $M'_0(F)$ by collapsing the set $\Sigma(F)$ to a point (denoted by 0). Define the map

$$f^* \colon \overline{M}_0(F) \to \overline{M}_0(E)$$

on the unramified elements of $M_0(F)$ as before (and passing to the quotient) and sending all other elements to 0. Then we have

Proposition 6.6. For finitely generated fields F/k and for elements $x \in \overline{M}_0(F)$ there exist unique elements $\overline{\Theta}(x) \in \mathbf{P}(F/k, \mathbf{Z}/2)$ such that:

• (Functoriality) If $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$ is a k-place, then

$$f^*(\bar{\Theta}(x)) = \bar{\Theta}(f^*(x))$$

• (Normalization) Let $F_u = k(t)$ and $x_u = (\{t\}, \{1-t\})$. Then

$$\Theta(x_u) \in \mathbf{P}(F_u/k, \mathbf{Z}/2) = \mathbf{Z}/2$$

is the nontrivial element.

7. A SIDE REMARK

In the later sections we will meet the following construction. Let $x \in K_1F/2$ and let X be a proper smooth model of F/k. We choose a function $a \in F^*$ with $x = \{a\}$ and write

$$\operatorname{div}(a) = A + 2V$$

where A is a divisor with odd multiplicities (the latter means $A \in \bigoplus_{z \in X^{(1)}} (1+2\mathbf{Z})$). At this point we just want give some comments on this situation.

Let $\pi: Y \to X$ be the normal closure of X in $F[t]/(t^2 - a)$. Then π is etale of degree 2 outside its locus of ramification Δ . Since A has odd multiplicities, one has $\operatorname{supp}(A) \subset \Delta$. Further, π defines a μ_2 -torsor over $X \setminus \Delta$ and therefore a line bundle L on $X \setminus \Delta$ via $\mu_2 \to \mathbf{G}_m$. The class of this line bundle and the class of V in $\operatorname{Pic}(X \setminus \Delta) = \operatorname{CH}^1(X \setminus \Delta)$ coincide.

The situation can be made more clean as follows. Assume that A is a divisor with all multiplicities equal to 1 and that A is a smooth divisor with normal crossings (this can be arranged using resolution of singularities). After blowing up the crossings, we may even assume that A is a smooth subvariety of codimension 1 (with no crossings). Then π is flat and the class of V in Pic(X) is given by the class of the line bundle $\overline{L} = \pi_*(\mathcal{O}_Y)/\mathcal{O}_X$.

In the following we will often use resolution of singularities in order to talk about the divisor V. Very probably this can be replaced by using flatening theorems [4]. One arranges that π is flat and then works with the line bundle \bar{L} instead of V.

8. The invariant ρ

Let $z_1, z_2 \in K_1k/2$ be fixed elements. We denote by k_1, k_2 the corresponding quadratic extensions of k. Further let $K = k_1 \otimes k_2$ and let k_3 be the third quadratic subextension of K/k. We define $I = I(z_1, z_2) \subset K_0k = \mathbb{Z}$ as the subgroup generated by the norms from the k_i . Thus $I = 2\mathbb{Z}$ if K is a field, and $I = \mathbb{Z}$ otherwise.

For a field F/k let

$$M_1(F) \subset (K_1F/2)^4,$$

 $M_1(F) = \{ (x_1, y_1, x_2, y_2) \mid x_1 x_2 = y_1 y_2 = 0, x_i + y_i + z_i = 0 \text{ for } i = 1, 2 \}.$

Our aim is to define for fields F/k with tr. deg $(F/k) \leq 2$ and for $\omega \in M_1(F)$ an invariant $\rho(\omega) \in \mathbb{Z}/I$.

We study a versal parameter space for elements in M_1 in some detail. Let c, $d \in k^*$ with $z_1 = \{c\}$ and $z_2 = \{d\}$.

Let

$$T = T(z_1, z_2) \subset \mathbf{P}^1 \times \mathbf{P}^2,$$

$$T = \{ ([s, t], [x, y, z]) \mid x^2 s - y^2 t c - z^2 (s - t) d = 0 \}$$

Lemma 8.1. T is a smooth proper irreducible surface. The tupel

 $\omega_T = (\{t/s\}, \{ct/s\}, \{1 - (t/s)\}, \{d(1 - (t/s))\})$

is an element of $M_1(k(T))$. For any F/k and any $\omega \in M_1(F)$ there is a k-place $f: \operatorname{Spec} F \rightsquigarrow \operatorname{Spec} k(T)$ with $x = f^*(\omega_T)$.

Proof. The verification is left to the reader.

Let further $\tilde{T} = \tilde{T}(z_1, z_2) \to T$ be the blow up in the 3 points $P_1 = ([1, 1], [0, 0, 1]), P_2 = ([1, 0], [0, 1, 0]), P_3 = ([0, 1], [1, 0, 0]).$ Lemma 8.1 remains valid with T replaced by \tilde{T} .

Lemma 8.2. There exist smooth 1-dimensional closed subvarieties $D_1, D_2, D_3 \subset T$ such that:

• There are the following equalities of (mod 2)-divisors

$$\operatorname{div}(\{t/s\}) = D_2 + D_3,$$
$$\operatorname{div}(\{1 - (t/s)\}) = D_1 + D_3.$$

- There is a k-morphism $D_i \rightarrow \operatorname{Spec} k_i$ for i = 1, 2, 3.
- The D_i are pairwise disjoint.
- For the self intersection number of D_i one has $D_i \cdot D_i \equiv 4 \mod 8$.

