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Introduction

A well known theorem about quaternion algebras is the common slot lemma by A. Al-

bert: For a, b, c, d ∈ k∗, non-zero elements in a field such that (a, b) ∼= (c, d) there
exists an element e ∈ k∗ such that

(a, b) ∼= (a, e) ∼= (c, e) .

For non-zero elements a, b in a field k of characteristic not 2, the symbol (a, b) denotes
the central simple k-algebra of degree 2 defined by the presentation

〈X,Y : X2 = a, Y 2 = b, XY = −Y X〉 .

There are several other theorems of this form. One example is the chain-p-equivalence
of Pfister forms, cf. chapter 4, §1 in Scharlau [SchQF].
Another example is Witt’s chain equivalence theorem of diagonal quadratic forms, cf.
chapter 1, (5.2) in Lam [LaQF].

Concerning the first example, one may ask similar questions for central simple algebras
of degree > 2. E.g., for some integer n ≥ 2 let k be a field of characteristic prime
to n, containing a primitive n-th root of unity ζ. Then for a, b, c, d ∈ k∗ such that
(a, b)ζ ∼= (c, d)ζ , does there exist elements e1, . . . , e`−1 ∈ k∗ such that there is a chain
of isomorphisms of length ` of the form

(a, b)ζ ∼= (e1, b)ζ ∼= (e1, e2)ζ ∼= · · · ∼= (e`−2, e`−1)ζ ∼= (c, e`−1)ζ

if ` is odd, or

(a, b)ζ ∼= (a, e1)ζ ∼= (e2, e1)ζ ∼= · · · ∼= (e`−2, e`−1)ζ ∼= (c, e`−1)ζ

if ` is even?
Here (a, b)ζ denotes the central simple k-algebra of degree n defined by the presentation

〈X,Y : Xn = a, Y n = b, XY = ζY X〉 .

If this statement is true, i.e., answered with “yes”, we call it a common slot lemma for
central simple k-algebras of degree n and chains of length `.

J.-P. Tignol answered the question for central simple algebras of degree n = 3 and
chains of length ` = 2, by giving a counter-example: There are fields k and elements a,
b, c, d ∈ k∗ with (a, b)ζ ∼= (c, d)ζ , such that for no e ∈ k∗ the following holds:

(a, b)ζ ∼= (a, e)ζ ∼= (c, e)ζ .

Cf. the appendix in [RoCL].

A common slot lemma for exceptional Jordan algebras over quadratically closed fields
was proven by H. P. Petersson & M. L. Racine in [PeSR]. Their methods were
used by M. Rost in [RoCL] in order to show a common slot lemma for central simple
algebras of degree 3 and chains of length 4.
For completeness we reproduce his proof (with minor adaptations) in §14 of this paper.

M. Rost announced a chain lemma for Kummer elements, which we are going to
state below.—A Kummer element in a central simple k-algebra A of degree n is an
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Introduction

invertible element X in A such that its reduced characteristic polynomial has the form
Prd(X, t) = tn − a. Furthermore, a ζ-pair in A is a pair (X,Y ) of Kummer elements in
A such that XY = ζY X, where ζ denotes a primitive n-th root of unity.
We will see in §6 that a ζ-pair (X,Y ) generates the algebra A; so with a := Xn and
b := Y n ∈ k∗ we have A ∼= (a, b)ζ .

Now Rost’s chain lemma says: Let n = p be a prime number and k a p′-closed field,
i.e., k has no finite algebraic extension of degree prime to p. Let A be a division algebra
over k of degree p and ζ ∈ k∗ a primitive p-th root of unity. Then for any two Kummer
elements Z0 and Zp in A, there exist Kummer elements Z1, . . . , Zp−1 in A such that
(Zi−1, Zi) are ζ-pairs for i = 1, . . . , p.
For the last fact we are going to say that Z0, . . . , Zp is a (ζ-)chain of Kummer elements
in A of length p.

As a corollary we easily get a common slot lemma for central simple k-algebras of
degree p and chains of length p, with the field k from above: Let a, b, c, d ∈ k∗ with
A := (a, b)ζ ∼= (c, d)ζ , then there are Kummer elements Z0 and Zp in A with Zp0 = b
if (p ≡ 1 mod 4) or Zp0 = b−1 if (p ≡ 3 mod 4) and Zp = c. We assume that p is odd.
Then there are (in the generic case) Kummer elements Z1, . . . , Zp−1 such that Z0, . . . ,
Zp is a ζ-chain of Kummer elements in A, and we get

A = 〈Z0, Z1〉 = 〈Z1, Z2〉 = · · · = 〈Zp−1, Zp〉 .

In the language of symbols this is

(a, b)ζ ∼= (e1, b)ζ ∼= (e1, e2)ζ ∼= · · · ∼= (ep−2, ep−1)ζ ∼= (c, ep−1)ζ

for suitable ei := Z±ni ∈ k∗.

The following paper consists of two parts:
In the first part we set the notion of ζ-pairs in a more conceptual frame: If (X,Y ) is a
ζ-pair in a central simple k-algebra A of degree n, then we get other ζ-pairs by taking
powers of the two elements X and Y with exponents prime to n, i.e., (Xν , Y µ) is a
ζνµ-pair. The same we can do more generally for a whole chain of Kummer elements.
But the pairs we got by this process do not give anything new. In particular the entries
a and b in the associated symbol (a, b)ζ just change to the ν-th and µ-th power. We
also observe that X and Y generate maximal commutative subalgebras L = k[X] and
K = k[Y ] of A, cf. §6, and that these algebras remain unchanged, even if we first applied
any operation of taking powers, mentioned above. We call the pairs (L,K) arising in
this way a decomposition of A.
In chapter II we analyze these kinds of objects—the triples (A,L,K). We even consider
objects, which are models (over a subfield of k) of this triple.

It is easy to see (cf. §3) that the powers of Y act on L and mutatis mutandis X on K
by conjugation in A. This situation is the subject of chapter I.

In chapter III we give the connection between the decompositions of A and ζ-pairs in
A: We specify several notions of chains and show how they are related. This chapter is
the link to the second part of the paper.

Here we give a geometric view of the main objects—Kummer elements and chains of
Kummer elements: We will find smooth irreducible k-schemes W0(A) and W`(A) which
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classify by their points the Kummer elements and chains of Kummer elements of length
`, up to scaling of the Kummer elements (i.e., we work in projective spaces). By this
interpretation, the problem of the chain lemma becomes a question in Algebraic Geom-
etry, where we have much additional structure. For example we may stress dimension
theory. The problem, if any two (generic) Kummer elements can be connected by a
chain of Kummer elements of length ` now has the following form: Let

π: W`(A) −→ W0(A)×k W0(A)

be the morphism of schemes which on the points is just the projection (Z0, . . . , Z`) 7→
(Z0, Z`) of a chain of Kummer elements of the length ` onto the first and last factor.
Question: Is the morphism dominant, and—if dim W`(A) = dim W0(A) ×k W0(A)—
what is the degree of π?

We will find that dim W`(A) = (`+n)(n− 1) and dim W0(A) = n(n− 1). So one easily
can see that for a chain lemma of a central simple algebra A of degree n we need at
least ` ≥ n.
In the case from above, for central simple algebras of degree 3 we recognize that there
is no chance connecting 2 arbitrary Kummer elements by a chain of length 2—for di-
mensional reasons! In his counter-example, Tignol even showed more: He proved that
one can find two Kummer elements X and Y such that X can not be connected to any
conjugate of Y , by a chain of length 2.
In the end of chapter IV, we show an interesting property about the topology of the
scheme W1(A) of ζ-pairs, i.e., we will describe the closure of the space.

In chapter V, we explicitly work out three cases:
The first case is concerned with the common slot lemma for central simple algebras
of degree 2 and chains of length 2; the “classical” common slot lemma, given at the
beginning.—But of course we do it in our terminology of Kummer elements. We will
see the geometric structure of the chain lemma:
The morphism π: W2(A) −→W0(A)×k W0(A) will be revealed as part of the blowing-
up morphism along the diagonal.
The second case is the chain lemma for central simple algebras of degree 3 and chains
of length 3. We will see that for a quadratically closed field k, almost any two Kummer
elements X and Y can be connected by exactly two chains of Kummer elements of
length 2.
The third case is the case of central simple algebras of degree 3 and chains of length 4,
already mentioned above.

The last chapter gives a new interpretation of the morphism π: We will construct a
more explicit map ω between spaces which are coverings of degree n` and n of W`(A)
and W0(A) ×k W0(A) respectively, and via these coverings ω lies over π. So, one may
ask the question of dominance and even (for n = `) of the degree anew for the map ω.
Finally we will see that our new map ω has a nice interpretation for ` = n:
Let S and T be the maximal tori in PGL(A) given by the subalgebras generated by
Kummer elements X and Y ; where (X,Y ) is a ζ-pair. Then for ` = n odd, the map ω
can be interpreted as the multiplication map

S × T × S × T × · · · × S × T = (S × T )
n+1

2 −→ PGL(A) .
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Acknowledgments: I deeply wish to express my thanks to PD Dr. M. Rost. He took
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Notations

Throughout the paper k denotes a field and—unless specified in a different way—we
denote by k̄ a separable algebraic closure of k. Then Γ = Gal(k̄|k) denotes the absolute
Galois group of k.
Furthermore we use the following “standard” notations:
Eij quadratic matrix (of specified size) with entry 1 at the place (i, j)

and 0 otherwise
diag(d1, . . . , dn) diagonal n× n-matrix with diagonal entries d1,. . . , dn, in this

order, i.e., d1E11 + · · ·+ dnEnn
EigVal(f) set of eigenvalues of some endomorphism f of a vector space
EigVec(f, θ) set of (non-zero) eigenvectors of f to the eigenvalue θ
EigVec(f)

∐
θ∈EigVal(f) EigVec(f, θ)∐

sum in the category of sets, i.e., disjoint union
κx conjugation with the element x in some domain, whenever this

action is defined, i.e., κx(y) = xyx−1

evx evaluation in x, i.e., evx(f) = f(x), whenever f is a map which
can be evaluated in x

Prd(X, t) reduced characteristic polynomial (in the variable t) of
some element X in a central simple algebra

Nrd(X) reduced norm of some element X in a central simple algebra
Trd(X) reduced trace of some element X in a central simple algebra
If X is any scheme and E an OX -module on X, then we denote with E (x), for a point
x ∈ X, the κ(x)-vector space Ex ⊗OX,x κ(x), where in this context κ(x) is the residue
field OX,x/mx of x and Ex the stalk of E at x.
For such an E on a k-scheme X and a k-vector space E, we use the following notations:
A(E) Spec

(
S(Ě)

)
, the k-Scheme, which has E as its k-rational points

P(E) Proj
(
S(Ě)

)
, the k-Scheme, which has E − {0}/k∗ as its k-rational points

V(E ) Spec
(
S(E )

)
P(E ) Proj

(
S(E )

)
Here Ě stands for the k-vector space dual Homk-lin(E, k) of E, and S is the (naturally
graded) symmetric k-algebra on some k-vector space or sheaf of modules on some k-
scheme X. In a similar way, one has to read the k-Schemes GL1(A) and PGL1(A) for
k-algebras A.
Note that in this notation, if one interprets E as a sheaf of OX -modules, for X =
Spec(k), this implies: A(Ě) = V(E) and P(Ě) = P(E).
In most cases we use the notation [x] for some equivalence class of x, however, sometimes
we write ā for (a mod nZ).
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Chapter I

Twisted Cyclic Extensions

A cyclic Galois extension L|k is known to be a Galois extension L|k of finite degree n
with a Galois group Gal(L|k) ∼= Z/nZ.
We can characterize a cyclic Galois extension in the following way: Let L|k be a sepa-
rable field extension of degree n and k̄ = L̄ be a separable algebraic closure of L and k.
Further we denote by L̃ the Galois closure of L in k̄. If θ is a primitive element of L,
i.e., L = k(θ), then θ has n conjugates θ1, . . . , θn in k̄ and hence L̃ = k(θ1, . . . , θn).
Now obviously we can say: L|k is a cyclic Galois extension ⇔ Gal(L̃|k) ∼= Z/nZ.
From Galois theory one knows the morphism

ϕ: Gal(k̄|k) −→ S({θ1, . . . , θn})
γ 7−→ γ|{θ1,...,θn}

from the absolute Galois group of k into the permutation group of the conjugates of
θ. The kernel of this morphism in Gal(k̄|L̃) and therefore the image is isomorphic to
Gal(L̃|k). So we can say: L|k is a cyclic Galois extension ⇔ im(ϕ) ∼= Z/nZ.
In this case im(ϕ) is a group which acts free on the set {θ1, . . . , θn}. The group Gal(k̄|k)
acts on S(θ1, . . . , θn) by conjugation via ϕ. However this action is trivial on im(ϕ).
In the following chapter we will treat objects which are slightly more general than the
cyclic Galois extensions, namely pairs (L,C) where C ⊆ S({θ1, . . . , θn}) is not any
more the image of ϕ but some other cyclic subgroup of order n which is preserved by
the action of the absolute Galois group of k.

§1. Twisted Cyclic Extensions

1. Preliminaries

Let M be a finite set of n elements, S(M) denotes the symmetric group on M and let
C ⊆ S(M) be a transitive cyclic subgroup of order n, i.e., a cyclic subgroup of order
n such that M = {π(m) : π ∈ C} for any m ∈ M . About the normalizer subgroup
NC := {π ∈ S(M) : πCπ−1 = C} one knows:

(1.1) Claim. There is a natural short exact sequence

1→ C
incl
↪−→ NC

κ−→ Aut(C)→ 1
π 7−→ κπ

where κπ(ϕ) = πϕπ−1 is the inner automorphism on S(M) restricted to C, given by
conjugation with π.
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§ 1. Twisted cyclic extensions

Proof: We may assume M = {1, 2, . . . , n} and—since C is a transitive subgroup of
order n—that C is generated by σ := (1 2 . . . n), the permutation which maps i to
i+ 1 modulo n.
Let π ∈ ker(κ) be an element of the kernel of κ. Then πϕ = ϕπ for all elements ϕ ∈ C.
Let i = π(n), then we have

π(j) = σjπσ−j(j) = σjπ(n) = σj(i) = σi+j(n) = σi(j)

for all j, hence π = σi ∈ C.
It remains to show the surjectivity of κ: An automorphism f ∈ Aut(C) = (Z/nZ)∗

is given by some (m mod nZ) ∈ (Z/nZ)∗ such that f : C → C, π 7→ πm. Define
ϕ ∈ Sn = S(Z/nZ) to be Z/nZ ∼−→ Z/nZ, ` mod n 7→ m · ` mod n, then considering

σm = (1m 2m . . . nm) = ϕ (1 2 . . . n) ϕ−1 = κϕ(σ)

one can see both—ϕ ∈ NC and κϕ = f .

The surjective homomorphism κ has sections. There is no canonical section, but we will
see that there is indeed a class of sections which are given naturally.

(1.2) Lemma. For each m ∈M the restriction of κ: NC −→ Aut(C) to

Im := {π ∈ NC : π(m) = m} ∼−→ Aut(C)

is an isomorphism. It gives rise to a section sm: Aut(C) −→ NC of κ: NC −→ Aut(C),
namely its inverse. It can be described by

sm(f): M −→ M

π(m) 7−→ (fπ)(m) ,

for all f ∈ Aut(C) and π ∈ C.

Proof: First of all, the restriction κ: Im → Aut(C) is injective: If π, π′ ∈ Im are two
elements such that κπ = κπ′ , we can conclude π′π−1 ∈ ker(κ) = C and hence π′ = π.
In fact, since π′π−1(m) = m we know π′π−1 = 1.
Now, in order to show that the morphism is surjective, choose an f ∈ Aut(C). Then
the permutation defined by s̃: M →M , π(m) 7→ (fπ)(m) for π ∈ C, is a pre-image of f
lying in Im: We first claim for any π ∈ C:

s̃ π s̃−1 = fπ .

Evaluation with ψ(m) ∈M for ψ ∈ C gives

(s̃ π s̃−1)
(
ψ(m)

)
= (s̃ π)(f

−1
ψ)(m)

= s̃(π f−1
ψ)(m)

= f(π f−1
ψ)(m)

= (fπ ψ)(m)

= (fπ)
(
ψ(m)

)
.

This proves that s̃ ∈ NC—thus we get s̃ ∈ Im, since s̃(m) = m—and that κs̃ = f .
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§ 1. Twisted cyclic extensions

(1.3) Lemma. For any m ∈M and π ∈ C we have the formula sπ(m)(f) = πsm(f)π−1

for every f ∈ Aut(C), i.e.,

sπ(m) = κπ ◦ sm ,

where κπ is the conjugation κπ: NC −→ NC , ϕ 7−→ πϕπ−1. In other words, we have
the commutative diagram �

sm

�
sπ(m)

�
κπ

NC .

NC

Aut(C)

Proof: Since κπ(Im) = Iπ(m) we can change the two right hand side objects in the
diagram to Im and Iπ(m) such that we have to show the commutativity of�

sm

�
sπ(m)

�
κπ

Iπ(m) .

Im

Aut(C)

Now the two diagonal arrows are bijections, and in order to show the commutativity of
the diagram it is equivalent to prove the commutativity of the diagram with the reversed
arrows: �

κ

�
κ

�
κπ

Iπ(m) .

Im

Aut(C)

Thus we have to prove κ ◦ κπ = κ on Im. But this is clear. We even have the commu-
tativity on NC 	

κ



κ

�
κπ

NC ,

NC

Aut(C)

since π is an element of the kernel of κ: NC −→ Aut(C): For any τ ∈ NC

κ ◦ κπ(τ) = κ(πτπ−1)

= κ(π)κ(τ)κ(π−1)
= κ(τ)

and this completes the proof.
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§ 1. Twisted cyclic extensions

(1.4) Claim. For each m ∈M there is an isomorphism of groups

σm: CoAut(C) ∼−→ NC

(ϕ, f) 7−→ ϕsm(f) .

We have the commutative diagram for any π ∈ C�
κ(π,idC )


κπ

� σm�
σm

�
σπ(m)

NC .CoAut(C)

NCCoAut(C)

Proof: With the last lemmas there is nothing to prove anymore. The commutativity
of the right triangle follows from ϕsπ(m)(f) = ϕπsm(f)π−1 = πϕ sm(f)π−1 for ϕ ∈ C
and f ∈ Aut(C). To recall the multiplication in the semidirect product we show the
homomorphism property:

σm
(
(ϕ, f)(ϕ′, f ′)

)(
ψ(m)

)
= σm

(
(ϕ fϕ′, ff ′)

)(
ψ(m)

)
= ϕ ◦ fϕ′ ◦ sm(ff ′)

(
ψ(m)

)
= ϕ ◦ fϕ′ ◦ (ff

′
ψ)(m)

= ϕ ◦ sm(f)
(
(ϕ′ f

′
ψ)(m)

)
= σm(ϕ, f)

(
σm(ϕ′, f ′)

(
ψ(m)

))
= σm(ϕ, f) ◦ σ(ϕ′, f ′)

(
ψ(m)

)
for (ϕ, f), (ϕ′, f ′) ∈ CoAut(C) and ψ ∈ C.