Proof. First compute the divisors of $\{t/s\}$ and $\{1-(t/s)\}$ on T. Consider the three divisors

$$\bar{D}_2 = \{t = 0\},\$$

 $\bar{D}_3 = \{s = 0\},\$
 $\bar{D}_1 = \{t = s\}.$

One has

$$\operatorname{div}_{T}(\{t/s\}) = D_{2} - \bar{D}_{3},$$
$$\operatorname{div}_{T}(\{1 - (t/s)\}) = \bar{D}_{1} - \bar{D}_{3}.$$

Each of the divisors D_i consists geometrically of two lines. Their intersection consists of one point P_i at which they meet transversally. The two lines of \overline{D}_i are defined over k_i and permuted by the Galois action of k_i/k . Let $D_i \subset \tilde{T}$ be the proper transforms of the \overline{D}_i . After the blow up, the two lines will be separated, and the D_i are smooth. The preimage of \overline{D}_i under the blow up is $D_i + 2E_i$ where E_i is the exceptional fiber over the intersection point P_i . To compute the self intersection number of D_i , note first that $\overline{D}_i \cdot \overline{D}_i = 0$, since \overline{D}_i is the preimage of a point under the projection $T \to \mathbf{P}^1$. Thus $(D_i)^2 = (\overline{D}_i - 2E_i)^2 = \overline{D}_i^2 - 4\overline{D}_i \cdot E_i + 4E_i^2 = 0 - 0 - 4 = -4$. \Box

In the following we make free use of resolution of singularities in dimension 2 (for simplicity).

Let tr. deg(F/k) = 2, let $\omega = (x_1, y_1, x_2, y_2) \in M_1(F)$, and choose $a_1, a_2 \in F^*$ with $x_1 = \{a_1\}$ and $x_2 = \{a_2\}$. Let X be a smooth proper model of F/k. We say that X is ω -regular if there exist integral divisors $C_i, V, W \subset X$ such that:

$$div(a_1) = C_2 + C_3 + 2V$$
$$div(a_2) = C_1 + C_3 + 2W.$$

and such that there exist morphisms $\operatorname{supp}(C_i) \to \operatorname{Spec} k_i$.

 ω -regular models exist: By resolution of singularities we find X such that there exist a morphism $f: X \to \tilde{T}$ with $\omega = f^*(\omega_T)$. Then we may take $C_i = f^*(D_i)$.

Here we use the pull back maps for the cycle complexes as defined in [6]. For a morphism $f: X \to Y$ with Y smooth there exist in particular pull back maps fitting into a commutative diagram

$$k(X)^* \xrightarrow{\operatorname{div}} \coprod_{x \in X^{(1)}} \mathbf{Z}$$
$$f^* \uparrow \qquad f^* \uparrow$$
$$k(Y)^* \xrightarrow{\operatorname{div}} \coprod_{u \in Y^{(1)}} \mathbf{Z}$$

The maps f^* depend in general on the choice of a coordination of the tangent bundle of Y, see [6, Section 12].

Note also that if $X' \to X$ is a smooth proper model F/k lying over an ω -regular model X, then X' is ω -regular as well. For that one may just take the preimages of the corresponding divisors.

Given an ω -regular model X we put

$$\rho(\omega) = V \cdot W \mod I$$

This class does not depend on the choice of the C_i , V, W. Namely let C'_i , V', W' be another choice. Then V and V' differ by a sum of divisors which are defined over one of k_2 , k_3 . Hence every component of the intersection of V' - V with any divisor will be defined over one of k_2 , k_3 and therefore of even degree (if k_2 , k_3 are fields). Similarly for W and W'.

It follows also that $\rho(\omega)$ does not depend on the choice of X. Namely using resolution of singularities, any two models are covered by a smooth model.

If the C_i are additionally pairwise disjoint, we have

$$2V \cdot 2W = (C_2 + C_3) \cdot (C_1 + C_3) = C_3^2$$

and therefore

$$\rho(\omega) = \frac{C_3^2}{4} \mod I$$

By Lemma 8.2 this shows that $\rho(\omega_T) = 1 \mod I$. Hence $\rho(\omega_T)$ is nontrivial if K is a field.

Proposition 8.3 (Degree formula). Let tr. deg $(E/k) \leq 2$, tr. deg $(F/k) \leq 2$, let

$$f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$$

be a k-place, and let $\omega \in M_1(F)$ be unramified in f. Then

$$\rho(f^*\omega) = \deg_2(f)\rho(\omega) \mod I.$$

Proof. The intersection number of the pullback of divisors V_j under a generically finite map f is the intersection number of the V_j times the degree of f.

From the nontriviality of $\rho(\omega_T)$ one finds:

Corollary 8.4. If K is a field, then ω_T is not defined over a subfield of k(T) of transcendence degree < 2.

Corollary 8.5. If K is a field, then $ed(M_1) = 2$.

The invariant ρ has the following symmetry:

Lemma 8.6.
$$\rho(x_1, y_1, x_2, y_2) = \rho(y_1, x_1, y_2, x_2)$$

Proof. Let

$$\tau \colon M_1(F) \to M_1(F), (x_1, y_1, x_2, y_2) \mapsto (y_1, x_1, y_2, x_2).$$

 τ is an automorphism. There exist a place

 $\bar{\tau}$: Spec $k(T) \rightsquigarrow$ Spec k(T)

with $\bar{\tau}^*(\tau(\omega_T)) = \omega_T$. Assume that K is a field. Since $\rho(\omega_T) \neq 0$, the degree formula shows that $\rho(\tau(\omega_T)) \neq 0$. Thus in $\mathbf{Z}/2$ we must have $\rho(\omega_T) = \rho(\tau(\omega_T))$.

The degree formula shows also that $\overline{\tau}$ is of odd degree. One may choose $\overline{\tau}$ as an automorphism of k(T).

One may check the symmetry also directly: If $x_1 = \{a_1\}$ and $x_2 = \{a_2\}$, then $y_1 = \{b_1\}$ and $y_2 = \{b_2\}$ with $b_1 = ca_1$ and $b_2 = da_2$. With these choices one has $\operatorname{div}(b_i) = \operatorname{div}(a_i)$.

The following proposition means that $\rho(x_1, y_1, x_2, y_2)$ is already determined by $(y_1, x_1, y_2 + x_2)$.

Proposition 8.7. Let $\omega = (x_1, y_1, x_2, y_2) \in M_1(F)$ and let $w \in K_1F/2$ with $x_1w = y_1w = 0$. Then $\omega_w = (x_1, y_1, x_2 + w, y_2 + w)$ is in $M_1(F)$ and $\rho(\omega_w) = \rho(\omega)$.

Proof. We assume tr. $\deg(F/k) = 2$.

Again let $c \in k^*$ with $z_1 = \{c\}$.

We have $\omega \in M_1(F)$, $x_1w = 0$, and $z_1w = 0$. Therefore there exist a smooth proper model X of F/k such that there are morphisms $f: X \to \tilde{T}, g, h: X \to \mathbf{P}^1$ with $f^*(\omega_T) = \omega, g^*(x_u) = (x_1, w), h^*(\{1 - ct^2\}) = w.$

Moreover we may assume that x_1, x_2 , and w are unramified outside a smooth divisor H with normal crossings. For $n, m, l \in \mathbb{Z}/2$ let $H(n, m, l) \subset H$ be the subdivisor where x_1, x_2, w has ramification index n, m, l, repectively.

Lemma 8.8. The 5 sets $H(0,1,0) \cup H(0,0,1) \cup H(0,1,1)$, H(1,0,0), H(1,0,1), H(1,1,0), H(1,1,1) are pairwise disjoint.

Proof. We have

$$H(1,0,0) \cup H(1,0,1) = f^*(D_2),$$

$$H(1,1,0) \cup H(1,1,1) = f^*(D_3),$$

$$H(0,1,0) \cup H(0,1,1) = f^*(D_1).$$

Hence these three sets are pairwise disjoint (see Lemma 8.2). We have

$$H(1,0,0) \cup H(1,1,0) = g^*([0]),$$

$$H(1,0,1) \cup H(1,1,1) = g^*([\infty]),$$

$$H(0,0,1) \cup H(0,1,1) = g^*([1]).$$

Hence these three sets are pairwise disjoint.

The claim is immediate.

Lemma 8.9. There exist morphisms $H(1,0,1) \rightarrow \operatorname{Spec} K$, $H(1,1,1) \rightarrow \operatorname{Spec} K$.

Proof. $H(1,0,1) \subset f^*(D_2)$ maps to Spec k_2 and $H(1,1,1) \subset f^*(D_3)$ maps to Spec k_3 (see Lemma 8.2). Furthermore div $(w) = h^*(\{1 - ct^2 = 0\})$ maps to Spec k_1 . Thus any of H(?,?,1) maps to Spec k_1 .

To conclude let $a_1, a_2, b \in F^*$ with $x_1 = \{a_1\}, x_2 = \{a_2\}$, and $w = \{b\}$. Then we have integrally

(1) $\operatorname{div}(a_1) = [H(1,0,0) + H(1,0,1)] + [H(1,1,0) + H(1,1,1)] + 2V$

- (2) $\operatorname{div}(a_2) = [H(0,1,0) + H(0,1,1)] + [H(1,1,0) + H(1,1,1)] + 2W.$
- (3) $\operatorname{div}(b) = H(1,0,1) + H(1,1,1) + H(0,1,1) + H(0,0,1) + 2U.$

for some divisors V, W, U.

We have

$$\rho(\omega_w) - \rho(\omega) = V \cdot U \mod I$$

Further, by Lemma 8.8, one has

$$2V \cdot 2U = H(1,0,1)^2 + H(1,1,1)^2.$$

Again by Lemma 8.8 and by Equation (3) one has

$$H(1,0,1)^{2} = -H(1,0,1) \cdot [H(1,1,1) + H(0,1,1) + H(0,0,1) + 2U]$$

= $-2H(1,0,1) \cdot U$
 $\equiv 0 \mod 8,$
 $H(1,1,1)^{2} = -H(1,1,1) \cdot [H(1,0,1) + H(0,1,1) + H(0,0,1) + 2U]$
 $= -2H(1,1,1) \cdot U$
 $\equiv 0 \mod 8.$

For this note also that by Lemma 8.9 one has $H(1,?,1) \cdot Y \equiv 0 \mod 4$ for all divisors Y (if K is a field).

9. The invariant Q

In the following we make use of resolution of singularities in dimension 3 (probably this can be avoided).