(1.5) Remark. Up to an inner automorphism with an element of C (which is a sub-
group of either CoAut(C) and NC) there is a canonical isomorphism of the groups
CoAut(C) ∼= NC .

(1.6) Lemma. If n is of the form n = 2δn′, where n′ is an odd and squarefree number
and δ = 0, 1, 2, then in (Z/nZ)oAut(Z/nZ) = (Z/nZ)o(Z/nZ)∗ one has

ord(m̄, ā) = n =⇒ ā = 1

for all (m̄, ā) ∈ (Z/nZ)o(Z/nZ)∗.

Proof: Let (m̄, ā) ∈ (Z/nZ)o(Z/nZ)∗ and let m̄ = (m mod nZ), ā = (a mod nZ).
Assume first that n = p is a prime.
If a ≡ 1 (mod p), then

(m̄, ā)p = (m̄, 1)p = (0, 1) .

If a 6≡ 1 (mod p), then

1 + a+ a2 + · · ·+ ap−2 =
ap−1 − 1
a− 1

≡ 0 (mod p)

11
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and therefore

(m̄, ā)p−1 = (m+ am+ · · ·+ ap−2m mod pZ, ap−1 mod pZ) = (0, 1) .

Let first n be (not necessarily odd) squarefree and n = p1 · · · pr be the prime factoriza-
tion of n. We define for i = 1, . . . , r

µi :=
{
pi, if a ≡ 1 (mod pi)
pi − 1, if a 6≡ 1 (mod pi)

and µ := µ1 · · ·µr. Then
(m̄, ā)µ = (0, 1)

since

(Z/nZ)o(Z/nZ)∗ =
r∏
i=1

(Z/piZ)o(Z/piZ)∗ .

Now if ā 6= 1 we have an i such that a 6≡ 1 (mod pi), hence µi = pi − 1 and therefore
µ < n. It follows that ord(m̄, ā) < n.
In the case of n = 4n′ = p2

1p2 · · · pr, where n′ is odd squarefree and p1 = 2 we modify

µi :=


pi, if a ≡ 1 (mod pi) and 2 ≤ i
pi − 1, if a 6≡ 1 (mod pi) and 2 ≤ i
4, if a ≡ 1 (mod pi) and 1 = i
2, if a 6≡ 1 (mod pi) and 1 = i

with µ := µ1 · · ·µr. Then one observes for i = 1 that in (Z/4Z)o(Z/4Z)∗

(m̄, ā)µ1 = (0, 1)

and therefore we have analogously in (Z/nZ)o(Z/nZ)∗

(m̄, ā)µ = (0, 1)

also with µ < n which implies ord(m̄, ā) < n.

(1.7) Corollary. Let π ∈ S(M) be an element of order n and C some transitive cyclic
subgroup of S(M). Assume n = m or n = 2m for some squarefree m. Then the
condition πCπ−1 ⊆ C implies 〈π〉 = C.

Proof: The condition says that π ∈ NC ∼= CoAut(C). It suffices to show the following
statement: If π ∈ Z/nZoAut(Z/nZ) = Z/nZo(Z/nZ)∗ is of order n, then π ∈ Z/nZ,
i.e., π = (m, 1) for some m ∈ Z/nZ. But this is exactly (1.6).

2. Twisted Cyclic Structures

We fix a separable algebraic closure k̄ of a field k. Let Γ := Gal(k̄|k) denote the absolute
Galois group of k. In the following let L be a separable k-algebra of degree n, i.e., L is
a commutative k-algebra with

L̄ := L⊗k k̄ ∼= k̄n

as k̄-algebra (cf. (18.3) in [BI]). Γ acts (continuously) on L̄ by semilinear automorphisms
via Γ× L̄→ L̄, (γ, `⊗ x) 7→ `⊗ γ(x). Obviously L̄Γ = L.

12



§ 1. Twisted cyclic extensions

If ML is the set of the n primitive idempotents of L̄, then there is a canonical identifi-
cation

Autk̄(L̄) === S(ML)
f 7−→ f |ML

,

where S(ML) is the symmetric group on the set ML.

(1.8) Remark. By this identification one can write the morphism considered in (1.4)
as

σe: CoAut(C) −→ Autk̄(L)
(f, ϕ) 7−→ f ◦ se(ϕ) ,

where e ∈ ML is a primitive idempotent of L̄ and C ⊆ Autk̄(L) a transitive cyclic
subgroup of order n, and se(ϕ) ∈ Autk̄(L) is given by

se(ϕ): L̄ −→ L̄∑
c∈C

xc · c(e) 7−→
∑
c∈C

xc · (ϕc)(e) ,

where xc ∈ k̄. Recall that L̄ =
⊕

e∈ML
k̄ · e =

⊕
c∈C k̄ · c(e) .

There is a left action of Γ on the group Autk̄(L) given by

Γ×Autk̄(L) −→ Autk̄(L)

(γ, f) 7−→ γf := (idL⊗γ) ◦ f ◦ (idL⊗γ−1) .

One checks that γf again is k̄-linear, even if the composition on the right hand side
takes place in the larger group Autk(L̄).

(1.9) Remark. There is a canonical identification

Autk(L) ∼−→ Autk̄(L)Γ

f 7−→ f ⊗ idk̄
g|L⊗k ←−7 g .

Proof: All we have to show is g(L ⊗ k) ⊆ L ⊗ k, and this is clear since L̄Γ = L: Let
γ ∈ Γ and ` ∈ L, then g(`⊗ 1) = (γg)(`⊗ 1) = γ

(
g(`⊗ 1)

)
.

The action of Γ on Autk̄(L) is already given by inner automorphisms. Define

ϕL: Γ −→ Autk̄(L) = S(ML)
γ 7−→ ϕL(γ) = (idL⊗γ)|ML

,

i.e., ϕL(γ) has the same effect on ML as (idL⊗γ) but is k-linear.

13



§ 1. Twisted cyclic extensions

(1.10) Claim. The action of Γ on Autk̄(L) is given by κ ◦ ϕL, i.e.,

Γ×Autk̄(L) −→ Autk̄(L)

(γ, f) 7−→ κϕL(γ)(f) = ϕL(γ) ◦ f ◦ ϕL(γ)−1 .

Proof: (
ϕL(γ) ◦ f ◦ ϕL(γ)−1

)
|ML

= ϕL(γ)|ML
◦ f |ML

◦ ϕL(γ)−1|ML

= (idL⊗γ)|ML
◦ f |ML

◦ (idL⊗γ−1)|ML

= γf |ML
.

(1.11) Remark. Let L = k(θ)|k be a separable field extension of degree n. We assume
L ⊆ k̄, so θ ∈ k̄. Let {θ1, . . . , θn} be the set of the n distinct conjugates of θ in k̄. Then
we have the canonical identifications

ML === Homk(L, k̄)
e 7−→ e∗ ,

where e∗:L→ k̄, ` 7→ trL̄|k̄(e`) and

Homk(L, k̄) === {θ1, . . . , θn}
f 7−→ f(θ) .

With this identification of ML with {θ1, . . . θn}, we can give the following interpretation
of ϕL: For γ ∈ Γ the permutation ϕL(γ) ∈ S(ML) is given by

ϕL(γ): {θ1, . . . , θn} ∼−→ {θ1, . . . , θn}
θi 7−→ γθi .

So the map ϕL: Γ −→ S({θ1, . . . , θn}) is just the morphism one knows from Galois
theory.

(1.12) Definition. We call the image im(ϕL)
(
⊆ Autk̄(L)

)
the Galois group of the

k-algebra L and the fixed field k̄ker(ϕL) the splitting field of L.

(1.13) Example. If L|k is a separable field extension, then the splitting field of L
is the Galois closure L̃ of any embedding of L in k̄, and ϕL induces the isomorphism
Gal(L̃|k) ∼−→ im(ϕL).

(1.14) Definition. A twisted cyclic structure on the separable k-algebra L is a

Γ-invariant subgroup of Autk̄(L) which is a transitive cyclic subgroup of order n.
A twisted cyclic extension of k of degree n is a pair (L,C) of a separable k-algebra
L of degree n and a twisted cyclic structure C on L.

(1.15) Remark. A transitive cyclic subgroup C ⊆ Autk̄(L) of order n is a twisted
cyclic structure on L if and only if im(ϕL) ⊆ NC , i.e., if ϕL: Γ→ Autk̄(L) factorizes in

14
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the form Γ τe−→ CoAut(C)
σe
↪−→ Autk̄(L) (for any e ∈ML). Here τe is uniquely defined

by the choice of e; and τe = κ(f,id) ◦ τf(e) for any f ∈ C, as one can see regarding (1.4).

(1.16) Remark. Let k̃ be some other separable algebraic closure of k and α: k̄ ∼−→ k̃
a k-isomorphism, then we have the induced isomorphism

α∗: Autk̄(L⊗k k̄) −→ Autk̃(L⊗k k̃)

f 7−→ α∗(f) = (idL⊗α) ◦ f ◦ (idL⊗α)−1 .

which gives a twisted cyclic structure α∗(C) on L if and only if C is one. In this case,
i.e., if C is a twisted cyclic structure, the subgroup α∗(C) is independent of the choice
of the k-isomorphism α: Let β = α ◦ γ, (γ ∈ Γ) be a second k-isomorphism. Then
β∗(C) = (idL⊗α)(idL⊗γ)C(idL⊗γ)−1(idL⊗α)−1 = (idL⊗α)γC(idL⊗α)−1 = α∗(C),
since γC = C.

(1.17) Example. If n = 2, 3 there is a unique twisted cyclic structure on L because S2

and S3 have exactly one cyclic subgroup of order n, and this one is a normal subgroup.

(1.18) Remark. In general there is not only one twisted cyclic structure on the al-
gebra L. For example if k̄ = k, then the absolute Galois group Γ = 1 is trivial, so
is im(ϕL) and every transitive cyclic subgroup of S(ML) ∼= Sn of order n is a twisted
cyclic structure, and there are exactly (n−1)!/ϕ(n) transitive cyclic subgroups of order
n. (ϕ is the Euler phi function.)

(1.19) Definition. A twisted cyclic structure C on L is called a cyclic structure on
L, if Γ acts trivially on C. Then the pair (L,C) is called a cyclic extension of k of
degree n.

(1.20) Remark. A transitive cyclic subgroup C ⊆ Autk̄(L) of order n is a cyclic
structure on L, if and only if im(ϕL) ⊆ C, because the only elements of Autk̄(L) ∼= Sn
commuting with the elements of C are the elements of C. In other words: C is a cyclic
structure, if and only if one gets the (unique) factorization of ϕL in the form�

τe

�
σe

� ϕL�
CoAut(C) ,C = Co{1}

Autk̄(L)Γ

where again e ∈ML is any primitive idempotent of L̄.

(1.21) Remark. If C is a cyclic structure on L, then one has

C = CΓ ⊆ Autk̄(L)Γ = Autk(L) .

Therefore, if L is a field, then from # Autk(L) ≤ n follows C = Autk(L). Hence L|k is
a cyclic Galois extension with Galois group C.

(1.22) Example. If L|k is a cyclic Galois extension of degree n, then im(ϕL) =
Gal(L|k) is a cyclic structure. It is the only cyclic structure on L, as we have seen
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in (1.21). In the following we will see that it is in fact the only twisted cyclic structure
on L.

(1.23) Definition. A twisted cyclic structure C on L is called a dihedral structure
on L, if Γ acts on C only as identity and taking the inverse, i.e., if one has the following
factorization: � ϕL� κ��

Z/2Z

Aut(C)NCΓ

where the lower right hand arrow takes (0 mod 2Z) to idC and (1 mod 2Z) to f 7→ f−1.

(1.24) Remark. A transitive cyclic subgroup C ⊆ Autk̄(L) of order n is a dihedral
structure on L, if and only if ϕL: Γ→ Autk̄(L) factorizes in the form��

σe

� ϕL��
τe

CoAut(C) ,Co{±1}

Autk̄(L)Γ

where {±1} ⊆ (Z/nZ)∗ = Aut(C) and e ∈ML.

(1.25) Example. For n = 3, 4, 6 every twisted cyclic structure on L is dihedral. In
fact in this case is Aut(C) = (Z/nZ)∗ = Z/2Z.

(1.26) Example. Let L|k be a separable field extension of degree n = 4 of the form
L = k(

√
a,
√
b). Then L|k is Galois and Gal(L|k) ∼= Z/2Z × Z/2Z. There are three

twisted cyclic structures on L (which are already dihedral by (1.25))—the 3 = (n −
1)!/ϕ(n) (transitive) cyclic subgroups of order 4. The action of Γ onML can be identified
with the action of Γ on M := {±

√
a±

√
b}. One observes that im(ϕL) ⊆ S(M) is the

Klein Four Group
U : = {σ ∈ S(M) : σ2 = 1, sgnσ = 1}

= {(rs)(tu) : {r, s, t, u} = M} .
The claim follows since the Klein Four Group U operates on the three cyclic subgroups
by conjugation: One checks this for M = {1, 2, 3, 4}, e.g., consider first

(
(rs)(tu)

)
(1 2 3 4)

(
(rs)(tu)

)−1 =

{
(1 2 3 4)
(4 3 2 1) ,

with {r, s, t, u} = {1, 2, 3, 4}.
The permutation (1 2 3 4) is a generator of one of the three transitive cyclic subgroups
and conjugating it with an element of the group U yields the element itself or its inverse,
i.e., U acts by conjugation on the group generated by (1 2 3 4). We get all the other
generators of the transitive cyclic subgroups by conjugating (1 2 3 4) by any element of
S(M) = S4, and so the conjugation of these generators by an elements of U again yields
the element itself or its inverse. Note that the Klein Four Group is a normal subgroup.
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3. Uniqueness of Twisted Cyclic Structures

Let’s start with a “counter-example” for n = 6.

(1.27) Example. Let n = 6. In S6 we have the elements σ1 := (1 2 3 4 5 6), σ2 :=
(1 4 3 6 5 2) and σ3 = (1 6 3 2 5 4) of order 6, furthermore ϕ := (1 6)(2 5)(3 4) of order
2 and finally ψ := (1 3 5)(2 4 6) of order 3. Also we know for i = 1, 2, 3

ψ = σ2
i ,

ϕσiϕ
−1 = σ−1

i ,

ϕψϕ−1 = ψ2 .

Obviously, the subgroup U := 〈ϕ,ψ〉 (of order 6) generated by ϕ and ψ acts on Ci := 〈σi〉
by conjugation, i.e., U ⊆ NCi . Notice that the three groups C1, C2 and C3 are different!
They are the only cyclic subgroups of order 6 with this last property:
Let C̃ = 〈σ̃〉 ⊆ S6 be a transitive cyclic subgroup of order 6 with U ⊆ NC̃ ∼= C̃oAut(C̃).
After some identification NC̃ = C̃oAut(C̃) we can write ψ = (c, f) ∈ C̃oAut(C̃). Since
ψ = ψ4 and Aut(C̃) ∼= Z/2Z we have f = 1, i.e., ψ = c ∈ C̃. Hence by ord(ψ) = 3
we have ψ = σ̃2 or ψ = σ̃−2. Since σ̃ and σ̃−1 are the only two generators of C̃, we
may assume (1 3 5)(2 4 6) = ψ = σ̃2. Therefore σ̃ has the form σ̃ = (1 a 3 b 5 c) with
(a b c) = (2 4 6). There are three possibilities for substituting the variables a, b and
c by the numbers 2, 4 and 6 (in the right order!), and they yield the elements σ1, σ2

and σ3.
Now, set k = Q and L := Q(ζ3,

3
√

2) where ζ3 is a primitive third root of unity. Then L|k
is Galois of degree 6 and the Galois group Gal(L|k) = im(ϕL) can easily be identified
with U . So L has exactly three twisted cyclic structures.
Note that L|k is a non-abelian Galois extension. This is interesting, since for cyclic
Galois extensions of fields we have the following:

(1.28) Proposition. A cyclic Galois extension L|k of fields of degree n has a unique
twisted cyclic structure—namely the cyclic structure mentioned in (1.22).

Proof: Let C := im(ϕL) be our cyclic (hence twisted cyclic) structure from (1.22),
and we assume that C ′ is another twisted cyclic structure on L. We choose generators:
〈σ〉 = C and 〈τ〉 = C ′.
Then by definition, im(ϕL) = C ⊆ NC′ , i.e., τστ−1 ∈ C. So there is an integer i with
τστ−1 = σi. But σi = τστ−1 is also a generator of C, hence (i mod nZ) ∈ (Z/nZ)∗.
Chose an integer j such that ij ≡ 1 (modn). Then τ jστ−j = σij = σ. Since C is
a transitive subgroup of S(ML) we know by (1.1) that τ j ∈ C, hence τ = τ ij ∈ C.
Therefore C = C ′.

(1.29) Proposition. Assume n = m or n = 2m for some squarefree m. Let C be a
twisted cyclic structure on a separable k-algebra L of degree n, and suppose that there
exists an element π ∈ im(ϕL) of order n, then C = 〈π〉, and C is the only twisted cyclic
structure on L.

Proof: After the identification Autk̄(L) = S(ML) one can use (1.7), which says that
πCπ−1 ⊆ C implies 〈π〉 = C.
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(1.30) Proposition. Let L|k be a separable field extension of degree n. If the con-

dition
(
n, ϕ(n)

)
= 1 holds—in this case n is squarefree—then there exists at most one

twisted cyclic structure on L. (ϕ denotes the Euler phi function!)

Proof: Assume C is a twisted cyclic structure on L, by (1.29) it is enough to find an
element π ∈ im(ϕL) of order n. Certainly there are elements πi ∈ im(ϕL), i = 1, . . . ,m
of order pi, where n = p1 · · · pm. This follows from the fact that n|# im(ϕL).
Identifying somehow NC = CoAut(C) we can write πi = (ci, ϕi) for ci ∈ C and ϕi ∈
Aut(C). We claim ϕi = idC for all i. Otherwise we have 1 6= ord(ϕi) | ord(c1, ϕi) = pi,
i.e., ord(ϕi) = pi. But ord(ϕi) | ϕ(n), which is prime to n. Therefore π := π1 · · ·πm =
(c1 · · · cm, idC) has order p1 · · · pm = n.