For a field F/k let

$$M_2(F) \subset (K_1F/2)^6,$$

$$M_2(F) = \{ (x_1, y_1, z_1, x_2, y_2, z_2) \mid x_1x_2 = y_1y_2 = z_1z_2 = 0, x_i + y_i + z_i = 0 \text{ for } i = 1, 2 \}.$$

Let $\bar{z}_1 = \{t\}$, $\bar{z}_2 = \{1 - t\} \in K_1 k(t)/2$ and let $T = T(\bar{z}_1, \bar{z}_2)$ and $\tilde{T} = \tilde{T}(\bar{z}_1, \bar{z}_2)$. \tilde{T} is a 2-dimensional variety over k(t).

Lemma 9.1. $ed(M_2) \le 3$.

Proof. Let \overline{F} be the function field of the variety \tilde{T} . Then $(\overline{F}, \overline{\sigma})$ with $\overline{\sigma} = (\omega_T, \overline{z}_1, \overline{z}_2)$ is versal.

Let $\overline{T} \to \mathbf{P}^1$ be a proper variety with generic fibre \widetilde{T} . Let tr. deg(F/k) = 3 and let $\sigma = (x_1, y_1, z_1, x_2, y_2, z_2) \in M_2(F)$. Choose $a_1, a_2 \in F^*$ with $x_1 = \{a_1\}$ and $x_2 = \{a_2\}$.

Let X be a smooth proper model of F/k such that there exist a morphism $f: X \to \overline{T}$ with $f^*(\overline{\sigma}) = \sigma$. Write

$$\operatorname{div}(a_1) = A_1 + 2V$$
$$\operatorname{div}(a_2) = A_2 + 2W.$$

for the integral divisors on X. Here we assume that the A_i are divisors with odd multiplicities.

We define $Q(\sigma) \in \mathbf{Z}/2$ by

$$Q(\sigma) = Q(X, f, \sigma) = V \cdot W \cdot \overline{f^*}([*]) \mod 2$$

where $\bar{f} \colon X \xrightarrow{f} \bar{T} \to \mathbf{P}^1$.

If we represent
$$f^*([*])$$
 by the generic fibre of $X \to \mathbf{P}^1$, we see that

(4)
$$Q(X, f, \sigma) = \rho((x_1, y_1, x_2, y_2))$$

where ρ is defined with respect to the ground field $k(\mathbf{P}^1)$ and to $z_1 = \{t\}, z_2 = \{1-t\}$. Note that z_1, z_2 are linearly independent square classes and so $I(z_1, z_2) = 2\mathbf{Z}$.

Equation (4) shows that $Q(X', \bar{f}, \sigma) = Q(X, f, \sigma)$ for any $X' \to X$. Thus $Q(X, f, \sigma)$ does not depend on the choice of X. It does not depend on the choice of f as well, since for X large enough we have $\bar{f}^*([*]) = \bar{f}'^*([*])$ in $\operatorname{Pic}(X)/2$, see section 6.

Proposition 9.2 (Degree formula). Let tr. deg $(E/k) \le 3$, tr. deg $(F/k) \le 3$, let $f: \operatorname{Spec} E \rightsquigarrow \operatorname{Spec} F$

be a k-place, and let $\sigma \in M_2(F)$ be unramified in f. Then

$$Q(f^*\sigma) = \deg_3(f)Q(\sigma).$$

Lemma 9.3. $Q(\bar{\sigma}) \neq 0$

Proof. This follows from $\rho(\omega_T) \neq 0$.

Corollary 9.4. $\bar{\sigma}$ is not defined over a subfield of \bar{F} of transcendence degree < 3.

Corollary 9.5. $ed(M_2) = 3$.

Lemma 9.6. $Q(\sigma)$ is invariant under the permutations $x_1 \leftrightarrow x_2$, $y_1 \leftrightarrow y_2$, $z_1 \leftrightarrow z_2$ and $x_i \mapsto y_i \mapsto z_i \mapsto x_i$.

Proof. Use the same argument as in the proof of Lemma 8.6.

10. The invariant \hat{Q}

For a field F/k let

$$M_3(F) \subset (K_1F/2)^3 \oplus K_2F/2,$$

 $M_3(F) = \{ (x_1, x_2, x_3, u) \mid x_1 + x_2 + x_3 = 0, u \in x_i \cdot K_1 F/2 \text{ for } i = 1, 2, 3 \}.$

We have a map

$$\begin{split} \varphi \colon M_2(F) \to M_3(F), \\ \varphi(x_1, y_1, z_1, x_2, y_2, z_2) &= (x_1, y_1, z_1, y_1 x_2) \end{split}$$

Lemma 10.1. The map φ is surjective. One has

 $\varphi(x_1, y_1, z_1, x_2, y_2, z_2) = \varphi(x_1, y_1, z_1, x'_2, y'_2, z'_2)$

if and only if there exist $w \in K_1F/2$ and $u \in K_1F/2$ with $x_1w = y_1w = 0$, $y_1u = z_1u = 0$ and $x'_2 = x_2 + w$, $y'_2 = y_2 + w + u$, $z'_2 = z_2 + u$.

Proof. Usual biquadratic games.

Corollary 10.2. The pair $(\bar{F}, \varphi(\bar{\sigma}))$ is versal for M_3 .