(1.31) Remark. Example (1.27) shows that (1.30) doesn’t hold without the condition(
n, ϕ(n)

)
= 1.
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1. C0-Extensions

Again, let k be a field and Γ = Gal(k̄|k) the absolute Galois group of k (for some
separable algebraic closure k̄ of k).
Now fix a natural number n and a continuous discrete Γ-module C0 which is isomorphic
to Z/nZ as a group. Let α: Γ→ Aut(C0) denote the morphism given by the action of
Γ on C0, i.e., α(γ)(c) = γc for γ ∈ Γ, c ∈ C0.

(2.1) Definition. Let L be a separable k-algebra of degree n. A C0-structure on

L is an injective Γ-equivariant morphism ρ: C0 ↪−→ Autk̄(L) = S(ML) of groups such
that im(ρ) is a transitive cyclic subgroup of order n.
A C0-extension is a pair (L, ρ) of a separable k-algebra L of degree n and a C0-structure
ρ on L.

(2.2) Remark. If (L, ρ) is a C0-extension, then im(ρ) ⊆ Autk̄(L) is a twisted cyclic
structure on L and

(
L, im(ρ)

)
is a twisted cyclic extension of k of degree n. On the

other hand: If (L,C) is a twisted cyclic extension, it gives rise to the C-extension(
L, ρ: C

incl
↪−→ Autk̄(L)

)
.

(2.3) Example. Let us take a look at the case of a trivial Γ-module:
If C0 is a trivial Γ-module, then im(ρ) is a cyclic structure on L for any C0-extension
(L, ρ). From (1.21) already follows im(ρ) ⊆ Autk(L) ⊆ Autk̄(L). So the C0-structures
on L are already the injective morphisms C0 ↪−→ Autk(L) of groups. Therefore after
fixing some generator c0 of C0, there is a bijection

{C0-structures on L} ∼−→ {c ∈ Autk(L) : ord(c) = n}
ρ 7−→ ρ(c0) .

Since a cyclic group of order n has exactly ϕ(n) = #(Z/nZ)∗ generators (i.e., elements of
order n), there is a ϕ(n) to 1 correspondence between C0-structures and cyclic structures
on L. In the case C0 = Z/nZ we have the canonical generator (1 mod nZ) and instead
of writing (L, ρ) we may write

(
L, ρ(1 mod nZ)

)
.

2. Classification of C0-Extensions

There is a classification of the C0-extensions of k by the Galois cohomology group
H1(k,C0) = H1(Γ, C0).

(2.4) Definition. A morphism f : (L, ρ) −→ (L′, ρ′) of C0-extensions of k is a mor-
phism f : L→ L′ of k-algebras such that for every c ∈ C0, the diagram�

ρ(c)

�
ρ′(c)

 
f̄

! f̄

L̄′L̄

L̄′L̄
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is commutative. Here f̄ is the morphism

f ⊗ idk̄: L̄ = L⊗k k̄ −→ L′ ⊗k k̄ = L̄′ .

(2.5) Remark. In other words: L̄ and L̄′ become C0-modules via ρ: C0 → Autk̄(L)
and ρ′: C0 → Autk̄(L̄′) and f̄ is a morphism of C0-modules.

(2.6) Remark. The morphisms f and f̄ are then already isomorphisms. In fact f̄
is bijective, since f̄ |ML

: ML → ML′ is bijective: C0 acts free on the sets of primitive
idempotents ML and ML′ .

(2.7) Remark. Recall some well known facts about Galois cohomology; one has the
following groups: Let

Z 1(Γ, C0) = {continuous crossed homomorphisms Γ→ C0}
denote the group of the 1-cocycles of Γ with values in C0. On this group we have (an
equivalence relation given by) the normal subgroup

B1(Γ, C0) = {f : Γ→ C0 : there exists a c ∈ C0 such that f(γ) = γc− c for all γ ∈ Γ}
of the 1-coboundaries.
Then we have the cohomology group H1(Γ, C0) = Z 1(Γ, C0)/B1(Γ, C0). Let

Homcont,Γ(Γ, C0oΓ) := {f ∈ Homcont(Γ, C0oΓ) : pr2 ◦f = idΓ} ,
where pr2:C0oΓ→ Γ is the projection on the second factor. On this group we have the
equivalence relation given by:

f ∼ g :⇐⇒ f = κ(c,1Γ) ◦ g for some c ∈ C0 .

Here κ(c,1Γ) is the conjugation in C0oΓ with the element (c, 1Γ). Let

Homcont,α

(
Γ, C0oAut(C0)

)
:=
{
f ∈ Homcont

(
Γ, C0oAut(C0)

)
: pr2 ◦f = α

}
,

where pr2:C0oAut(C0) → Aut(C0) is the projection on the second factor. On this
group we have the equivalence relation given by:

f ∼ g :⇐⇒ f = κ(c,idC0 ) ◦ g for some c ∈ C0 .

Here κ(c,idC0 ) is the conjugation in C0oAut(C0) with the element (c, idC0). Also, there
are the identifications of these groups

Z 1(Γ, C0) ∼−→ Homcont,Γ(Γ, C0oΓ)

h 7−→ h̃ ,

where h̃(γ) =
(
h(γ), γ

)
and

Z 1(Γ, C0) ∼−→ Homcont,α

(
Γ, C0oAut(C0)

)
h 7−→ h̃ ,

where h̃(γ) =
(
h(γ), α(γ)

)
. They respect the equivalence relations, such that canonically

H1(Γ, C0) ∼= Homcont,Γ

(
Γ, C0oΓ

)
/∼

∼= Homcont,α

(
Γ, C0oAut(C0)

)
/∼ .
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§ 2. C0-extensions

The theorem (2.10) states that there is an identification of isomorphism classes of C0-
extensions and the elements of H1(Γ, C0).

First, we want to assign a cohomology class [h(L,ρ)] ∈ H1(Γ, C0) to a C0-extension (L, ρ):
Let C := im(ρ) be the twisted cyclic structure associated to ρ. Choose a primitive
idempotent e ∈ML of L̄. Now ρ induces the isomorphism

ρ∗: C0oAut(C0) ∼−→ CoAut(C) ,

and there is the commutative diagram"
ρ−1
∗ ◦τe

# τe$ σe%
ρ∗

C0oAut(C0)

Autk̄(L) = S(ML)CoAut(C)Γ

of the factorization of ϕL.
Now define the crossed homomorphism h(L,ρ): Γ→ C0 by the equation ˜h(L,ρ) = ρ−1

∗ ◦τe,
so

(1) ϕL = σe ◦ ρ∗ ◦ ˜h(L,ρ) .

The cohomology class [h(L,ρ)] ∈ H1(Γ, C0) is independent of the choice of the primitive
idempotent e: Let c0 ∈ C0, c := ρ(c0) ∈ C, then by (1.15) τe = κ(c,id) ◦ τc(e), therefore

(ρ−1
∗ ◦ τe) = ρ−1

∗ ◦ κ(c0,id) ◦ τc(e) = κ(c0,id) ◦ (ρ−1
∗ ◦ τc(e)) .

Furthermore it is obvious that [h(L,ρ)] = [h(L′,ρ′)], if (L, ρ) ∼= (L′, ρ′).

(2.8) Lemma. For the 1-cocycle h(L,ρ) which is given by ˜h(L,ρ) := ρ−1
∗ ◦ τe we have

the explicit description: The diagram&
ϕL(−)(e)

' h(L,ρ)(
ρ(−)(e)

ML

C0Γ

is commutative, i.e., for any γ ∈ Γ,

ρ
(
h(L,ρ)(γ)

)
(e) = ϕL(γ)(e) = (idL⊗γ)(e) .

Proof: By definition

(ρ−1
∗ ◦ τe)(γ) = ˜h(L,ρ)(γ) =

(
h(L,ρ)(γ), α(γ)

)
for any γ ∈ Γ. Therefore

τe(γ) =
(
ρ
(
h(L,ρ)(γ)

)
, ρ∗α(γ)

)
,

where ρ∗α(γ) = ρ ◦ α(γ) ◦ ρ−1. Hence

ϕL(γ) = (σe ◦ τe)(γ)

= σe
(
ρ
(
h(L,ρ)(γ)

)
, ρ∗α(γ)

)
= ρ

(
h(L,ρ)(γ)

)
◦ se

(
ρ∗α(γ)

)
;
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§ 2. C0-extensions

for se cf. (1.8). Evaluation in e ∈ML yields

ϕL(γ)(e) = ρ
(
h(L,ρ)(γ)

)
◦ se

(
ρ∗α(γ)

)(
1C(e)

)
= ρ

(
h(L,ρ)(γ)

)(
ρ∗α(γ)1C(e)

)
= ρ

(
h(L,ρ)(γ)

)
(e) .

and we are done.

For the other direction we want to assign a C0-extension (Lh, ρh) to a 1-cocycle h:
Let h ∈ Z 1(Γ, C0), and set M := C0.
Then C0 is canonically embedded in the symmetric group S(M) viz

l: C0 −→ S(M)
c 7−→ lc ,

where lc : M → M is the left multiplication with c. Denote C := im(l). Now let Γ act
on M in the following way: The cocycle h gives a homomorphism

h̃: Γ −→ C0oAut(C0) ,

as described above. The embedding l yields the embedding (which maps isomorphically
to the normalizer NC—cf. (1.4))

σ1 ◦ l∗: C0oAut(C0) −→ S(M)
(c, ϕ) 7−→ lc ◦ ϕ ,

where lc ◦ ϕ: M →M , m 7→ c · ϕ(m) and 1 = 1C0 ∈M .
Composing these two maps one gets the (continuous) morphism

(2)
φh: Γ −→ S(M)

γ 7−→ lh(γ) ◦ α(γ) ,

which gives an action of Γ on M . Now let Γ act semilinear on Lh :=
⊕

m∈M k̄ ·m by

Γ×
⊕
m∈M

k̄ ·m −→
⊕
m∈M

k̄ ·m(
γ, (xm ·m)

)
7−→

(
γ(xm) · φh(γ)(m)

)
for xm ∈ k̄. Then Lh := Lh

Γ
is a separable k-algebra of degree n. (cf. (18.1) in [BI])

(2.9) Remark. Because of Lh⊗k k̄ = Lh, we can identify M with MLh , and then one
has the equality

(3) ϕLh = φh: Γ −→ S(MLh) = S(M) ,

since both morphisms describe the Galois action of Γ on the set of the primitive idem-
potents M = MLh .

Finally we define the C0-structure ρh as the injection l from above:

(4)
ρh:C0 −→ S(MLh) = S(M)

c 7−→ lc .
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§ 2. C0-extensions

We have to prove that ρh is Γ-equivariant, i.e., for every γ ∈ Γ, the diagram)
α(γ)

*
κ◦ϕLh (γ)=κφh(γ)

+
ρh

, ρh

S(M)C0

S(M)C0

is commutative. For every c ∈ C0 we have to verify

κφh(γ)

(
ρh(c)

)
= ρh

(
α(γ)(c)

)
,

i.e., φh(γ) ◦ ρh(c) = ρh(γc) ◦ φh(γ) in S(M). Indeed, evaluation in m ∈M gives

φh(γ) ◦ ρh(c)(m) (2),(4)= lh(γ) ◦ α(γ) ◦ lc(m)

= h(γ) · γ(c ·m)

= γc · h(γ) · γm

= l(γc) ·
(
h(γ) · γm

)
(2),(4)= ρh(γc) ◦ φh(γ)(m) .

If [h] = [h′], then (Lh, ρh) ∼= (Lh′ , ρh′). One can check this directly as in the previous
case or it follows with the proof of (2.10).

Now we can state and prove the Theorem.

(2.10) Theorem. There is a canonical bijection

{C0-extensions of k}/∼= ∼−→ H1(Γ, C0)
[(L, ρ)] 7−→ [h(L,ρ)]

[(Lh, ρh)] ←−7 [h]

between the set of isomorphism classes of C0-extensions and the first Galois cohomology
group.

Proof: We have to prove that the two maps are inverse to each other.

Let h ∈ Z 1(Γ, C0) be a 1-cocycle and write Lh for (Lh, ρh) We will show: h = hLh
.

But it is enough to show h̃ = h̃Lh
: Γ −→ C0oAut(C0). It is even enough to show

σ1 ◦ l∗ ◦ h̃ = σ1 ◦ l∗ ◦ h̃Lh
: Γ −→ S(M) = S(MLh) ,

where 1 = 1C0 ∈M . But that follows from

σ1 ◦ l∗ ◦ h̃Lh
= σ1 ◦ (ρh)∗ ◦ h̃Lh

(1)= ϕLh
(3)= φh
(2)= σ1 ◦ l∗ ◦ h̃ .
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§ 2. C0-extensions

Now let L = (L, ρ) be a C0-extension. hL is defined by the equation

ϕL = σe ◦ ρ∗ ◦ h̃L

for some primitive idempotent e ∈ML. We have to show

(L, ρ) ∼= (LhL , ρhL ) ,

but that means just
L̄ ∼= LhL

as k̄-algebra, Γ-module and C0-module (as described in (2.5)).
The bijective map

r: M −→ ML

c 7−→ ρ(c)(e)
(remember M = C0!) gives an isomorphism

r: LhL =
⊕
c∈M

k̄ · c ∼−→
⊕
m∈ML

k̄ ·m = L̄

(xc · c) 7−→ (xc · r(c))

of k̄-algebras. But r is also Γ- and C0-equivariant: First we claim that the diagram-
ρ∗

. σ1/
σe

0
r∗

S(ML)CoAut(C)

S(M) = S(MLhL
)C0oAut(C0)

with C := im(ρ) and 1 = 1C0 ∈ M , is commutative, i.e., for (c, ϕ) ∈ C0oAut(C0), we
have the identity

σe
(
ρ(c), ρ∗(ϕ)

)
= r∗

(
σ1(c, ϕ)

)
.

To show this, evaluate the equation in an element m = r(d) ∈ ML, d ∈ M = C0, and
the claim follows from

σe
(
ρ(c), ρ∗(ϕ)

)
(m) = σe

(
ρ(c), ρ∗(ϕ)

)(
ρ(d)(e)

)
= ρ(c) · ϕ

(
ρ(d)

)
(e)

= ρ(c · ϕd)(e)
= r(c · ϕd)

= r
(
c · ϕ(r−1(m))

)
= r

(
σ1(c, ϕ)(r−1(m))

)
= r∗

(
σ1(c, ϕ)

)
(m) .

Composing this diagram in the upper left corner with either C0 ↪→ C0oAut(C0) and
h̃L : Γ→ C0oAut(C0) one gets the commutative diagrams1

ρhL

2
ρ

3
r∗

S(ML)

S(M)

C0
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§ 2. C0-extensions

and 4
φhL

5
ϕL

6
r∗

S(ML) .

S(M)

Γ

But this is just the C0- and Γ-equivariance of r, and we are done.

(2.11) Notation. If (L,C) is a twisted cyclic extension of k, then—by virtue of

(2.10)—the C-extension (L, ρ: C
incl
↪−→ Autk̄(L)) maps to [h(L,ρ)] ∈ H1(Γ, C). We will

denote this cohomology class by [L,C] ∈ H1(Γ, C).

(2.12) Remark. If (L, ρ) is a C0-extension and C := im(ρ), then ρ induces an iso-
morphism

ρ∗: H1(Γ, C0) ∼−→ H1(Γ, C) ,
which maps [h(L,ρ)] to [L,C].

3. µn-Extensions and Kummer Extensions

Now we take a look at the case where C0 is µn := µn(k̄), the Γ-module of the n-th roots
of unity. We assume that the characteristic of k does not divide n, so that µn is a cyclic
group of order n.
Let (L, ρ) be a µn-extension of k, i.e., ρ: µn → Autk̄(L) is Γ-equivariant. That means

ρ(γζ) = κϕL(γ)

(
ρ(ζ)

)
= ϕL(γ) ◦ ρ(ζ) ◦ ϕL(γ)−1

= (idL⊗γ) ◦ ρ(ζ) ◦ (idL⊗γ)−1

for ζ ∈ µn and γ ∈ Γ (cf. (1.10)), therefore

(5) ρ(γζ) ◦ (idL⊗γ) = (idL⊗γ) ◦ ρ(ζ) ,

which takes place in Autk(L̄) = Autk(L⊗k k̄).
Define

Kρ := {x ∈ L̄ : ρ(ζ)(x) = ζ · x, for all ζ ∈ µn} .
Of course, if one chooses a primitive n-th root of unity ξ ∈ µn, one has

Kρ = {x ∈ L̄ : ρ(ξ)(x) = ξ · x, } .

(2.13) Claim. The subset Kρ(⊆ L̄) is Γ-invariant with respect to the semilinear action
of Γ on L̄ (cf. the beginning of §1, 2.)

Proof: Let x ∈ Kρ and γ ∈ Γ. Then for any ζ ∈ µn,

ρ(ζ)
(
(idL⊗γ)(x)

)
=
(
ρ(ζ) ◦ (idL⊗γ)

)
(x)

(5)=
(
(idL⊗γ) ◦ ρ(γ

−1
ζ)
)
(x)

= (idL⊗γ)
(
γ−1
ζ · x

)
= ζ · (idL⊗γ)(x) .

and that means (idL⊗γ)(x) ∈ Kρ.
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§ 2. C0-extensions

(2.14) Claim. Kρ is a one dimensional k̄-vector space. The Γ-semilinear action on Kρ
gives a k-vector space Kρ := KΓ

ρ ⊆ L̄Γ = L of k-dimension one.

Proof: Kρ is obviously a vector space, so all we have to prove is dimk̄ Kρ = 1. But
that is clear, regarding the following explicit description: Since

L̄ =
n−1⊕
ν=0

k̄ · πν(e) ,

where e ∈ML is any primitive idempotent and π := ρ(ξ) ∈ S(ML) = Autk̄(L) for some
fixed primitive n-th root of unity ξ ∈ µn, it is obvious that

Kρ =

{
n−1∑
ν=0

αξ−ν · πν(e) : α ∈ k̄

}
,

because for any y :=
∑n−1
ν=0 ανξ

−ν ·πν(e) ∈ L̄, one has ρ(ξ)(y) = ξ ·
∑n−1
ν=0 αν−1ξ

−ν ·πν(e),
where one has to read the index ν modulo n.
For the last claim cf. again (18.1) in [BI].

(2.15) Claim. If x ∈ Kρ is non-zero, i.e., Kρ = k · x, then one has xn ∈ k∗ = k − {0}
and L = k(x).

Proof: Let α ∈ k̄ such that x =
∑n−1
ν=0 αξ

−ν · πν(e) ∈ Kρ − {0}. Then

xn =
n−1∑
ν=0

αn · πν(e) = αn ·
n−1∑
ν=0

πν(e) = αn · 1 .

But of course xn = αn is Γ-invariant, i.e., αn = xn ∈ k̄Γ = k.
Because the Vandermonde determinant

det(ξνω)ν,ω=0,...,n−1 = ±
∏

0≤ν<ω≤n

(ξν − ξω) 6= 0

is non-zero, the set {1, x, x2, . . . , xn−1} is k̄-linearly independent and therefore a basis
of L̄|k̄ and (since x ∈ L) of L|k.

This claim gives rise to the following

(2.16) Definition. A Kummer structure on a separable k-algebra L of degree n is
a one dimensional k-vector subspace K ⊆ L such that for some non-zero element x of
K, one has the following properties

(i) xn ∈ k∗,
(ii) the morphism of k-algebras k[t]/(tn − xn)→ L , t 7→ x is an isomorphism.

(In this case these properties hold for any non-zero element x of K.)
A Kummer extension is a pair (L,K) of a separable k-algebra L of degree n and a
Kummer structure K on L.
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§ 2. C0-extensions

(2.17) Proposition. For a separable k-algebra L of degree n there is a bijection be-
tween the set of µn-structures on L and the set of Kummer structures on L, given
by

{Kummer structures on L} ∼−→ {µn-structures on L}
K 7−→ ρK

Kρ ←−7 ρ ,

where ρK: µn → Autk̄(L) is given by ρK(ζ)(x) = ζ ·x for some non-zero element x of K.

Proof: Note that the definition of ρK is independent of the choice of x and since
L̄ = k̄(x), the morphism ρK is well defined.—The two maps are inverse to each other:
First we prove K = KρK : Let x ∈ K be non-zero, then

KρK = {y ∈ L : ρK(ζ)(y) = ζ · y} ⊇ k · x = K ,

and both are one dimensional vector spaces.
Now for ρ = ρKρ : ρ(ζ)(x) = ζ · x = ρKρ(ζ)(x) for some x ∈ Kρ.

(2.18) Definition. Two Kummer extension (L,K) and (L′,K′) of k are said to be iso-
morphic, if there exists an isomorphism f : L ∼−→ L′ of k-algebras such that f(K) = K′.

(2.19) Remark. Of course the bijection of (2.17) respects this notion of being iso-
morphic, i.e.,

(L,K) ∼= (L′,K′) ⇐⇒ (L, ρK) ∼= (L′, ρK′)

Therefore (2.17) gives us a bijection

{Kummer extensions of degree n}/∼= −→ {µn-extensions of k}/∼=
[(L,K)] 7−→ [(L, ρK)]

[(L,Kρ)] ←−7 [(L, ρ)] ,

between the isomorphism classes of Kummer extensions and the isomorphism classes of
µn-extensions.

Taking the long exact cohomology sequence to the short exact sequence

1 −→ µn −→ k̄∗
n−→ k̄∗ −→ 1

of Γ-modules and using Hilbert’s Theorem 90 we get the well known isomorphism

∂: k∗/k∗n ∼−→ H1(Γ, µn)
a · k∗n 7−→ [hα] ,

where hα: Γ→ µn is given by hα(γ) = α
γα for some root α ∈ k̄∗ of the polynomial tn−a.

With this interpretation of the cohomology group we can describe the composition of
the maps mentioned in (2.19) and (2.10):
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§ 2. C0-extensions

(2.20) Proposition. The composition of the two maps of (2.19) and (2.10)

{Kummer extensions of degree n}/∼= −→ {µn-extensions}/∼=
−→ H1(Γ, µn)
∂−1

−→ k∗/k∗n

is given by the application
[(L,K)] 7−→ K∗n ,

where K∗n = xn · k∗n, if K = k · x.

Proof: We prove this by going a “step back” via ∂, i.e., we show [h(L,ρK)] = [hα],
where α is a solution of tn − xn = 0 in k̄∗. (Note first that xn ∈ k∗ and second that
α = 1⊗ α ∈ k̄ = k ⊗k k̄ but x = x⊗ 1 ∈ L = L⊗k k.)
Going a second step back, we are actually proving the equality

(*) ϕL = σe ◦ ρK∗ ◦ h̃α: Γ −→ S(ML) = Autk̄(L) ,

for a suitable e ∈ML—cf. formula (1). First observe that

e =
1
n

n−1∑
ν=0

(x
α

)ν
is an idempotent, since

e2 =
1
n2

n−1∑
ν,ω=0

(x
α

)ν+ω

= e .

It is even a primitive idempotent because∑
ζ∈µn

ρK∗(ζ)(e) =
1
n

∑
ζ∈µn

n−1∑
ν=0

(
ζ · x
α

)ν

=
1
n

n−1∑
ν=0

∑
ζ∈µn

ζν ·
(x
α

)ν
=

1
n

∑
ζ∈µn

ζ0 ·
(x
α

)0

= 1 .

—Note that ρK(ζ)(e) = 1
n

∑n−1
ν=0

(
ζ·x
α

)ν
. Furthermore

L̄ =
n−1⊕
ν=0

k̄ · xν
(

=
n−1⊕
ν=0

xν(k ⊗k k̄)

)
.

Now evaluation of (*) in γ ∈ Γ and then in the element (for an arbitrary ζ ∈ µn)

e′ := ρK(ζ)(e) =
1
n

n−1∑
ν=0

(
ζ · x
α

)ν
∈ ML

28



§ 2. C0-extensions

of the primitive idempotents, gives on the left side

ϕL(γ)(e′) = (idL⊗γ)(e′)

= (idL⊗γ)

(
1
n

n−1∑
ν=0

(
ζ · x
α

)ν)

=
1
n

n−1∑
ν=0

(γζ · x
γα

)ν
On the other side of (*) we get(

(σe ◦ ρK∗ ◦ h̃α)(γ)
)
(e′) = σe

(
ρK

( α
γα

)
, ρK∗(γ)

) (
ρK(ζ)(e)

)
= ρK

( α
γα

) (
ρK(γζ)(e)

)
= ρK

( α
γα

γζ
) 1
n

n−1∑
ν=0

(x
α

)ν
=

1
n

n−1∑
ν=0

(
γζ
α
γα

x

α

)ν
=

1
n

n−1∑
ν=0

(γζ · x
γα

)ν
This proves the claim.
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Chapter II

Twisted Cyclic Algebras

If we assume that the ground field k, of characteristic prime to n, contains the n-th
roots of unity, then a cyclic algebra A of degree n is a k-algebra of the form

(a, b)ζ := 〈X,Y : Xn = a, Xn = b, XY = ζY X〉

—the k-algebra generated by the two variables X and Y with the three relations Xn−a,
Y n − b and XY − ζY X. Here, a, b ∈ k∗, and ζ is a primitive n-th root of unity.
After the base extension k̄|k we may assume a = b = 1 and we can identify (a, b)ζ with
Mn(k̄) in a way that X = diag(ζ, ζ2, . . . , ζn) and Y is the invertible matrix which maps
the canonical basis vector ei of k̄n to ei+1.
In this chapter, we consider the twisted forms of this kind of algebras, i.e., algebras,
which become, after base extension, isomorphic to a cyclic algebra, together with two
generators fulfilling the three relations from above.

§3. Twisted Cyclic Algebras

In this section again fix a field k and some separable algebraic closure k̄, and let be
Γ = Gal(k̄|k). Choose a positive integer n ≥ 2 relatively prime to the characteristic of
k. We abbreviate µn = µn(k̄).

1. Twisted Cyclic Algebras

A twisted cyclic algebra is a twisted version of the standard triple (A0, L0,K0), which
is defined as follows: A0 := Mn(k) is the k-algebra of the n×n matrices, L0 and K0 are
two commutative subalgebras: L0 is the subalgebra of the diagonal matrices and K0 is
the k-algebra generated by the matrix Y0:

K0 = k[Y0] =
n−1⊕
ν=0

k · Y ν0 , where Y0 :=



0 0 1
1 0 0
0 1 0

. . . . . . . . .
. . . . . . 0

. . . 1 0
0 1 0


is the matrix which maps ei to ei+1. L0 and K0 are maximal commutative k-subalgebras
of A0 (of degree n).
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§ 3. Twisted cyclic algebras

If µn ⊆ k then in Mn(k̄) define for any ζ ∈ µn,

X0(ζ) :=


ζ1

ζ2

. . .
ζn

 .

(3.1) Remark. If µn ⊆ k, then L0 = k[X0], where X0 := X0(ζ) for any primitive n-th
root of unity ζ ∈ µn.

(3.2) Notation. For k-algebras A,L,K,A0, L0,K0, . . . we denote with Ā, L̄, . . . the
k̄-algebras A⊗k k̄, L⊗k k̄, . . .

(3.3) Definition. A twisted cyclic k-algebra (of degree n) is a triple (A,L,K),
where A is a central simple k-algebra of degree n, L and K are commutative k-
subalgebras such that (Ā, L̄, K̄) ∼= (Ā0, L̄0, K̄0) over k̄, i.e., there exists an isomorphism

α: Ā −→ Ā0 = Mn(k̄)

of k̄-algebras such that α(L̄) = L̄0 and α(K̄) = K̄0.
The pair (L,K) is called a (twisted cyclic) decomposition of A.

(3.4) Remark. If (A,L,K) is a twisted cyclic k-algebra and k′ is any separable alge-
braic field extension of k, then (A,L,K)k′ := (A ⊗k k′, L ⊗k k′,K ⊗k k′) is a twisted
cyclic k′-algebra and vice versa. In §6 we will see that the fact holds even for algebraic
field extensions which are not necessarily separable.

(3.5) Lemma. If (A,K,L) is a twisted cyclic k-algebra, then the multiplication map
L⊗k K → A, x⊗ y 7→ xy is an isomorphism of k-modules.

Proof: Of course it is enough to prove this after base change with k̄|k. Because of the
commutative diagram 7

α

8
α

9:
Ā0L̄0 ⊗k̄ K̄0

ĀL̄⊗k̄ K̄

of k̄-modules, where α is defined as in (3.3) and the horizontal arrows are the multi-
plication maps, all we have to consider is the case (Ā0, L̄0, K̄0). But it is easy to see
that

Ā0 =
n−1⊕
ν=0

L̄0 · Y ν0

and so the surjectivity of the map is clear, hence also the injectivity for dimension
reasons.
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§ 3. Twisted cyclic algebras

(3.6) Remark. Since L̄ ∼= L̄0
∼= k̄n and K̄ ∼= K̄0

∼= k̄n as k̄-algebras, L and K are
separable k-algebras of degree n for any twisted cyclic k-algebra (A,L,K) of degree n.

(3.7) Lemma. If (A,L,K) is a twisted cyclic k-algebra, then (A,K,L) is also one.

Proof: We only have to show it for the case (A0, L0,K0), since then

(Ā, K̄, L̄) ∼= (Ā0, K̄0, L̄0) ∼= (Ā0, L̄0, K̄0) .

So let ζ ∈ µn be a primitive n-th root of unity, L̄0 = k̄[X0], K̄0 = k̄[Y0], where
X0 := X0(ζ). For the inner automorphism

κZ0 : Ā0 = Mn(k̄) ∼−→ Ā0 = Mn(k̄)

given by the conjugation with the matrix Z0 := Z0(ζ) := (ζ−ij)i,j=1,...,n ∈ Mn(k̄) we
have κZ0(L̄0) = K̄0 and κZ0(K̄0) = L̄0; more precisely: One checks that Z0X0Z

−1
0 = Y0

and Z0Y0Z
−1
0 = X−1

0 . (The second one follows from the first by taking transposes.)

2. Pairs of Twisted Cyclic Extensions associated to Twisted Cyclic
Algebras

Define for any twisted cyclic k-algebra (A,L,K) of degree n,

K(L,K) := {X ∈ L̄ : Xn = 1, κX(K̄) = K̄} ,

—the elements of L̄∗ of order dividing n which act on K̄ by conjugation. Also

K(K,L) := {Y ∈ K̄ : Y n = 1, κY (L̄) = L̄} .

For these sets, we have the following obvious properties:

(3.8) Proposition. Let (A,L,K) be a twisted cyclic k-algebra of degree n. Then

(i) K(L,K) is a subgroup of L̄∗.

(ii) K(L,K) is Γ-invariant.

(iii) µn ⊆ K(L,K), where we view (µn ⊆)k̄ ⊆ L̄ via k̄ ↪→ L̄, x 7→ 1⊗ x.

(iv) The isomorphism α: Ā ∼−→ Ā0 of k̄-algebras of (3.3) induces an isomorphism
α: K(L,K)

∼−→ K(L0,K0) of groups.

The same holds for K(K,L).

(3.9) Lemma. For the twisted cyclic k-algebra (A0, L0,K0) we have the explicit de-
scription:

K(L0,K0) = {ζX0(ζ ′) : ζ, ζ ′ ∈ µn}
= {ξiX0(ξ)j : i, j = 0, . . . , n− 1}

K(K0,L0) = {ζY j0 : ζ ∈ µn, j = 0, . . . , n− 1}
= {ξiY j0 : i, j = 0, . . . , n− 1} ,

where ξ ∈ µn is any primitive n-th root of unity.
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Proof: Let X ∈ K(L0,K0), then XK̄0X
−1 = K̄0, especially

XY0X
−1 = a0Y

0
0 + a1Y

1
0 + · · ·+ an−1Y

n−1
0

for some ai ∈ k̄. Since X is diagonal we must have ai = 0 for i 6= 1: XY0X
−1 = aY0

for some a ∈ k̄∗, i.e., X = aY0XY
−1
0 , and one observes that X has the form

X =

α1

. . .
αn

 ,

where αi ∈ k̄∗ and αi+1 = aαi for all i (seen modulo n), i.e., αi = aiα for α := αn,
hence an = 1 (thus a = ζ ∈ µn) and X = αX0(ζ). Finally Xn = αn = 1, and that
means α ∈ µn. On the other hand the elements ζX0(ζ ′) obviously lie in K(L0,K0)

The second part follows from the first if one uses the isomorphism

κZ0(ξ): K(L0,K0)
∼−→ K(K0,L0)

ξiX0(ξ)j 7−→ ξiY j0 .

mentioned in (3.7), and (3.8)(iv).

(3.10) Proposition. For any twisted cyclic k-algebra (A,L,K) of degree n, the groups
K(L,K)/µn and K(K,L)/µn are cyclic groups of order n and they are Γ-modules.

Proof: The last part is clear. The first part is certainly true for (A0, L0,K0) as one can
see at the explicit description given in (3.9). But the induced isomorphisms (of groups)

α: K(L,K)/µn ∼−→ K(L0,K0)/µn

α: K(K,L)/µn ∼−→ K(K0,L0)/µn

show the general case.

(3.11) Remark. We immediately get for any two generators (of the cyclic groups)
[X] ∈ K(L,K)/µn and [Y ] ∈ K(K,L)/µn:

K(L,K) = {ζXj : ζ ∈ µn, j = 0, . . . , n− 1}
and

K(K,L) = {ζY j : ζ ∈ µn, j = 0, . . . , n− 1} .
X and Y are any representatives of the classes [X] and [Y ].

(3.12) Corollary. For a twisted cyclic k-algebra (A,L,K) of degree n let [X] ∈
K(L,K)/µn and [Y ] ∈ K(K,L)/µn be generators of the cyclic groups. Then

L̄ = k̄[X] =
n−1⊕
ν=0

k̄Xν and K̄ = k̄[Y ] =
n−1⊕
ν=0

k̄Y ν .

Proof: Again, we only have to prove this for our standard triple (A0, L0,K0). In this
situation it is clear that

X = ξX0(ζ) and Y = ξ′Y j0

for ζ ∈ µn primitive and ξ, ξ′ ∈ µn; and the claim is obvious.
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By definition, K(K,L) resp. K(L,K) are sets of elements of K̄ resp. L̄ which act on L̄ resp.
K̄ by conjugation. Since µn lies in the center of Ā we get the maps

ρL: K(K,L)/µn −→ Autk̄(L)

[Y ] 7−→ κY

and
ρK : K(L,K)/µn −→ Autk̄(K̄)

[X] 7−→ κX .

About these maps one knows:

(3.13) Remark. Let (A,K,L) and (A′, L′,K ′) be twisted cyclic k-algebras of degree
n. Let α: Ā ∼−→ Ā′ be an isomorphism of k̄-algebras such that α(L̄) = L̄′ and α(K̄) =
K̄ ′, then we have the commutative diagram;

α

<
α

=
ρL′

> ρL

Autk̄(L̄′) .K(K′,L′)/µn

Autk̄(L)K(K,L)/µn

The same holds for ρK and ρK′ .

(3.14) Proposition. Let (A,L,K) be a twisted cyclic k-algebra. Then (L, ρL) and
(K, ρK) are K(K,L)/µn- and K(L,K)/µn-extensions.

Proof: The map ρL is Γ-equivariant since for any Y ∈ K(K,L) and γ ∈ Γ

κ(idK ⊗γ)Y = ϕL(γ) ◦ κY ◦ ϕL(γ)−1 = (idL⊗γ) ◦ κY ◦ (idL⊗γ)−1 .

In fact we evaluate in any X ∈ L̄:

κ(idK ⊗γ)Y (X) =
(
(idA⊗γ)Y

)
X
(
(idA⊗γ)Y

)−1

= (idL⊗γ)
(
Y
(
(idL⊗γ)−1X

)
Y −1

)
=
(
(idL⊗γ) ◦ κY ◦ (idL⊗γ)−1

)
(X) .

ρL is injective:
Regarding (3.13) it is enough to consider (A0, L0,K0). Therefore Y0 is a generator of
K(K0,L0)/µn. Now if ρL([Y0]j) = idL̄, then X0 = Y j0 X0Y

−j
0 = ζ−jX0 (X0 = X0(ζ) and

ζ some primitive n-th root of unity) therefore n|j. It is easy to see that im(ρL) is a
transitive subgroup.—Analogously one proves the same fact about about ρK .

(3.15) Proposition. For a twisted cyclic k-algebra (A,L,K) one has the isomorphism

c(A,L,K): K(K,L)/µn ⊗Z K(L,K)/µn ∼−→ µn ⊆ k̄∗

[Y ]⊗ [X] 7−→ XYX−1Y −1 .

of Γ-modules.

Proof: Let X ∈ K(L,K) and Y ∈ K(K,L), then XYX−1Y −1 ∈ K̄∗∩ L̄∗ = k̄∗. Therefore
c := c(A,L,K) is well defined as a map going to k̄∗. Obviously c is Γ-equivariant. c is a
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homomorphism of groups: e.g., let [X] ∈ K(L,K)/µn and [Y ] ∈ K(K,L)/µn be generators
and a, b ∈ Z, then

c([Y a+b]⊗ [X]) = XY a+bX−1Y −a−b

= XY aX−1(XY bX−1Y −b)Y −a

= (XY aX−1Y −a)(XY bX−1Y −b)

= c([Y a]⊗ [X])c([Y b]⊗ [X]) .