Let tr. deg(F/k) = 3 and $\hat{\sigma} \in M_3(F)$. We put

$$\hat{Q}(\hat{\sigma}) = Q(\sigma) \in \mathbf{Z}/2$$

where $\sigma \in M_3(F)$ is any element with $\varphi(\sigma) = \hat{\sigma}$. By Proposition 8.7, Equation (4), Lemma 9.6, and Lemma 10.1 this gives a welldefined invariant.

It is nontrivial on the generic element and obeys a degree formula. From that we may conclude $ed(M_3) = 3$ and

Corollary 10.3. $\varphi(\bar{\sigma})$ is not defined over a subfield of \bar{F} of transcendence degree < 3.

11. The functor M_4

We consider triples $\Phi = (D, \varphi, \psi)$ where D is a quaternion algebra, and where φ , ψ are skew-hermitian forms over D of dimension 2 and 1, respectively, with $\det(\varphi \perp \psi) = 1$. We say that two such triples (D, φ, ψ) , (D', φ', ψ') are similar, if there exist an isomorphism $\alpha \colon D \to D'$ such that φ is similar to $\alpha^* \varphi'$ and ψ is similar to $\alpha^* \psi'$.

For a field F/k let $M_4(F)$ be the set of similarity classes of such triples over F. Let $(\hat{F}, \hat{\sigma})$ be a versal pair for M_3 with tr. deg $(\hat{F}/k) = 3$. Write $\hat{\sigma} = (x_1, x_2, x_3, u)$. Let D be a quaternion algebra representing u and choose $d_i \in D$ with $\operatorname{Trd}(d_i) = 0$ and $\{\operatorname{Nrd}(d_i)\} = x_i$. Then $\hat{\Phi} = (D, \langle d_1, sd_2 \rangle, \langle d_3 \rangle)$ defines an element $[\hat{\Phi}]$ of $M_4(\hat{F}(s))$.

 \Box

Lemma 11.1. $(\hat{F}(s), [\hat{\Phi}])$ is a versal pair for M_4 .

Proof. First note in general that, if $d, d' \in D$ are trace zero elements with the property $\{Nrd(d)\} = \{Nrd(d')\}$, then the skew-hermitian forms $\langle d \rangle, \langle d' \rangle$ are similar. (This follows from Skolem-Noether).

By diagonalization, any Φ' over any F' can be written as $(D', \langle d'_1, d'_2 \rangle, \langle d'_3 \rangle)$ with $d'_i \in D'$, $\operatorname{Trd}(d'_i) = 0$, $\operatorname{Nrd}(d'_1) \operatorname{Nrd}(d'_2) \operatorname{Nrd}(d'_3) = 1$. Then

 $\sigma_{\Phi'} = (\{\operatorname{Nrd}(d'_1)\}, \{\operatorname{Nrd}(d'_2)\}, \{\operatorname{Nrd}(d'_3)\}, [D])$

is an element of $M_3(F')$. It follows that there exist a place $f: \operatorname{Spec} F' \to \operatorname{Spec} \hat{F}$ with $f^*(\bar{\sigma}) = \sigma_{\Phi'}$. Then $f^*D = D'$, and there exist $c_i \in F'^*$ with $\langle c_i f^* d_i \rangle \simeq \langle d_i \rangle$ (\simeq denoting isomorphism). Extend the place f to $f: \operatorname{Spec} F' \to \operatorname{Spec} \hat{F}(s)$ by $f^*(s) = c_1^{-1}c_2$. Then (\sim denoting similarity)

$$f^{*}(\hat{\Phi}) = (f^{*}D, \langle f^{*}d_{1}, c_{1}^{-1}c_{2}f^{*}d_{2} \rangle, \langle f^{*}d_{3} \rangle) \sim (f^{*}D, \langle c_{1}f^{*}d_{1}, c_{2}f^{*}d_{2} \rangle, \langle c_{3}f^{*}d_{3} \rangle)$$

is similar to Φ' .

Corollary 11.2. $ed(M_4) \le 4$.

Lemma 11.3. $[\hat{\Phi}]$ is not defined over a subfield of $\hat{F}(s)$ of transcendence degree 3.

Proof. Let $F' \subset \hat{F}(s)$ be of trancendence degree 3 and let $\Phi' = (D', \langle d'_1, d'_2 \rangle, \langle d'_3 \rangle)$ be a triple defined over F' with $\Phi'_{\hat{F}(s)} \sim \hat{\Phi}$. Let v be the valuation on $\hat{F}((s))/\hat{F}$. Since $\langle d_1, sd_2 \rangle$ is ramified in v (because the $\operatorname{Nrd}(d_i)$ are not squares), the valuation vcannot be trivial on F'. Then the residue class field κ' of v|F' is a subfield of \hat{F} of transcendence degree (at most) 2. Note that D is unramified.

The proof of the following claim (added in Dec. 2008) had been missing in the version from 2000.