The object on the left hand side of the arrow is as an abelian group isomorphic to
Z/nZ⊗Z Z/nZ = Z/nZ, and therefore c factors through µn, the subgroup of k̄∗ of the
elements of order dividing n. In order to show that c is an isomorphism one has to show
that c is surjective. Let ζ ∈ µn. With the isomorphism α: Ā ∼−→ Ā0 of (3.3) we have
the commutative diagram ?

c(A,L,K)

@
α

A
c(A0,L0,K0)

K(K0,L0)/µn ⊗K(L0,K0)/µn

µn

K(K,L)/µn ⊗K(L,K)/µn

All we have to show is ζ ∈ im(c(A0,L0,K0)). But X0(ζ)Y0X0(ζ)−1Y −1
0 = ζ.

Now, one easily gets the following descriptions of the ρ’s.

(3.16) Corollary. For a twisted cyclic k-algebra (A,L,K) we know about ρL and ρK
the following description: Let X ∈ K(L,K) and Y ∈ K(K,L), then

ρL([Y ])(X) = ξ−1X and ρK([X])(Y ) = ξY ,

where ξ = c(A,L,K)([Y ]⊗ [X]) ∈ µn.

(3.17) Remark. For any twisted cyclic k-algebra (A,L,K) there is a commutative
diagram B c(A,L,K)C

switch

D
c(A,K,L)

E
inverse

µn .K(L,K)/µn ⊗K(K,L)/µn

µnK(K,L)/µn ⊗K(L,K)/µn

Starting from a twisted cyclic k-algebra (A,L,K) we got two twisted cyclic extensions
(L,C) and (K,D), where we denote C := C(A,L,K) := im(ρL) and D := D(A,L,K) :=
im(ρK).
Observe the (almost) tautology C(A,L,K) = D(A,K,L) and D(A,L,K) = C(A,K,L).
Additionally we got an isomorphism c(A,L,K): K(K,L)/µn ⊗ K(L,K)/µn ∼−→ µn. This
factorizes through ρL ⊗ ρK in the formF

ρL⊗ρK

G
c(A,K,L)

H
c(A,K,L)

µn .C ⊗D

K(K,L)/µn ⊗K(L,K)/µn
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(3.18) Definition. A pair of twisted cyclic extensions (of degree n) is a tuple(
(L,C), (K,D), c

)
, where (L,C) and (K,D) are twisted cyclic extensions (of degree n)

and c: C ⊗Z D ∼−→ µn is an isomorphism of Γ-modules.

Now we can say: There is a map from the twisted cyclic k-algebras to the pairs of
twisted cyclic extensions of k (of degree n)

(A,L,K) 7−→
(
(L,C(A,L,K)), (K,D(A,L,K)), c(A,L,K)

)
.

In the next section we will ask the question, if every pair of twisted cyclic extensions
comes from a twisted cyclic algebra.
If we have a pair of twisted cyclic extension, associated to a twisted cyclic algebra, we
immediately get back A as a k-module, namely L⊗k K (cf. (3.5)).
How about the multiplication, i.e., what are the relations of the elements of L and K
by multiplication? At least we know it for the elements K(L,K) ⊆ L̄ and K(K,L) ⊆ K̄,
since c(A,L,K) gives us the rule, and that is enough. But since we have only C and D,
we first have to get back the groups K(L,K) and K(K,L).

(3.19) Lemma. Let (A,L,K) be a twisted cyclic k-algebra and let C and D be the
associated twisted cyclic structures on L and K. Then we have the following description:

K(L,K) =

{
ζ ′
n−1∑
ν=0

ζνcν(e) : ζ ′, ζ ∈ µn

}
for any generator c ∈ C and any primitive idempotent e ∈ML;

K(K,L) =

{
ζ ′
n−1∑
ν=0

ζνdν(f) : ζ ′, ζ ∈ µn

}
for any generator d ∈ D and any primitive idempotent f ∈MK .

Proof: First observe that the sets on the right side are independent of the choices!
Let α: Ā → Ā0 be an isomorphism of k̄-algebras as in (3.3). Then α maps bijectively
K(A,L,K) to K(A0,L0,K0), im(ρL) to im(ρL0), ML to ML0 . . . .
So we just have to prove the claim in this case: It is easy to see that κY0 ∈ Autk̄(L)
generates C = C(A0,L0,K0) and that E11 (we denote with Eij the n × n-matrix which
has just one non-zero entry: a “1”at the place (i, j)) is a primitive idempotent of L̄0, in
fact ML0 = {E11, E22, . . . , Enn}. Furthermore

κY ν0 (E11) = Y ν0 E11Y
−ν
0 = E1+ν,1+ν .

thus

ζ ′
n−1∑
ν=0

ζνκY0
ν(E11) = ζ ′

n−1∑
ν=0

ζνE1+ν,1+ν = ζ ′ζ−1X0(ζ) .

Now compare with (3.9). The second part is proved analogously.

Now we can give an intrinsic description of (the inverse of) ρL and ρK without using
the embeddings of L and K in A.
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(3.20) Proposition. Let (A,L,K) be a twisted cyclic k-algebra and ρL, ρK , c =
c(A,L,K) the associated data. Then the inverse maps of ρK and ρL can be described in
the following way:

λK : D −→ K(L,K)/µn

d 7−→

[
n−1∑
ν=0

ζνcν(e)

]
,

where c ∈ C is any generator of C, ζ := c(c⊗ d) and e ∈ML;

λL: C −→ K(K,L)/µn

c 7−→

[
n−1∑
ν=0

ζ−νdν(f)

]
,

where d ∈ D is any generator of D, ζ := c(c⊗ d) and f ∈MK .

Proof: First observe that the maps are well defined and independent of the various
choices, e.g., let’s prove it for λK .
Let c′ be another generator of C, c′ = cω for some integer ω with (ω, n) = 1. Then
ζ ′ := c(c′ ⊗ d) = ζω.[

n−1∑
ν=0

ζ ′c′ν(e)

]
=

[
n−1∑
ν=0

ζωνcων(e)

]
=

[
n−1∑
ν=0

ζνcν(e)

]
.

Let e′ = cω(e) ∈ML be any other primitive idempotent, then[
n−1∑
ν=0

ζνcν(e′)

]
=

[
n−1∑
ν=0

ζνcν+ω(e)

]

=

[
ζ−ω

n−1∑
ν=0

ζν+ωcν+ω(e)

]

=

[
ζ−ω

n−1∑
ν=0

ζνcν(e)

]

=

[
n−1∑
ν=0

ζνcν(e)

]
.

The same holds for λL. Also λK is a homomorphism. Let α, β ∈ Z

λK(dαdβ) =

[
n−1∑
ν=0

ζ(α+β)νcν(e)

]

=

[
n−1∑
ν=0

ζανζβνcν(e)

]

=

[
n−1∑
ν=0

ζανcν(e)

][
n−1∑
ν=0

ζβνcν(e)

]
= λK(dα)λK(dβ) ;
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the proof for λL is similar.
In order to show that λK = ρ−1

K we only need to prove λK
(
ρK([X])

)
= [X] for X ∈

K(L,K). Again by reasons of “functoriality”(cf. (3.13)) it is enough to consider the case
(A0, L0,K0), so we will show λK0

(
ρK0([X0])

)
= [X0] for any X0 = X0(ζ) ∈ K(L,K):

λK0

(
ρK0([X0])

)
= λK0(κX0)

=

[
n−1∑
ν=0

ζνY ν0 E11Y
−ν
0

]

=

[
n−1∑
ν=0

ζνE1+ν,1+ν

]

=

[
ζ−1

n−1∑
ν=0

ζνEνν

]
= [ζ−1X0] = [X0] ;

note that ζ = c(A0,L0,K0)([Y0]⊗ [X0]). Using (3.7) together with (3.17) the claim for λL
follows from the proven one. Alternatively one can prove it directly like above.

3. Twisted Cyclic Algebras associated to Pairs of Twisted Cyclic
Extensions

Now we want to go the other direction. Given a pair of twisted cyclic extensions(
(L,C), (K,D), c

)
of degree n we ask: Is there a central simple k-algebra A of degree

n together with embeddings L ↪→ A, K ↪→ A such that (A,L,K) is a twisted cyclic
k-algebra and the associated pair

(
(L,C(A,L,K)), (K,D(A,L,K)), c(A,L,K)

)
is the given

one? If there is one it must be L ⊗k K by (3.5) and C, D, c will give us the right
multiplication on it.

(3.21) Lemma. Given a pair
(
(L,C), (K,D), c

)
of twisted cyclic extensions of degree

n then the following maps are well defined injective morphisms of Γ-modules, indepen-
dent of the various choices:

λK : D −→ L̄∗/µn

d 7−→

[
n−1∑
ν=0

ζνcν(e)

]
,

where c ∈ C is any generator of C, ζ := c(c⊗ d) and e ∈ML;

λL: C −→ K̄∗/µn

c 7−→

[
n−1∑
ν=0

ζ−νdν(f)

]
,

where d ∈ D is any generator of D, ζ := c(c⊗ d) and f ∈MK .

Proof: The independence of the choices are proved exactly the same way as in the
proof of (3.20).
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The injectivity and the fact that the maps go to the units of L̄ and K̄: Taking the
identification L̄ ∼= k̄n of k̄-algebras, observe that the matrix, given by (representatives
of) the vectors of λK(d), d ∈ D is (up to some elementary row and column operations)
the Vandermonde matrix (ζij)i,j=0,...,n−1 for some primitive n-th root of unity ζ, and
this matrix is invertible.

Now define
K(K,L),c := im(λL) and K(L,K),c := im(λK) .

They are cyclic groups of order n.
Again with the Vandermonde determinant one sees

(3.22) Lemma. If c ∈ C is a generator of C, then the element λL(c) (better: any
representative) is a generator of K(K,L),c and it is a generator of K̄ as a k̄-algebra, i.e.,
K̄ = k̄[λL(c)]. Mutatis mutandis for d ∈ D and L̄.

(3.23) Theorem. Let
(
(L,C), (K,D), c

)
be a pair of twisted cyclic extensions of k.

Then there exists a—up to a unique k-isomorphism—unique twisted cyclic k-algebra
(A,L,K) such that C = C(A,L,K), D = D(A,L,K), c = c(A,L,K).

Proof: Existence: Define A to be L⊗kK as k-module. We have to give a multiplication
on A. But this is the same as giving a—the Γ-action respecting—multiplication on
Ā = L̄ ⊗k̄ K̄. Choose any primitive idempotents e ∈ ML and f ∈ MK and some
generators c ∈ C and d ∈ D, then (because c is an isomorphism) ζ := c(c⊗ d) ∈ µn is a
primitive n-th root of unity. Set

`K :=
n−1∑
ν=0

ζνcν(e) and `L :=
n−1∑
ν=0

ζ−νdν(f) ,

then λK(d) = [`K ] ∈ L̄∗/µn, and λL(c) = [`L] ∈ K̄∗/µn and from (3.22) we know

L̄ = k̄[`K ] =
n−1⊕
ν=0

k̄ · `νK and K̄ = k̄[`L] =
n−1⊕
ν=0

k̄ · `νL .

There is a well defined isomorphism

L̄⊗k̄ K̄ ∼−→ Ā0

`iK ⊗ `
j
L 7−→ X0(ζ)iY j0

of k̄-modules.
The two restrictions L̄ ↪→ L̄⊗k̄ K̄ → Ā0 and K̄ ↪→ L̄⊗k̄ K̄ → Ā0 are monomorphisms of
k̄-algebras, and we can define (by structure transport via this isomorphism) on L̄⊗k̄ K̄
a k̄-algebra structure such that L̄ and K̄ are k̄-subalgebras. The semilinear action of Γ
on L̄ ⊗k̄ K̄ is even an action on the new k̄-algebra: For that, all we have to consider
is that Γ respects the multiplication of the pair `K and `L. We know `K`L`

−1
K `−1

L = ζ
since X0(ζ)Y0X0(ζ)−1Y −1

0 = ζ. For an element γ ∈ Γ we have γc = ci and γd = dj for
some integers i, j which are prime to n. Hence

γζ = γc(c⊗ d) = c(γc⊗ γd) = c(ci ⊗ dj) = ζij ,
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and this implies γ`Kγ`Lγ`−1
K

γ`−1
L = γζ. In fact

γ`K =
n−1∑
ν=0

(γζ)ν(γc)ν(γe)

=
n−1∑
ν=0

ζijνciν(γe)

=
n−1∑
ν=0

ζjνcν(γe)

=

(
n−1∑
ν=0

ζνcν(γe)

)j

=

(
n−1∑
ν=0

ζνcν+p(e)

)j

=

(
ζ−p

n−1∑
ν=0

ζνcν(e)

)j
= ζ−pj`jK ,

where p is an integer such that γe = cp(e).
Analogously γ`L = ζqi`iL for some integer q such that γf = dq(f).
So from `K`L = ζ`L`K follows `jK`

i
L = ζij`iL`

j
K , i.e.,

γ`K
γ`L

γ`−1
K

γ`−1
L = `jK`

i
L`
−j
K `−iL = ζij = γζ

Now we have a k-algebra structure on A. Finally we have to show that C = C(A,L,K),
D = D(A,L,K) and c = c(A,L,K).
Claim: ρL(`L) = c, i.e., κ`L = c: L̄→ L̄. It suffices to prove it for evaluation in `K ∈ L̄:

κ`L(`K) = `L`K`
−1
L = ζ−1`K

= ζ−1
n−1∑
ν=0

ζνcν(e)

=
n−1∑
ν=0

ζν−1cν(e)

=
n−1∑
ν=0

ζνcν+1(e)

= c
n−1∑
ν=0

ζνcν(e)

= c `K ;

analogously ρK(`K) = d.—The claim c = c(A,L,K) is obvious.
Uniqueness: Let (A,L,K) and (B,L,K) be two twisted cyclic k-algebras such that
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C(A,L,K) = C(B,L,K), D(A,L,K) = D(B,L,K) and c(A,L,K) = c(B,L,K): C⊗D → µn. Then
the isomorphisms of (3.5) yield an isomorphism δ of k-modules such thatI

α

J
β

K
δ

B

A

L⊗K

commutes. Here α and β denote the multiplication morphisms. We have to show that
δ is a morphism of k-algebras. We verify it after the base extension k̄|k. Let `K ∈ L̄
and `L ∈ K̄ be—as above—elements representing λK(d), λL(c), then we know

Ā =
n−1⊕
i,j=0

k̄ · α(`K)iα(`L)j and B̄ =
n−1⊕
i,j=0

k̄ · β(`K)iβ(`L)j .

Now we have to show only

δ
(
α(`K)α(`L)α(`K)−1α(`L)−1

)
= β(`K)β(`L)β(`K)−1β(`L)−1 .

But the two groups K(L,K) derived from the two twisted cyclic algebras are equal (cf.
(3.19)), and also the two groups K(K,L). Also `K ∈ K(L,K), `L ∈ K(K,L), hence

α(`K)α(`L)α(`K)−1α(`L)−1 = c(A,L,K)([`L]⊗ [`K ])

= c(B,L,K)([`L]⊗ [`K ])

= β(`K)β(`L)β(`K)−1β(`L)−1 .

(3.24) Notation. In the following we will denote the algebra A constructed in the

proof of (3.23) with A
(
(L,C), (K,D), c

)
.

4. A Cohomological Classification of Twisted Cyclic Algebras

We want to classify the twisted cyclic k-algebras of degree n.
Since the twisted cyclic k-algebras are exactly the objects which become—after the
base field extension k̄|k—isomorphic to our standard model (A0, L0,K0), the set of
isomorphism classes of twisted cyclic k-algebras of degree n is the first Galois cohomology
group over k with values in the automorphism group of our standard model. Cf. chapter
X, §2 in [SeLF] or chapter VII, 29.A in [BI].

(3.25) Definition. An isomorphism of twisted cyclic k-algebras f : (A,L,K) ∼−→
(A′, L′,K ′) is an isomorphism f : A ∼−→ A′ of k-algebras such that f(L) = L′ and
f(K) = K ′. The set of the automorphisms of a twisted cyclic k-algebra (A,L,K) will
be denoted by Aut(A,L,K).

(3.26) Remark. As we have seen earlier, an isomorphism f : (A,L,K) ∼−→ (A′, L′,K ′)
of twisted cyclic k-algebras induces isomorphisms

f : K(L,K)
∼−→ K(L′,K′) and f : K(K,L)

∼−→ K(K′,L′)
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as well as

f : K(L,K)/µn ∼−→ K(L′,K′)/µn and f : K(K,L)/µn ∼−→ K(K′,L′)/µn .

So in the case of an automorphism f ∈ Aut(A,L,K) we get the induced automorphisms

f(L,K) := f : K(L,K)/µn ∼−→ K(L,K)/µn and f(K,L) := f : K(K,L)/µn ∼−→ K(K,L)/µn ,

i.e., f(L,K) ∈ Aut(K(L,K)/µn) and f(K,L) ∈ Aut(K(K,L)/µn).
From (3.10) we know that K(L,K)/µn and K(K,L)/µn are cyclic groups of order n.
Therefore we have the canonical identifications

(Z/nZ)∗ === Aut(K(L,K)/µn)

(ν mod nZ) 7−→ ([X] 7→ [Xν ])

and
(Z/nZ)∗ === Aut(K(K,L)/µn)

(ν mod nZ) 7−→ ([Y ] 7→ [Y ν ])

where here [X] and [Y ] stand for (X mod µn) and (Y mod µn). So we will view f(L,K)

and f(K,L) also as elements of (Z/nZ)∗.

(3.27) Lemma. With these identifications we have

f(L,K) · f(K,L) = (1 mod nZ) ∈ (Z/nZ)∗

for any automorphism f ∈ Aut(A,L,K) of a twisted cyclic k-algebra (A,L,K) of de-
gree n.

Proof: We may assume that k = k̄ and hence that (A,L,K) = (A0, L0,K0) is our
standard triple. Regarding f(L,K) = (ν mod nZ) and f(K,L) = (ν′ mod nZ) as elements
of (Z/nZ)∗, then

f(L,K): K(L,K)/µn ∼−→ K(L,K)/µn

[X0(ξ)] 7−→ [X0(ξ)ν ]
for any ξ ∈ µn, and

f(K,L): K(K,L)/µn ∼−→ K(K,L)/µn

[Y m0 ] 7−→ [Y mν
′

0 ]
for any m ∈ Z.
Now for any primitive n-th root ζ ∈ µn of unity

ζ = f(ζ)

= f
(
X0(ζ)Y0X0(ζ)−1Y −1

0

)
= X0(ζ)νY ν

′

0 X0(ζ)−νY −ν
′

0

= ζνν
′
.