Claim: D' is unramified. Proof of the claim. We have

$$D_{\hat{F}(s)} \simeq D'_{\hat{F}(s)}$$

(with D defined over \hat{F} and D' defined over F') and with respect to an isomorphism

$$f: D'_{\hat{F}(s)} \to D_{\hat{F}(s)}$$

one has

$$\langle d_1, sd_2 \rangle_{\hat{F}(s)} \sim \langle f(d'_1), f(d'_2) \rangle_{\hat{F}(s)}$$

The elements d_1 , d_2 are defined over \hat{F} . Write

$$f(d'_i) = s^{n_i} d'_i$$

with invertible $d''_i \in D_{\hat{F}[[s]]}$. The form $\langle d_1, sd_2 \rangle$ is ramified. Therefore the exponents n_1, n_2 can't have the same parity and it follows that the residue forms $\langle d_1 \rangle, \langle d_2 \rangle$ coincide with the residue forms $\langle \bar{d}''_1 \rangle, \langle \bar{d}''_2 \rangle$, up to permutation and similarity. The similarity class of a 1-dimensional *D*-skew-hermitian form $\langle x \rangle$ is determined by the square class of Nrd(x). Note that Nrd(d'_i) has in $\hat{F}(s)$ the same square class as Nrd(d''_i). It follows that in $\hat{F}((s))$ the square classes of Nrd(d_1), Nrd(d_2) coincide with the square classes Nrd(d'_1), Nrd(d'_2), up to permutation.

Now, if D' would be ramified, one would have by Lemma 14.1 over $\hat{F}((s))$:

[.

$$D] = \left(\operatorname{Nrd}(d_1'), \operatorname{Nrd}(d_2')\right)$$
$$= \left(\operatorname{Nrd}(d_1), \operatorname{Nrd}(d_2)\right)$$

Hence

$$[D] = \left(\operatorname{Nrd}(d_1), \operatorname{Nrd}(d_2)\right)$$

over \hat{F} .

This would mean that the versal pair $(\hat{F}, \hat{\sigma})$ for M_3 would have the form

$$\hat{\sigma} = (x_1, x_2, x_3, x_1 x_2)$$

But for K = k(u, v) the element

$$\sigma = (\{u\}, \{v\}, \{uv\}, 0) \in M_3(K)$$

is not of this form.

This ends the proof of the claim.

By standard ramification theory for quadratic forms, the residues of a form up to similarity are well defined, up to a permutation of the first and second residue form. It follows that

$$\Phi' \sim \tilde{\Phi}' = (\tilde{D}', \langle \tilde{d}'_1, s \tilde{d}'_2 \rangle, \langle \tilde{d}'_3 \rangle)$$

with \tilde{D}' and \tilde{d}'_i defined and regular over the ring of v|F'. Taking residues for $\hat{\Phi}$ and $\tilde{\Phi}'$, we see that the quadruple $(D, \langle d_1 \rangle, \langle d_2 \rangle, \langle d_3 \rangle)$ is similar to $\overline{(\tilde{D}', \langle \tilde{d}'_1 \rangle, \langle \tilde{d}'_2 \rangle, \langle \tilde{d}'_3 \rangle)}$ or to $\overline{(\tilde{D}', \langle \tilde{d}'_2 \rangle, \langle \tilde{d}'_1 \rangle, \langle \tilde{d}'_3 \rangle)}$.

Since these quadruples are defined over κ' , we have a contradiction to Corollary 10.3.

12. Computation of $ed(PSO_6)$

Finally let $M_5(F) = H^1(F, \text{PSO}_6)$. Then $M_5(F)$ consists of similarity classes of pairs (D, ρ) , where D is a quaternion algebra, and where ρ is a skew-hermitian forms over D of dimension 3 with $\det(\rho) = 1$.

Let $(E, [\hat{\Phi}])$ be a versal pair for M_4 with $\hat{\Phi} = (D, \langle d_1, d_2 \rangle, \langle d_3 \rangle)$ and with tr. deg(E/k) = 4, see Lemma 11.1. Then $x = [(D, \langle d_1, d_2, sd_3 \rangle)]$ is an element of $M_5(E(s))$.

Lemma 12.1. (E(s), x) is a versal pair for M_5 .

Proof. Similar as for Lemma 11.1.

Corollary 12.2. $ed(M_5) \le 5$.

Lemma 12.3. x is not defined over a subfield of E(s) of transcendence degree 4.

Proof. Similar as for Lemma 11.3, now using Lemma 11.3 instead of Corollary 10.3.

Added in Dec. 2008:

Consider the versal pair for M_5 in Lemma 12.1 given by

$$\Psi = (D, \langle d_1, d_2, sd_3 \rangle)$$

over E(s).

Let $E' \subset E(s)$ be of trancendence degree 4 and let

$$\Psi' = (D', \langle d'_1, d'_2, d'_3 \rangle)$$

be a triple defined over E' with

$$\Psi'_{E(s)} \sim \Psi$$

Let v be the valuation on E((s))/E. Since $\langle d_1, d_2, sd_3 \rangle$ is ramified in v (because the $\operatorname{Nrd}(d_i)$ are not squares), the valuation v cannot be trivial on E'. Then the residue class field κ' of v|E' is a subfield of E of transcendence degree (at most) 3. Note that D is unramified.