Therefore νν′ ≡ 1 (mod n).

Now we assume that µn = µ(k̄) ⊆ k.
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(3.28) Lemma. If ζ ∈ µn is a primitive n-th root of unity, then for an automorphism
f ∈ Aut(A0, L0,K0), the following conditions are equivalent

(i) f(Y0) ∈ µn · Y0

(ii) f
(
X0(ζ)

)
∈ µn ·X0(ζ)

(iii) f
(
X0(ξ)

)
∈ µn ·X0(ξ) for all ξ ∈ µn

(iv) f(L0,K0) = (1 mod nZ) is the identity

(v) f(K0,L0) = (1 mod nZ) is the identity.

Proof: The equivalence of (i) and (v) as well as (ii) and (iv) is trivial since [X0(ζ)] and
[Y0] are generators of the cyclic groups K(L0,K0)/µn and K(K0,L0)/µn.
The equivalence of (iv) and (v) is just (3.27).
The equivalence of (ii) and (iii) is clear.

(3.29) Lemma. There is an injective morphism

µn × (Z/nZ) ↪−→ Aut(A0, L0,K0)
(ξ, m̄) 7−→ κ(ξ,m̄)

where
κ(ξ,m̄) := κX0(ξ)Ym0

: A0
∼−→ A0

Z 7−→ X0(ξ)Y m0 ZY −m0 X0(ξ)−1 .

—We write m̄ for (m mod nZ).
The image of this injection is the set of all automorphisms f ∈ Aut(A0, L0,K0) which
fulfill the conditions of (3.28).

Proof: The map is a morphism since

κX0(ξ)Ym0
◦ κX0(ξ′)Ym

′
0

= κ
X0(ξξ′)Y

(m+m′)
0

for ξ, ξ′ ∈ µn and m, m′ ∈ Z. This follows from the fact that

X0(ξ′)Y m0 = ξ′mY m0 X0(ξ′)

and hence κX0(ξ′) ◦ κYm0 = κYm0 ◦ κX0(ξ′).
Injectivity : Let (ξ, m̄) ∈ µn × (Z/nZ) such that κ(ξ,m̄) is the identity. Then

X0(ζ) = κ(ξ,m̄)

(
X0(ξ)

)
= X0(ξ)Y m0 X0(ζ)Y −m0 X0(ξ)−1

= ζ−mX0(ζ)

for any ζ ∈ µn, hence m ≡ 0 (mod n).

Y0 = κ(ξ,m̄)(Y0)

= X0(ξ)Y m0 Y0Y
−m
0 X0(ξ)−1

= X0(ξ)Y0X0(ξ)−1

= ξY0 ,

hence ξ = 1.
For the last statement, first note that for any (ξ, m̄) ∈ µn × (Z/nZ), the induced
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morphism
(κ(ξ,m̄))(L0,K0): K(L0,K0)/µn ∼−→ K(L0,K0)/µn

is the identity, since
κ(ξ,m̄)

(
X0(ζ)

)
= ζ−mX0(ζ)

for any ζ ∈ µn. Cf. (3.28).
On the other hand let f ∈ Aut(A0, L0,K0) such that the conditions of (3.28) hold for
f . Then f(Y0) = ξY0 for some ξ ∈ µn. Choose a primitive n-th root of unity ζ ∈ µn,
then we also have by (3.28) f

(
X0(ζ)

)
= ζ−mX0(ζ) for some m ∈ Z.

Obviously now f = κ(ξ,m̄), since both automorphisms are equal on the generators of
A0,—X0(ζ) and Y0.

As a consequence we get

(3.30) Proposition. There are two short exact sequences

0 −→ µn × (Z/nZ) ↪−→ Aut(A0, L0,K0) −→ Aut(K(L0,K0)/µn) −→ 1

f 7−→ f(L0,K0)

and
0 −→ µn × (Z/nZ) ↪−→ Aut(A0, L0,K0) −→ Aut(K(K0,L0)/µn) −→ 1

f 7−→ f(K0,L0) .

The surjective morphisms on the right hand side have the following sections:

Aut(K(L0,K0)/µn) = (Z/nZ)∗ −→ Aut(A0, L0,K0)

ν̄ = (ν mod nZ) 7−→ fν̄

and
Aut(K(K0,L0)/µn) = (Z/nZ)∗ −→ Aut(A0, L0,K0)

ν̄ = (ν mod nZ) 7−→ gν̄

where fν̄ and gν̄ are given by

fν̄ : A0
∼−→ A0

X0(ξ) 7−→ X0(ξ)ν

Y0 7−→ Y
(ν−1)
0

and
gν̄ : A0

∼−→ A0

X0(ξ) 7−→ X0(ξ)(ν−1)

Y0 7−→ Y ν0

for any ξ ∈ µn; and ν−1 denotes any integer such that νν−1 ≡ 1 (mod n).

Proof: The first part of the proposition—except for the surjectivity in the sequences—
is just (3.28) and (3.29).
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The surjectivity follows with the sections: For the fact that fν̄ and gν̄ are well de-
fined automorphisms of (A0, L0,K0) observe that they conserve the relation of the two
generators X0(ζ) (for any primitive n-th root ζ ∈ µn), Y0 and their images, e.g., for fν̄ :

X0(ζ)νY (ν−1)
0 X0(ζ)−νY −(ν−1)

0 = ζνν
−1

= ζ = X0(ζ)Y0X0(ζ)−1Y −1
0 .

It is obvious that the applications ν̄ 7→ fν̄ and ν̄ 7→ gν̄ are morphisms and sections.

(3.31) Remark. For every ν̄ ∈ (Z/nZ)∗ the automorphisms fν̄ and gν̄ are inverse to
each other, i.e., fν̄ ◦ gν̄ = gν̄ ◦ fν̄ = idA0 .

In our situation of (3.30), the right hand side objects of the short exact sequences act on
the left hand side objects, in a well known manner: E.g., in the first case, one takes a pre-
image ϕ ∈ Aut(A0, L0,K0) of an element ν̄ ∈ Aut(K(L0,K0)/µn) = (Z/nZ)∗ (one may
take ϕ = fν̄) and, after identification of µn× (Z/nZ) with its image in Aut(A0, L0,K0),
the action of ν̄ on µn × (Z/nZ) is given by conjugation with ϕ. One knows that this is
in fact a well defined action.

How do these actions look like in our case?

(3.32) Lemma. The actions of the groups Aut(K(L0,K0)/µn) and Aut(K(K0,L0)/µn)
on the group µn × (Z/nZ) from above can be described in the following way:
After the identification Aut(K(L0,K0)/µn) = (Z/nZ)∗, the action of this group is

(Z/nZ)∗ ×
(
µn × (Z/nZ)

)
−→ µn × (Z/nZ)(

ν̄, (ξ, m̄)
)
7−→ (ξν , ν̄−1m̄) .

After the identification Aut(K(K0,L0)/µn) = (Z/nZ)∗, the action of this group is

(Z/nZ)∗ ×
(
µn × (Z/nZ)

)
−→ µn × (Z/nZ)(

ν̄, (ξ, m̄)
)
7−→ (ξ(ν−1), ν̄m̄)

where ν−1 is any integer such that νν−1 ≡ 1 (mod n).

Proof: For the first case we choose ϕ = fν̄ and we have to prove

fν̄ ◦ κ(ξ,m̄) = κ(ξν ,ν̄−1m̄) ◦ fν̄ .

It is enough to verify this equation after evaluation in X0(ζ) (for any ζ ∈ µn) and Y0:

(fν̄ ◦ κ(ξ,m̄))
(
X0(ζ)

)
= fν̄

(
κ(ξ,m̄)

(
X0(ζ)

))
= fν̄

(
ζ−mX0(ζ)

)
= ζ−mX0(ζ)ν

= ζ−mX0(ζν)

= κ(ξν ,ν̄−1m̄)

(
X0(ζν)

)
= (κ(ξν ,ν̄−1m̄) ◦ fν̄)

(
X0(ζ)

)
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and
(fν̄ ◦ κ(ξ,m̄))(Y ν0 ) = fν̄

(
κ(ξ,m̄)(Y ν0 )

)
= fν̄(ξνY ν0 )
= ξνY0

= κ(ξν ,ν̄−1m̄)(Y0)

= κ(ξν ,ν̄−1m̄)

(
fν̄(Y ν0 )

)
= (κ(ξν ,ν̄−1m̄) ◦ fν̄)(Y ν0 ) .

The description of the other action follows from the fact that gν̄ = f−1
ν̄ for every

ν̄ ∈ (Z/nZ)∗.

From the last points now follows:

(3.33) Proposition. With these actions we can construct the following semidirect
products and get the isomorphisms(
µn × (Z/nZ)

)
oAut(K(L0,K0)/µn) =

(
µn × (Z/nZ)

)
o(Z/nZ)∗ ∼−→ Aut(A0, L0,K0)(
(ξ, m̄), ν̄

)
7−→ κ(ξ,m̄) ◦ fν̄

and(
µn × (Z/nZ)

)
oAut(K(K0,L0)/µn) =

(
µn × (Z/nZ)

)
o(Z/nZ)∗ ∼−→ Aut(A0, L0,K0)(
(ξ, m̄), ν̄

)
7−→ κ(ξ,m̄) ◦ gν̄ .

Now let again k be a field not necessarily with µn ⊆ k, and let (A,L,K) be a twisted
cyclic k-algebra of degree n. We still have a separable algebraic closure k̄ of k and
Γ = Gal(k̄|k).
Then Γ acts on Aut(Ā, L̄, K̄) via conjugation

Γ×Aut(Ā, L̄, K̄) −→ Aut(Ā, L̄, K̄)

(γ, f) 7−→ (idA⊗γ) ◦ f ◦ (idA⊗γ)−1 .

In an analogous way Γ acts by conjugation on Aut(K(L,K)/µn) and Aut(K(K,L)/µn).
On µn × (Z/nZ) the group Γ may act in the obvious way.

(3.34) Lemma. The actions of Γ on the groups Aut(K(L,K)/µn) and Aut(K(K,L)/µn)
are trivial, so their identification with (Z/nZ)∗ are even Γ-isomorphisms.

Proof: Let f ∈ Aut(K(L,K)/µn), i.e., there is a ν̄ ∈ (Z/nZ)∗ such that

f : K(L,K)/µn ∼−→ K(L,K)/µn

[X] 7−→ [Xν ] .

Then for any γ ∈ Γ

(idA⊗γ) ◦ f ◦ (idA⊗γ)−1([X]) = (idA⊗γ) ◦ f
(
[(idA⊗γ)−1X]

)
= (idA⊗γ)

(
[(idA⊗γ)−1Xν ]

)
= [Xν ]
= f([X]) .

Analogous for the other action.
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(3.35) Lemma. The injective morphism

µn × (Z/nZ) ↪−→ Aut(Ā0, L̄0, K̄0)
(ξ, m̄) 7−→ κ(ξ,m̄)

is Γ-equivariant.

Proof: For γ ∈ Γ, ξ ∈ µn, m̄ ∈ Z/nZ we have to show

(id⊗γ) ◦ κ(ξ,m̄) ◦ (id⊗γ)−1 = κ(γξ,m̄) .

For any Z ∈ Ā0 we have(
(id⊗γ) ◦ κ(ξ,m̄) ◦ (id⊗γ)−1

)
(Z) = (id⊗γ)

(
X0(ξ)Y m0 ((id⊗γ)−1Z)Y −m0 X0(ξ)−1

)
= (id⊗γ)

(
X0(ξ)Y m0

)
· Z · (id⊗γ)

(
Y −m0 X0(ξ)−1

)
= X0(γξ)Y m0 ZY −m0 X0(γξ)−1

= κ(γξ,m̄)(Z) ,

and we are done.

Now we apply the former propositions to (Ā0, L̄0, K̄0) and we get

(3.36) Theorem. The short exact sequences from (3.30)

0 −→ µn × (Z/nZ) ↪−→ Aut(Ā0, L̄0, K̄0) −→ Aut(K(L0,K0)/µn) −→ 1

and
0 −→ µn × (Z/nZ) ↪−→ Aut(Ā0, L̄0, K̄0) −→ Aut(K(K0,L0)/µn) −→ 1

are sequences of Γ-groups and the morphisms are Γ-equivariant. The two induced
isomorphisms from (3.33)

β:
(
µn × (Z/nZ)

)
oAut(K(L0,K0)/µn) =

(
µn × (Z/nZ)

)
o(Z/nZ)∗ ∼−→ Aut(A0, L0,K0)

and

β′:
(
µn × (Z/nZ)

)
oAut(K(K0,L0)/µn) =

(
µn × (Z/nZ)

)
o(Z/nZ)∗ ∼−→ Aut(A0, L0,K0)

are isomorphisms of Γ-groups.

Now, by the general theory of Galois cohomology we know that the first cohomol-
ogy group over k with coefficients in Aut(Ā0, L̄0, K̄0) classify the twisted objects of
(A0, L0,K0):

(3.37) Remark. There is an isomorphism, i.e., bijection,

{Twisted cyclic k-algebras of degree n}/∼= ∼−→ H1
(
k,Aut(Ā0, L̄0, K̄0)

)
(A,L,K) 7−→ [cγ ] ,

where a representing cocycle Γ→ Aut(Ā0, L̄0, K̄0)
)
, γ 7→ cγ is given by

cγ = α ◦ (idA⊗γ) ◦ α−1 ◦ (idA0 ⊗γ)−1 ;

α is any isomorphism as in the definition (3.3).

Now we fix (e.g.) the first action of (Z/nZ)∗ on µn × (Z/nZ) described in (3.32) and
the theorem (3.36) yields the
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(3.38) Corollary. There is an isomorphism

{Twisted cyclic k-algebras of degree n}/∼= ∼−→ H1
(
k,
(
µn × (Z/nZ)

)
o(Z/nZ)∗

)
(A,L,K) 7−→ [β−1cγ ] .
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§4. Existence of Twisted Cyclic Decompositions of Central
Simple Algebras

In §3, 3., we considered the question if—expressed in a sloppy manner—we can fill in
the gap in (?, L,K). Now we want to fill the gap in (A,L, ?), i.e., we ask if we can
complete L to a twisted cyclic decomposition of A.

The way we are going to find some K is the following: We transfer our situation to Ā0,
i.e., instead of looking for a K in A, we are looking for a Γ-invariant K̄ in Ā—but for
computational reasons we work in Ā0. And all we have to do is pushing the action of Γ
on Ā to an action of Γ on Ā0, which is not necessarily the canonical action.
The main ingredient however is a cohomological one, which we will discuss in the first
part.

1. A Cohomological Lemma

Let (L,C) be a twisted cyclic extension of k of degree n. As always Γ denotes the
absolute Galois group of k—with respect to a chosen separable algebraic closure k̄ of k.
We assume that L is a field.
There is a canonical morphism of Γ-modules

Ξ: HomZ(C, µn) −→ L̄∗/k̄∗

u 7−→
[∑

c∈C u(c) · c(e)
]

for any primitive idempotent e ∈ ML of L̄: Γ acts on the left group in the usual way.
Ξ is independent of the choice of e: Let e′ = c′(e) be any other primitive idempotent,
c′ ∈ C, then ∑

c∈C
u(c) · c(e′) =

∑
c∈C

u(c) · cc′(e)

=
∑
c∈C

u(cc′−1) · c(e)

= u(c′)−1
∑
c∈C

u(c) · c(e) .

Ξ is Γ-equivariant. Let γ ∈ Γ, then giving heed to (1.10)

Ξ(γu) = Ξ
(
γ ◦ u ◦ κϕL(γ)

−1
)

=

[∑
c∈C

γu
(
ϕL(γ)−1cϕL(γ)

)
· c(e)

]

=

[∑
c′∈C

γ
(
u(c′)

)
· (idL⊗γ)

(
c′
(
(idL⊗γ)−1e

))]
= (idL⊗γ)

(
Ξ(u)

)
.

Taking cohomology, this morphism induces the morphism

Ξ∗ := H1(Γ,Ξ): H1
(
Γ,HomZ(C, µn)

)
−→ H1(Γ, L̄∗/k̄∗) .
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(4.1) Lemma. The cohomology group H1(Γ, L̄∗/k̄∗) is isomorphic to the relative
Brauer group Br(L|k), and therefore it is an n-torsion group.

Proof: First we may assume that L is embedded in k̄, i.e., k ⊆ L ⊆ k̄. Let Γ′ :=
Gal(k̄|L) be the absolute Galois group of L which is an open subgroup of Γ of index n.
Note: L̄ does not denote an algebraic closure of L but still the base extension L⊗k K̄.
Claim: L̄∗ is an induced module for Γ′ ⊆ Γ.
The morphism of Γ-modules

ψ: L̄∗ = (L⊗k k̄)∗ ∼−→ MapΓ′(Γ, k̄
∗)∑

ν lν ⊗ xν 7−→
(
τ 7→

∑
ν lντ(xν)

)
is an isomorphism. In fact it is the composition of the obviously bijective morphisms of
Γ-modules

L̄∗ = (L⊗k k̄)∗ ∼−→
∏

σ̄∈Γ/Γ′

k̄∗

∑
ν(lν ⊗ xν) 7−→

(∑
ν σ(lν)xν

)
σ̄

and ∏
σ̄∈Γ/Γ′

k̄∗ ∼−→ MapΓ′(Γ, k̄
∗)

(aσ̄)σ̄ 7−→
(
τ 7→ τaτ̄−1

)(
σw(σ−1)

)
σ̄
←−7 w .

Here σ̄ stands for (σ mod Γ′) and σ is any representative.
Applying cohomology to the short exact sequence

1 −→ k̄∗ −→ L̄∗ −→ L̄∗/k̄∗ −→ 1

of Γ-modules yields, as part of the long exact cohomology sequence, the exact sequence

H1(Γ, L̄∗) −→ H1(Γ, L̄∗/k̄∗) δ−→ H2(Γ, k̄∗) −→ H2(Γ, L̄∗) .

Hilbert’s Theorem 90 and Shapiro’s lemma—via ψ—(cf. [ShPG], II, §2, Theorem 8,
p. 31) shows

H1(Γ, L̄∗) ∼= H1
(
Γ,MapΓ′(Γ, k̄

∗)
) ∼= H1(Γ′, k̄∗) = 1 .

Therefore δ identifies H1(Γ, L̄∗/k̄∗) with the kernel of the right arrow of the latter
sequence. We have the commutative diagramLM

(εk̄∗ )∗

N
ψ∗

H2
(
Γ,MapΓ′(Γ, k̄∗)

)
,

H2(Γ, L̄∗)H2(Γ, k̄∗)

where εk̄∗ is the composition

k̄∗ = (k ⊗k k̄)∗ ↪−→ (L⊗k k̄)∗
ψ−→ MapΓ′(Γ, k̄

∗) ,
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εk̄∗(x)(τ) = τ(x) for x ∈ k̄∗ and τ ∈ Γ,—in concordance with the notation in [ShPG],
II, §3, Proposition 7, p. 33—gives the commutative diagramO (εk̄∗ )∗P

res

Q
shapiro

H2(Γ′, k̄∗)

H2
(
Γ,MapΓ′(Γ, k̄∗)

)
H2(Γ, k̄∗)

Therefore our kernel is equal to the kernel of the restriction, given in the last diagram.
This kernel is known to be the relative Brauer group Br(L|k) and this is n-torsion since
the composition

H2(Γ, k̄∗) res−→ H2(Γ′, k̄∗) cor−→ H2(Γ, k̄∗)
restricted to Br(L|k) is on the one hand zero, and on the other hand it is the multipli-
cation with n.

(4.2) Lemma. Assume that Γ acts trivially on C, i.e., (L,C) is a cyclic extension,
then

Ξ∗: H1
(
Γ,HomZ(C, µn)

)
−→ H1(Γ, L̄∗/k̄∗)

is surjective.

Proof: In this case we have the isomorphism evπ: HomZ(C, µn) ∼−→ µn, u 7→ u(π) of
Γ-modules; here we have chosen a generator π ∈ C of the cyclic group C(⊆ Autk̄(L)).
We will show the surjectivity of the composition

Ξπ∗ := Ξ∗ ◦ (ev−1
π )∗: H1(Γ, µn) −→ H1(Γ, L̄∗/k̄∗) ,

where this morphism is induced by

Ξπ := Ξ ◦ ev−1
π : µn −→ L̄∗/k̄∗

ζ 7−→
[∑n−1

ν=0 ζ
νπν(e)

]
for any primitive idempotent e ∈ML, which we want to fix.
Let us apply cohomology to the two short exact sequences

1 −→ µn −→ k̄∗
n−→ k̄∗ −→ 1

and
1 −→ L̄∗/k̄∗

1−π−→ L̄∗
N−→ k̄∗ −→ 1 ,

l 7−→ l
π(l)

where N is the morphism

N: L̄∗ =
⊕
e′∈ML

k̄∗ · e′ −→ k̄∗

(ae′) 7−→
∏
e′∈ML

ae′ ,

induced by the Norm map NL|k. Then we get the exact sequences

k∗
n−→ k∗

δ−→ H1(Γ, µn) −→ H1(Γ, k̄∗)

51



§ 4. Existence of twisted cyclic decompositions

and
L∗

NL|k−→ k∗
δ−→ H1(Γ, L̄∗/k̄∗) −→ H1(Γ, L̄∗) .

But H1(Γ, k̄∗) = 1 by Hilbert’s Theorem 90 and H1(Γ, L̄∗) = 1 as we have seen in the
proof of (4.1). Therefore we get isomorphisms

δ: k∗/k∗n ∼−→ H1(Γ, µn)
(a mod k∗n) 7−→ [hα] ,

where hα(γ) = α
γ(α) , with some α ∈ k̄∗ such that αn = a, and

δ: k∗/NL|k(L∗) ∼−→ H1(Γ, L̄∗/k̄∗)(
a mod NL|k(L∗)

)
7−→ [hβ ] ,

where for γ ∈ Γ the element hβ(γ) ∈ L̄∗/k̄∗ is given by (1− π)hβ(γ) = β
γ(β) , with some

β ∈ L̄∗ such that N(β) = a. For example one may choose β =
∑
c∈C α · c(e) for some

α ∈ k̄∗ with αn = a. Then β
γ(β) =

∑
c∈C( α

γ(α) ) · c(e) and therefore

hβ(γ) =

[
n−1∑
ν=0

(
α

γ(α)

)ν
πν(e)

]
.

The diagram R Ξπ∗S
proj

T
δ

U
δ

k∗/NL|k L
∗k∗/k∗n

H1(Γ, L̄∗/k̄∗)H1(Γ, µn)

is commutative: For any a, α and β as above,

Ξπ ◦ hα(γ) = Ξπ
(

α

γ(α)

)
=

[
n−1∑
ν=0

(
α

γ(α)

)ν
πν(e)

]
= hβ(γ) .

The claim follows immediately.

(4.3) Proposition. If
(
n, ϕ(n)

)
= 1, then the morphism

Ξ∗: H1
(
Γ,HomZ(C, µn)

)
−→ H1(Γ, L̄∗/k̄∗)

is surjective.

Proof: For any e ∈ML we have the factorization from (1.15)

ϕL: Γ τe−→ CoAut(C) σe−→ Autk̄(L) .

Set Γ′ := τ−1
e (Co{1}) (this group is independent of the choice of e), then we see that

Γ′ acts trivially on C. The field extension k′ := k̄Γ′ |k has the degree n′ := (Γ : Γ′),
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which divides ϕ(n) and thus is prime to n. Therefore (4.2) says that

Ξ′∗: H
1
(
Γ′,HomZ(C, µn)

)
−→ H1(Γ′, L̄∗/k̄∗)

is surjective. Consider that in this case—the situation of k′ as base field—we have
(L′ := L ⊗k k′, C) as (twisted) cyclic extension of degree n, k̄′ = k̄, L̄′ = L′ ⊗k′ ⊗k̄ =
L⊗k k̄ = L̄ and ML′ = ML, especially L̄′∗/k̄′∗ = L̄∗/k̄∗. Now there is the commutative
diagram V Ξ′∗W

Ξ∗

X
cor

Y
cor

H1(Γ, L̄∗/k̄∗) .H1
(
Γ,HomZ(C, µn)

)
H1(Γ′, L̄∗/k̄∗)H1

(
Γ′,HomZ(C, µn)

)

Since H1(Γ, L̄∗/k̄∗) is n-torsion the multiplication with n′ is surjective, but this is also
cor ◦ res, therefore cor is surjective. Since now cor ◦Ξ′∗ = Ξ∗ ◦ cor is surjective, this is
also true for Ξ∗.

2. Galois Actions on Ā0

In this section we are interested in the following problem: Given a k-algebra A such
that Ā ∼= Ā0 as k̄-algebras. How does the action (idA⊗γ) of γ ∈ Γ on Ā look like, after
“transporting” it to Ā0? Especially in the case when we have additional structures like
twisted cyclic decompositions of A.

(4.4) Notation. Let σ ∈ Sn be a permutation, then we denote by Eσ the “permu-
tational matrix” in GLn(k), which is defined by the condition that it maps the i-th
canonical basis vector ei ∈ kn to eσ(i).
For example, if π0 := (1 2 . . . n) ∈ Sn, then we have Y0 = Eπ0 and more general
Y0
ν = Eπν0 for any ν ∈ Z.

(4.5) Lemma. Let X ∈ GLn(k) be an invertible matrix such that the inner automor-
phism κX : A0

∼−→ A0 maps L0 to L0. Then X has the form

X = D · Eσ ,

where D is a diagonal matrix, i.e., D ∈ L0, and σ ∈ Sn is uniquely defined by

κX(Eii) = Eσ(i),σ(i) .

This decomposition of X into a product of a diagonal matrix and a permutational matrix
is therefore unique.

Proof: Since κX is also an automorphism of the k-algebra L0 it permutes the primitive
idempotents E11, . . . , Enn. Hence define σ ∈ Sn by κX(Eii) = Eσ(i),σ(i).
So we have X ·Eii = Eσ(i),σ(i) ·X for all i = 1, 2, . . . , n, and the image of the right-hand-
side endomorphism is k · eσ(i) whereas the image of the left-hand-side endomorphism is
X(k · ei). Therefore X must map k · ei onto k · eσ(i). So X ◦ Eσ−1 maps k · eσ(i) onto
itself, and that means that it is a diagonal matrix.
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(4.6) Lemma. Additionally to the situation in (4.5) we assume that κX maps K0 to
K0. Then D has the form

D = η ·X0(ζ)
for a n-th root of unity ζ ∈ µn(k) and η ∈ k∗. Moreover σ ∈ N〈π0〉 ⊆ Sn is an element
of the normalizer subgroup of 〈π0〉, where again π0 = (1 2 . . . n) ∈ Sn.

Proof: Since κX(Y0) = XY0X
−1 = DEσEπ0E

−1
σ D−1 = DEσπ0σ−1D−1 ∈ K0 = k[Y0]

there exists a λ ∈ k∗ and (i mod nZ) ∈ Z/nZ such that κX(Y0) = λY i0 , i.e., Eσπ0σ−1 =
Y i0 or equivalently σπ0σ

−1 = πi0 —hence the last claim follows. Since the order of Y0

is n, the same holds for the order of κX(Y0) and that means (i mod nZ) ∈ (Z/nZ)∗.
Furthermore (λY i0 )n = κX(Y0)n = E we have λ ∈ µn(k).
Let (j mod nZ) ∈ (Z/nZ)∗, such that ji ≡ 1 (mod nZ). We have

XE−1
σ en = Den = ηen

for some η ∈ k∗.
Claim: D = ηX0(ζ) with ζ = λj .
All we have to check is Deν = ηζνeν . For en this is the definition of η. Now we know

XY0 = λY i0X and EσY0E
−1
σ = Y i0

and the latter can be written as EσY
j
0 E
−1
σ = Y0, i.e., E−1

σ Y0 = Y j0 E
−1
σ . Therefore

Deν = (XE−1
σ )(Y ν0 en)

= XE−1
σ Y ν0 en

= XY νj0 E−1
σ en

= λνjY νji0 XE−1
σ en

= ζνY ν0 ηen

= ηζνeν .

(4.7) Remark. Of course both lemmas also go into the other direction, i.e., if X =
D · Eσ or X = ηX0(ζ)Eσ with σ ∈ N〈π0〉, then κX leaves L0, or both L0 and K0

respectively, invariant.

Now let A be a central simple k-algebra of degree n and L ⊆ A a separable commutative
k-subalgebra of k-dimension n. Then L is a maximal commutative k-subalgebra of A.
We fix an isomorphism α: Ā ∼−→ Ā0 of k̄-algebras with α(L̄) = L̄0. Such an isomorphism
always exist: If α′: Ā ∼−→ Ā0 is any isomorphism of k̄-algebras, then the set α(ML) is a
set of—as projectors—diagonalizable and commuting endomorphisms in Ā0 = Mn(k̄).
Therefore they are simultaneously diagonalizable by say G ∈ GLn(k̄). Now define
α := κG ◦ α′.

(4.8) Claim. We endow the group PGLn(k̄) = GLn(k̄)/k̄∗ with the canonical Γ-action
(or we just say PGLn(k̄) := Ā∗0/k̄

∗.) For every γ ∈ Γ there exists a unique element

(Xγ mod k̄∗) ∈ PGLn(k̄)
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such that the diagram Z (idA⊗γ)[
κXγ ◦(idA0 ⊗γ)

\
α

]
α

Ā0Ā0

ĀĀ

is commutative, i.e., α∗(idA⊗γ) := α ◦ (idA⊗γ) ◦ α−1 = κXγ ◦ (idA0 ⊗γ). Moreover
(Xγ mod k̄∗) defines a 1-cocycle

(Xγ mod k̄∗) ∈ Z 1
(
Γ,PGLn(k̄)

)
.

Proof: Since the morphism α∗(idA⊗γ) ◦ (idA0 ⊗γ)−1: Ā0
∼−→ Ā0 is obviously k̄-linear

we get by Skolem-Noether’s theorem a unique element (Xγ mod k̄∗) ∈ PGLn(k̄) such
that κXγ = α∗(idA⊗γ)◦(idA0 ⊗γ)−1, hence κXγ◦(idA0 ⊗γ) = α∗(idA⊗γ). Let γ, γ′ ∈ Γ,
then

κXγγ′ = α ◦ (idA⊗γγ′) ◦ α−1 ◦ (idA0 ⊗γγ′)−1

= α ◦ (idA⊗γ) ◦ α−1 ◦ α ◦ (idA⊗γ′) ◦ α−1 ◦ (idA0 ⊗γ′)−1 ◦ (idA0 ⊗γ)−1

= α ◦ (idA⊗γ) ◦ α−1 ◦ κXγ′ ◦ (idA0 ⊗γ)−1

= κXγ ◦ (idA0 ⊗γ) ◦ κXγ′ ◦ (idA0 ⊗γ)−1

= κXγ ◦ κ(idA0 ⊗γ)(Xγ′ )

= κXγ(idA0 ⊗γ)(Xγ′ )
,

hence Xγγ′ ≡ Xγ(idA0 ⊗γ)(Xγ′) (mod k̄∗), and (Xγ mod k̄∗) is a crossed homomor-
phism.

(4.9) Notation. If there is no way of misunderstanding we will write γ instead of
(idA⊗γ) and (idA0 ⊗γ), and we will write α∗(γ) for α∗(idA⊗γ).

(4.10) Remark. This is the first step (of two steps) in the definition of a morphism—
which will be the opposite of the standard morphism—from the Brauer group Br(k) to
the cohomology group H2(k, k̄∗); cf. [SeLF], X, §2 and §5.

(4.11) Notation. The set of the primitive idempotents of L0 is

ML0 = {E11, E22, . . . , Enn} .

We identify this set with the set {1, . . . , n} via i 7→ Eii, such that we also can easily
identify S(ML0) with Sn.
The isomorphism α: L̄ ∼−→ L̄0 gives a bijection α: ML

∼−→ ML0 = {1, . . . , n}. This
gives rise to the composition

Γ
ϕL−→ S(ML) α∗−→ S(ML0) = Sn ,

and we will denote for any γ ∈ Γ,

γ̃ := α∗
(
ϕL(γ)

)
∈ Sn .
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In other words we have the commutative diagram^ ϕL(γ)=(idA⊗γ)_`
γ̃

a
α

b
α

cd
{1, . . . , n}{1, . . . , n}

ML0ML0

MLML

and the middle horizontal arrow is defined by Eii 7→ Eγ̃(i),γ̃(i). We have

Eγ̃(i),γ̃(i) = α∗(idA⊗γ)(Eii) = α∗(idA⊗γ)(idA0 ⊗γ)−1(Eii) = κXγ (Eii) .

(4.12) Remark. Since both α∗(idA⊗γ) and (idA0 ⊗γ) leave L̄0 invariant we know by
(4.5) about the matrix Xγ , that it has the form Xγ = Dγ · Eγ̃ , where Dγ is a diagonal
matrix and (Dγ mod k̄∗) ∈ L̄∗0/k̄∗ is unique. But we can say more about Dγ :

(4.13) Proposition. There is a unique 1-cocycle

(D̃γ mod k̄∗) ∈ Z 1(Γ, L̄∗/k̄∗)

such that
Dγ ≡ α(D̃γ) (mod k̄∗) .

Proof: Since α: Ā ∼−→ Ā0 yields am isomorphism α: L̄∗/k̄∗ ∼−→ L̄∗0/k̄
∗ just define

D̃γ mod k̄∗ := α−1(Dγ mod k̄∗) .

All we have to prove is that (D̃γ mod k̄∗) is a 1-cocycle, i.e., for γ, γ′ ∈ Γ,

D̃γγ′ ≡ D̃γ · (idA⊗γ)(D̃γ′) (mod k̄∗) .

Applying α∗ this is equivalent to showing

Dγγ′ ≡ Dγ · α∗(idA⊗γ)(Dγ′) (mod k̄∗) .

We know from (4.8) and (4.12)

Dγγ′Eγ̃γ̃′ ≡ Xγγ′

≡ Xγ(idA0 ⊗γ)(Xγ′)
≡ DγEγ̃(idA0 ⊗γ)(Dγ′Eγ̃′)
≡ DγEγ̃(idA0 ⊗γ)(Dγ′)Eγ̃′ (mod k̄∗) ;

and this is equivalent to

Dγγ′ ≡ DγκEγ̃
(
(idA0 ⊗γ)(Dγ′)

)
(mod k̄∗) .

But the latter equivalence shows that κEγ̃
(
(idA0 ⊗γ)(Dγ′)

)
is diagonal, so it is equal to

κDγ ◦ κEγ̃
(
(idA0 ⊗γ)(Dγ′)

)
= α∗(idA⊗γ)(Dγ′) .

Replacing this in the last equation we get our cocycle condition.
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3. The Existence of a Twisted Cyclic Decomposition

Again, let A be a central simple k-algebra of degree n, let (L,C) be a twisted cyclic
extension of k of degree n and assume that L ⊆ A is a subalgebra of A. Choose
a generator π ∈ C of C and an isomorphism α: Ā ∼−→ Ā0 of k̄-algebras such that
α(L̄) = L̄0.
We may assume that α∗(π) = α ◦ π ◦ α−1 ∈ S(ML0) = Sn is the permutation π0 :=
(1 2 . . . n) ∈ Sn, i.e., (α ◦ π ◦ α−1)(Eii) = Ei+1,i+1. The index is viewed modulo n.
If this is not already the case, then there exists a σ ∈ Sn such that σα∗(π)σ−1 = π0. If
we change α to κEσ ◦ α, then we have our desired property.

(4.14) Lemma. In this situation, the composition

HomZ(C, µn) Ξ−→ L̄∗/k̄∗
α−→ L̄∗0/k̄

∗

can be described as
(α ◦ Ξ)(u) =

[
X0

(
u(π)

)]
.

Proof: We choose for the primitive idempotent e ∈ ML the element e := α−1(Enn).
Then

(α ◦ Ξ)(u) = α

[
n−1∑
ν=0

u(πν)πν(e)

]

=

[
n−1∑
ν=0

u(π)να∗(π)ν(Enn)

]

=

[
n−1∑
ν=0

u(π)νEπν0 (n),πν0 (n)

]

=

[
n−1∑
ν=0

u(π)νEν,ν

]
=
[
X0

(
u(π)

)]
.

(4.15) Theorem. Assume that L is a field and
(
n, ϕ(n)

)
= 1. Then there exists

a separable k-subalgebra K of A of degree n such that (A,L,K) is a twisted cyclic
k-algebra of degree n. Moreover C = C(A,L,K).

Proof: Let (Xγ mod k̄∗) ∈ Z 1
(
Γ,PGLn(k̄)

)
be the 1-cocycle constructed in (4.8).