Claim: D' is unramified. Proof of the claim. We have

$$D_{E(s)} \simeq D'_{E(s)}$$

(with D defined over E and D' defined over E') and with respect to an isomorphism

$$f\colon D'_{E(s)}\to D_{E(s)}$$

one has

$$\langle d_1, d_2, sd_3 \rangle_{E(s)} \sim \langle f(d_1'), f(d_2'), f(d_3') \rangle_{E(s)}$$

The elements d_1 , d_2 , d_3 are defined over E. Write

$$f(d'_i) = s^{n_i} d''_i$$

with invertible $d''_i \in D_{E[[s]]}$. The form $\langle d_1, d_2, sd_3 \rangle$ is ramified. Therefore the exponents n_1, n_2, n_3 can't have the same parity. Suppose that n_1 and n_2 have the same parity. Then the residue form $\langle d_1, d_2 \rangle$ coincides with the residue form $\langle \bar{d}''_1, \bar{d}''_2 \rangle$ up to similarity:

$$\langle d_1, d_2 \rangle \sim \langle \bar{d}_1^{\prime\prime}, \bar{d}_2^{\prime\prime} \rangle_E$$

Now, if D' would be ramified, one would have by Lemma 14.1 over E((s)):

$$D] = \left(\operatorname{Nrd}(d'_1), \operatorname{Nrd}(d'_2)\right)$$
$$= \left(\operatorname{Nrd}(d''_1), \operatorname{Nrd}(d''_2)\right)$$

Taking residues one gets

$$[D] = \left(\operatorname{Nrd}(\bar{d}_1''), \operatorname{Nrd}(\bar{d}_2'')\right)$$

over E.

Therefore the versal pair $(E, [\hat{\Phi}])$ for M_4 would have the form

$$\hat{\Phi} = (D, \langle e_1, e_2 \rangle, \langle e_3 \rangle)$$

with $a_i = e_i^2$ and $a_1 a_2 a_3 = 1$ and

$$[D] = (a_1, a_3)$$

This would mean that for any field K and any element of $M_4(K)$ given by

$$\Phi = (D, \varphi, \psi)$$

there exist a 1-dimensional subform ρ of φ such that

$$[D] = \left(\det(\rho), \det(\varphi)\right)$$

If D is split, this would mean that for any 4-dimensional (usual) quadratic form φ there exist a 2-dimensional quadratic subform ρ of φ such that $\det(\varphi)$ is a norm from the quadratic extension given by ρ . But then $\det(\varphi)$ would be a similarity factor of φ .

However for a 4-dimensional quadratic form of the form

$$\varphi = \langle w, u, v, uv \rangle$$

the determinant is a similarity factor if and only if the Pfister form

$$\langle\!\langle u, v, w \rangle\!\rangle$$

is split. This is not the case over the field k(u, v, w).

This ends the proof of the claim.

The rest of the proof is similar as for Lemma 11.3

Corollary 12.4. $ed(PGL_4) = ed(PSO_6) = ed(M_5) = 5.$

13. Presentations of ${\cal M}$ and degree formulas

In the following we discuss some general aspects about essential dimensions and "degree formulas".

Definition 13.1 (tentative). A presentation of M consists of a pair of morphisms

$$X_1 \xrightarrow[\pi_1]{\pi_0} X_0$$

of k-varieties and a function α on X_0 with $\alpha(x) \in M(\kappa(x))$ such that:

- Let $x \in X_0$ and let v be a valuation on $\kappa(x)$ with center $y \in X_0$. Then $\alpha(x)$ is unramified in v and for its specialization one has $\alpha(v) = \alpha(y)_{\kappa(y)}$.
- For any F/k and $\beta \in M(F)$ and any open dense subvariety $U \subset X_0$ there exists $f: \operatorname{Spec} F \to U$ with $\beta = f^*(\alpha)$.
- For every $y \in X_1$ one has $\pi_0^*(\alpha(\pi_0(y)) = \pi_1^*(\alpha(\pi_1(y)))$ in $M(\kappa(y))$.
- For any F/k and any two morphisms $f_0, f_1: \operatorname{Spec} F \to X_0$ with $f_0^*(\alpha) = f_1^*(\alpha)$ there exists $f: \operatorname{Spec} F \to X_1$ with $f_i = \pi_i \circ f$.

Example. Let $G \subset \operatorname{GL}_n$ be a linear algebraic group over k and let $M_G(F) = H^1(F, G)$. There is natural presentation of M_G with $X_0 = \operatorname{GL}_n / G$ and $X_1 = \operatorname{GL}_n \times \operatorname{GL}_n / G$.

Example. In section 6 we have seen that $\pi, \pi' \colon \tilde{P} \to \mathbf{P}^1$ is a presentation of M_0 .

Exercise. Describe presentations of the functors M_1, M_2, \ldots of the preceding sections.

Let $\pi_0, \pi_1 \colon X_1 \rightrightarrows X_0, \alpha$ be a presentation of M with X_0 irreducible of dimension d. Choose a completion $\bar{\pi}_0, \bar{\pi}_1 \colon \bar{X}_1 \rightrightarrows \bar{X}_0$ and consider

$$\delta = (\bar{\pi}_1)_* - (\bar{\pi}_0)_* \colon \operatorname{CH}_d(\bar{X}_1) \to \operatorname{CH}_d(\bar{X}_0) = \mathbf{Z}.$$

Suppose that im $\delta \subset n\mathbf{Z}$. Then for F/k with tr. deg $(F/k) \leq d$ and $\beta \in M(F)$ we have a invariant

$$Q(\beta) \in \mathbf{Z}/n$$

defined by $Q(\beta) = 0$ if tr. deg(F/k) < d and otherwise by $Q(\beta) = f_*([X])$ if X is a proper modell of F/k and $f: X \to X_0$ is a morphism with $\beta = f^*(\alpha)$. This invariant obeys the degree formula

$$Q(f^*\beta) = \deg_d(f)Q(\beta).$$

These considerations seem to provide a natural frame work for a systematic treatment of degree formulas in the context of these notes.

Example. For the presentation π , $\pi' \colon \tilde{P} \to \mathbf{P}^1$ of M_0 in section 6 one finds n = 2.

14. Complements

Recall that we work in characteristic different from 2 and that -1 is a square.

Lemma 14.1. Let R be a complete discrete valuation ring with fraction field K. Let E be a quaternion algebra over K which is ramified with respect to R. Let $e_i \in E \ (i = 1, 2, 3) \ with \ \mathrm{Trd}(e_i) = 0 \ and$

$$\operatorname{Nrd}(e_1)\operatorname{Nrd}(e_2)\operatorname{Nrd}(e_3) = 1$$

Then

$$[E] = \left(\operatorname{Nrd}(e_i), \operatorname{Nrd}(e_j) \right)$$

for $i \neq j$.

Proof. First note that

$$(\operatorname{Nrd}(e_i), \operatorname{Nrd}(e_j))$$

is independent of the choices of i, j. This follows from the product relation and from (a, a) = 0.

Let π be a prime element of R and denote by $\kappa = R/\pi R$ the residue class field of R. For $a \in R$ denote by $\bar{a} \in \kappa$ its residue.

Since E is ramfied there exists $a, b \in \mathbb{R}^{\times}$ such that

$$[E] = (a, \pi b)$$

and such that the square class (\bar{a}) is nontrivial.

Let 1, X, Y, XY be a basis of E with $X^2 = a$, $Y^2 = \pi b$ and XY + YX = 0. Then

$$e_i = \pi^{n_i} (X\alpha_i + Y\beta_i + XY\gamma_i)$$

with $n_i \in \mathbf{Z}$ and $\alpha_i, \beta_i, \gamma_i \in R$ such that

$$(\bar{\alpha}_i, \beta_i, \bar{\gamma}_i) \neq 0$$

in κ^3 for i = 1, 2, 3.

One now analyzes the product relation
$$Nrd(e_1) Nrd(e_2) Nrd(e_3) = 1$$
. One has

(5)
$$-\operatorname{Nrd}(e_i) = \pi^{2n_i} \left(a\alpha_i^2 + \pi b(\beta_i^2 - a\gamma_i^2) \right)$$

Suppose $\bar{\alpha}_i = 0$ for some *i*. Then $\bar{\beta}_i \neq 0$ or $\bar{\gamma}_i \neq 0$ and since \bar{a} is not a square, it follows that $(\beta_i^2 - a\gamma_i^2)$ is a unit of R. Write $\alpha_i = \pi \alpha'_i$ with $\alpha'_i \in R$. Then one has $-2n_i + 1 \left(\pi a \alpha'^2 + h(\beta^2 - a \gamma_i^2) \right)$

(6)
$$-\operatorname{Nrd}(e_i) = \pi^{2n_i+1} (\pi a \alpha_i'^2 + b(\beta_i^2 - a\gamma_i^2))$$

with the second factor a R-unit.

Suppose $\bar{\alpha}_i = 0$ for exactly one or for all 3 of the indices i = 1, 2, 3. Then (5) and (6) show that

$$1 = \prod_{i=1}^{3} \operatorname{Nrd}(e_i) = \pi^m \cdot \operatorname{unit}$$

with m odd, a contradiction.

Suppose $\bar{\alpha}_i \neq 0$ for i = 1, 2, 3. Then $n_1 + n_2 + n_3 = 0$ and

$$-1 = -\overline{\mathrm{Nrd}(e_1)\,\mathrm{Nrd}(e_2)\,\mathrm{Nrd}(e_3)} = \prod_{i=1}^3 (\bar{\alpha}_i)^2 \bar{a} = \bar{a}^3 \prod_{i=1}^3 (\bar{\alpha}_i)^2$$

Hence \bar{a} would be a square, a contradiction.

Suppose
$$\bar{\alpha}_1 \neq 0$$
 and $\bar{\alpha}_i = 0$ for $i = 2, 3$. Then

$$-\operatorname{Nrd}(e_1) = \pi^{2n_i} a \alpha_1^2 U$$
$$-\operatorname{Nrd}(e_2) = \pi^{2n_2+1} h(\beta^2 - a \gamma^2) V$$

$$-\operatorname{Nrd}(e_2) = \pi^{2n_2+1} b(\beta_2^2 - a\gamma_2^2) V$$

with $U, V \in R$ such that $\overline{U} = \overline{V} = 1$. Since R is complete, U and V are squares. One finds

$$(\operatorname{Nrd}(e_1), \operatorname{Nrd}(e_2)) = (a, \pi b(\beta_2^2 - a\gamma_2^2)) = [E] + (a, \beta_2^2 - a\gamma_2^2) = [E]$$

References

- [1] H. Bass and J. Tate, The Milnor ring of a global field, Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) (H. Bass, ed.), Lecture Notes in Mathematics, vol. 342, Springer, Berlin, 1973, pp. 349-446.
- [2] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
- [3] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344.
- [4] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1–89.
- [5] Z. Reichstein, On the notion of essential dimension for algebraic groups, preprint, 1998, http://ucs.orst.edu/~reichstz/.
- [6] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319–393 (electronic).

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, 231 W 18TH AVENUE, COLUM-BUS, OH 43210, USA

E-mail address: rost@math.ohio-state.edu URL: http://math.ohio-state.edu/~rost