(This, of course, depends on the choice of α—we take the α from above.) Then, with
Dγ := XγE

−1
γ̃ , by (4.13) there exists a 1-cocycle (D̃γ mod k̄∗) ∈ Z 1(Γ, L̄∗/k̄∗) such

that Dγ ≡ α(D̃γ) (mod k̄∗).
Because of (4.3) there is a 1-cocycle

uγ ∈ Z 1
(
Γ,HomZ(C, µn)

)
such that

[Ξ ◦ uγ ] = [D̃γ ] ∈ H1(Γ, L̄∗/k̄∗) ,
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i.e., there is a ∆ ∈ L̄∗ such that

D̃γ ≡ (Ξ ◦ uγ) · γ∆ ·∆−1 (mod k̄∗)

for all γ ∈ Γ. Applying α and defining ∆0 := α(∆) we get with (4.14)

Dγ ≡ X0

(
uγ(π)

)
· α∗(idA⊗γ)(∆0) ·∆−1

0 (mod k̄∗) ,

For all γ ∈ Γ. But

α∗(idA⊗γ) = Eγ̃ · (idA0 ⊗γ)(∆0) · E−1
γ̃ (mod k̄∗) ,

since ∆0 ∈ L̄0 is diagonal. Therefore

∆0 ·Dγ · Eγ̃ ≡ X0

(
uγ(π)

)
· Eγ̃ · (idA0 ⊗γ)(∆0) (mod k̄∗) ;

in other words: The diagram e κ(DγEγ̃ )◦(idA0 ⊗γ)f
κ(X0(uγ (π))Eγ̃ )◦(idA0 ⊗γ)

g
κ∆0

h
κ∆0

Ā0Ā0

Ā0Ā0

is commutative. If we replace α by κ∆0 ◦ α, then

Xγ = X0

(
uγ(π)

)
· Eγ̃

and (4.7) says that κXγ , and also κXγ ◦ (idA0 ⊗γ), leaves L̄0 and K̄0 invariant. Define
K̄ := α−1(K̄0), then K̄ ⊆ Ā is Γ-invariant. Define K to be K̄Γ, and we are done. The
last statement of the theorem follows, e.g., from the uniqueness of C, cf. (1.30).
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In this section we fix a twisted cyclic k-algebra (A,L,K) of degree n—or equivalently—
a pair of twisted cyclic extensions

(
(L,C), (K,D), c

)
of degree n (which is associated to

this algebra.)
The well known isomorphism between the Brauer group Br(k) of k and the cohomology
group H2(k, k̄∗) gives us a two-dimensional cohomology class [A], associated to the
central simple k-algebra A.
On the other hand we constructed in §2 the one-dimensional cohomology classes [L,C]
and [K,D].
In this rather technical section we will show how these three classes are related.

1. The Theorem

In §2 we constructed the cohomology classes

[L,C] ∈ H1(Γ, C) and [K,D] ∈ H1(Γ, D) .

Their cup-product is a two-dimensional cohomology class

[L,C] ∪ [K,D] ∈ H2(Γ, C ⊗Z D) .

The isomorphism c: C ⊗Z D ∼−→ µn of Γ-modules induces the isomorphism

c∗: H2(Γ, C ⊗Z D) ∼−→ H2(Γ, µn)

of the cohomology groups, and the right-hand-side group can canonically be identified
with the n-torsion part of H2(Γ, k̄∗). (Apply cohomology to the short exact sequence
1 → µn −→ k̄∗

n−→ k̄∗ → 1 and use Hilbert’s Theorem 90 to get the exact sequence
1 δ−→ H2(Γ, µn) −→ H2(Γ, k̄∗) n−→ H2(Γ, k̄∗).) Therefore

c∗
(
[L,C] ∪ [K,D]

)
∈ H2(Γ, k̄∗) .

If we use the well known identification H2(Γ, k̄∗) = Br(k̄)—we will use the construction
of Serre in [SeLF], X, which is the opposite of the standard morphism, constructed by
means of “crossed products”—we can see this class as an element of the Brauer group
of k. On the other hand we have the element [A] ∈ Br(k). They are connected in the
following way:

(5.1) Theorem. Let
(
(L,C), (K,D), c

)
be a pair of twisted cyclic extensions of degree

n and assume that Γ acts transitively on ML, then

c∗
(
[L,C] ∪ [K,D]

)
= −

[
A
(
(L,C), (K,D), c

)]
.

(5.2) Remark. The additional assumption is true, e.g., if L is a field. Of course for
reasons of symmetry, one can alternatively assume that Γ acts transitively on MK .

We will show the theorem by a—lengthy—direct computation with cocycles. In order
to do that we first have to compute a 2-cocycle which represents the cohomology class
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[A] ∈ Br(k) = H2(Γ, k̄∗) and two 1-cocycles representing the cohomology classes [L,C] ∈
H1(Γ, C) and [K,D] ∈ H1(Γ, D).

Recall that the construction given in [SeLF], X, §2 and §5 has two steps: Starting with a
central simple algebra of degree n, one first gets (as shown in (4.8)) a cohomology class
in H1

(
Γ,PGLn(k̄)

)
. By virtue of the connecting morphism δ: H1

(
Γ,PGLn(k̄)

)
−→

H2(Γ, k̄∗) that appears in the long exact cohomology sequence which is associated to
the short exact sequence

1 −→ k̄∗ −→ GLn(k̄) −→ PGLn(k̄) −→ 1

of (non-abelian) Γ-groups, we get the cohomology class [A].

Actually, we will not go all the way but compare the cohomology class of A with the
cup-product in the left-hand group H1

(
Γ,PGLn(k̄)

)
. In order to do that we have to

find a pre-image of the cup-product.

Moreover we are not working with the classes [L,C] and [K,D] but—and this is equiv-
alent because of (2.12) and the remark before (3.18)—with the more explicit [h(L,ρL)] ∈
H1(Γ,K(K,L)/µn) and [h(K,ρK)] ∈ H1(Γ,K(L,K)/µn) constructed in §2, 2.

2. Cocycles Associated to a Twisted Cyclic Algebra

For our twisted cyclic k-algebra (A,L,K) choose an isomorphism α: Ā ∼−→ Ā0 of k̄-
algebras as in (3.3). We adopt the notations of (4.11) and set again π0 := (1 2 . . . n) ∈
Sn = S(ML0). Let Y := α−1(Y0) ∈ K(K,L) and e := α−1(Enn) ∈ML.
Then define π := ρL([Y ]) ∈ C. Since Y and Y0 have order n the cyclic group C is
generated by π.

(5.3) Lemma. The morphism

α∗: S(ML) −→ S(ML0) = Sn

maps π to π0.

Proof: Let i = 1, . . . , n, then

α∗(π)i(Enn) = α
(
πi(e)

)
= α(Y ieY i)

= Y i0EnnY
−i
0

= Eii .

This implies our claim.

Now we want to describe the cohomology class in H1
(
Γ,PGLn(k̄)

)
assigned to the

algebra A, which is mapped to [A] by the morphism δ: H1
(
Γ,PGLn(k̄)

)
−→ H2(Γ, k̄∗)

mentioned above.
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We have done this already in §4, 2.: The cohomology class is given by

[Xγ mod k̄∗] ∈ H1
(
Γ,PGLn(k̄)

)
,

where Xγ is the cocycle we got in (4.8). Now (4.6) tells us that we can write

Xγ = X0(ξγ) · Eγ̃ ,

where ξγ ∈ µn for every γ ∈ Γ. Let us denote the pre-image of X0(ξγ) via α by

X(ξγ) := α−1
(
X0(ξγ)

)
∈ K(L,K) .

For the proof we want to write PGLn(k̄) in a different way: Define the k-vector space
V to be

V :=
⊕
e′∈ML

k · e′

and V̄ := V ⊗k k̄ with the canonical Γ-action: Γ does not permute the components. So
the linear map

β: k̄n −→ V̄

ei 7−→ 1 · πi(e)
for i = 1, · · · , n, is an isomorphism of Γ-modules and it induces an isomorphism

β∗: PGLn(k̄) =
(
GLn(k)⊗k k̄

)
/k̄∗ ∼−→ PGL(V̄ ) =

(
GL(V )⊗k k̄

)
/k̄∗ .

of Γ-groups.
Let now [qγ mod k̄∗] denote the image of [Xγ mod k̄∗] under the induced isomorphism

β∗: H1
(
Γ,PGLn(k̄)

) ∼−→ H1
(
Γ,PGL(V̄ )

)
,

i.e., qγ ∈ GL(V̄ ) is some automorphism of V̄ for every γ ∈ Γ.
In order to describe qγ better let us make some conventions on notations:

(5.4) Notation. If e′, e′′ ∈ ML are some primitive idempotents of L̄, then there a
unique c ∈ C such that e′′ = c(e′). We will write

e′′

e′
:= c .

Furthermore, if c = πν for some ν̄ ∈ Z/nZ, then we will write

logπ(c) := ν̄ .

(5.5) Lemma. A representative qγ of the class [qγ mod k̄∗] ∈ H1
(
Γ,PGL(V̄ )

)
is given

by

qγ :
⊕
e′∈ML

k̄ · e′ −→
⊕
e′∈ML

k̄ · e′

e′ 7−→ ξ
logπ(

γ(e′)
e )

γ · γ(e′) ,

where γ(e′) is an abbreviation for (idA⊗γ)(e′) = ϕL(γ)(e′), which we will use in the
following in connection with the action on the idempotents; cf. (4.9).
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Proof: We denote the linear morphism defined in the lemma by q′γ . We have to show
for γ ∈ Γ,

β−1
∗ (q′γ) ≡ DγEγ̃ (mod k̄∗) ,

and we will show
q′γ
(
β(ei)

)
= β

(
DγEγ̃(ei)

)
for i = 1, . . . , n, and ei is still the i-th basis vector of k̄n.
First we claim: γ̃(i) = logπ(γπ

i(e)
e ).

Since α maps e to Enn ∈ ML0 or—equivalently in our convention of identifying ML0

with the set {1, . . . , n}—to n ∈ {1, . . . , n} and since α∗:S(ML)→ Sn maps γπi to γ̃πi0
we have

α
(
γπi(e)

)
= α∗(γπi)α(e) = γ̃πi0(n) = γ̃(i) = π

γ̃(i)
0 (n) = α

(
πγ̃(i)(e)

)
.

Hence γπi(e) = πγ̃(i)(e)—the claim. Now

β(DγEγ̃ei) = β
(
X0(ξγ)eγ̃(i)

)
= ξγ̃(i)

γ · β(eγ̃(i))

= ξγ̃(i)
γ · πγ̃(i)(e)

= ξγ̃(i)
γ · γπi(e)

= ξγ̃(i)
γ · γ

(
β(ei)

)
= q′γ

(
β(ei)

)
,

since γ̃(i) = logπ(γπ
i(e)
e ) = logπ(γβ(ei)

e ).

(5.6) Remark. If—in the description of the map qγ—one replaces the idempotent e
by any other primitive idempotent, then one gets the same 1-cocycle in Z 1

(
Γ,PGL(V̄ )

)
.

If one changes π to some other generator of C one gets a different cocycle, but the new
one still represents the same cohomology class.

3. The 1-Cocycles Associated to the Pairs (L, ρL) and (K, ρK)

We still keep the notations from above.
For the 1-cocycle hL := h(L,ρL) which represents the cohomology class [h(L,ρL)] ∈
H1(Γ,K(K,L)/µn), constructed in §2, we know by (2.8) that it is given by the formula

(idA⊗γ)(e) = ρL
(
hL(γ)

)
(e)

for all γ ∈ Γ.

(5.7) Lemma. A 1-cocycle hL: Γ −→ K(K,L)/µn representing the class [h(L,ρL)] is
given by

hL(γ) =
(
Y logπ(

γ(e)
e ) mod µn

)
for all γ ∈ Γ.
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Proof: We have to check the formula from above. It suffices to prove this formula after
applying α to it, i.e., we have to prove

α∗(idA⊗γ)(αe) = ρL0(Y logπ(
γ(e)
e )

0 mod µn)(αe) .

First we claim

logπ(
γ(e)
e

) = γ̃(n) .

Let γ(e) = πi(e) for some i = 1, . . . , n, then

γ̃(n) = α∗
(
γ(e)

)
= α∗

(
πi(e)

)
= πi0(n) = i .

Now with (4.8)

α∗(idA⊗γ)(αe) = κXγ ◦ (idA0 ⊗γ)(Enn)

= X0(ξγ)Eγ̃EnnE−1
γ̃ X0(ξγ)−1

= X0(ξγ)Eγ̃(n),γ̃(n)X0(ξγ)−1

= Eγ̃(n),γ̃(n)

= Y
γ̃(n)
0 EnnY

−γ̃(n)
0

= ρL0(Y γ̃(n)
0 mod µn)(Enn) .

(5.8) Lemma. The action of Γ on Y = α−1(Y0) can be described as follows:

(idA⊗γ)(Y ) = (ξγ · Y )logπ(
γπ(e)
γ(e) )

for all γ ∈ Γ.

Proof: Again the formula will be verified after we applied α.
Let ϕL(γ)πϕL(γ)−1 = πi for some i = 1, . . . , n, then γ̃π0γ̃

−1 = πi0 and γπ(e) =
γπγ−1(γe) = πiγ(e), hence i = logπ(γπ(e)

γ(e) ). Now since

X0(ξγ)Eπ0X0(ξγ)−1 = X0(ξγ)Y0X0(ξγ)−1 = ξγY0

we have
α∗(idA⊗γ)(Y0) = κXγ ◦ (idA0 ⊗γ)Eπ0

= X0(ξγ)Eγ̃Eπ0E
−1
γ̃ X0(ξγ)−1

= X0(ξγ)Eγ̃π0γ̃−1X0(ξγ)−1

= X0(ξγ)Eπi0X0(ξγ)−1

= X0(ξγ)Eiπ0
X0(ξγ)−1

= (ξγY0)i .
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§ 5. A cohomological description of twisted cyclic algebras

Like in the first case we can describe a 1-cocycle hK := h(K,ρK) which represents the
cohomology class [h(K,ρK)] ∈ H1(Γ,K(L,K)/µn) by the formula

(idA⊗γ)(g) = ρK
(
hK(γ)

)
(g) ,

where g ∈MK is any primitive idempotent of K̄.

Recall the isomorphism κZ0 : L̄0
∼−→ K̄0 defined in the proof of (3.7). This induces a

bijection κZ0 : ML0 −→MK0 and explicit computation yields

MK0 =

{
1
n

n−1∑
ν=0

ζνY ν0 : ζ ∈ µn

}
.

We will choose for g the easiest case ζ = 1, i.e., g := α−1
(

1
n

∑n−1
ν=0 Y

ν
0

)
= 1

n

∑n−1
ν=0 Y

ν .

(5.9) Lemma. A 1-cocycle hK : Γ −→ K(L,K)/µn representing the class [h(K,ρK)] is
given by

hK(γ) =
(
X(ξγ) mod µn

)
for all γ ∈ Γ.

Proof: We have X(ξγ)Y X(ξγ)−1 = ξγY and therefore

(idA⊗γ)(g) = (idA⊗γ)
( 1
n

n−1∑
ν=0

Y ν
)

=
1
n

n−1∑
ν=0

(idA⊗γ)Y ν

=
1
n

n−1∑
ν=0

(ξγ · Y )ν logπ(
γπ(e)
γ(e) )

=
1
n

n−1∑
ν=0

(ξγ · Y )ν

=
1
n

n−1∑
ν=0

(
X(ξγ)Y X(ξγ)−1

)ν
= X(ξγ)gX(ξγ)−1

= ρK
(
X(ξγ) mod µn

)
(g) .

Note that

i := logπ(
γπ(e)
γ(e)

) = logπ(
γπγ−1(e)

e
) ∈ (Z/nZ)∗ ,

since γπγ−1 = πi has order n.
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4. Proof of the Theorem

We now want to prove the Theorem, i.e., the equation

c
(
[hL] ∪ [hK ]

)
= −[A] .

The cohomology class

[hL] ∪ [hK ] ∈ H2(Γ,K(K,L)/µn ⊗Z K(L,K)/µn)

has the 2-cocycle bσ,τ := hL(σ)⊗ (idA⊗σ)hK(τ) as a representative.
Because of the anticommutativity of the cup-product of one-dimensional cohomology
classes we will actually show

(c ◦ switch)([hK ] ∪ [hL]) = [A] .

A 2-cocycle which represents the left side is then

aσ,τ = c
((

(idA⊗σ)hL(τ)
)
⊗ hK(σ)

)
= ̂hK(σ) · (idA⊗σ)

( ̂hL(τ)
)
· ̂hK(σ)

−1
· (idA⊗σ)

( ̂hL(τ)
)−1 ∈ µn ,

Where ̂hK(σ) and ̂hL(τ) are representatives of hK(σ) and hL(τ) respectively. In order
to compare [aσ,τ ] ∈ H2(Γ, k̄∗) with [qγ mod k̄∗] ∈ H1

(
Γ,PGL(V̄ )

)
we first take a pre-

image of [aσ,τ ] under the composition

H1
(
Γ,PGL(V̄ )

) β−1
∗−→ H1

(
Γ,PGLn(k̄∗)

) δ−→ H2(Γ, k̄∗) .

(5.10) Lemma. A pre-image [pγ mod k̄∗] ∈ H1
(
Γ,PGL(V̄ )

)
of [aσ,τ ] under δ ◦ β−1

∗ is
given by

pγ :
⊕
e′∈ML

k̄e′ −→
⊕
e′∈ML

k̄e′

τ(e) 7−→ aγ,τ · γτ(e)
for τ ∈ Γ.

(5.11) Remark. pγ is well defined:
If for two elements τ, τ ′ ∈ Γ we suppose τ(e) = τ ′(e), then aγ,τ = aγ,τ ′ , since the
assumption implies (idA⊗τ)(e) = (idA⊗τ ′)(e) and thus hL(τ) = hL(τ ′), by (2.8).
Moreover ML = {τ(e) : τ ∈ Γ} since in (5.1) we assumed that Γ acts transitively on the
set ML of the primitive idempotents of L̄.

Proof: (of (5.10)). We have to show that aσ,τ is cohomologous to pσ ◦ σpτ ◦ p−1
στ . In

fact we will show that they are equal: Let σ, τ, ω ∈ Γ, then

pσ ◦ σpτ
(
ω(e)

)
= pσ

(
σ(aτ,ω) · (τω)(e)

)
= aσ,τω · σ(aτ,ω) · (στω)(e)

= aσ,τ · aστ,ω · (στ)
(
ω(e)

)
= aσ,τ · pστ

(
ω(e)

)
.

In the third equality we used the cocycle property of aσ,τ .
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(5.12) Lemma. For any σ, τ ∈ Γ we have the formula

logπ(
τ(e)
e

) · logπ(
σπ(e)
σ(e)

) = logπ(
στ(e)
σ(e)

) .

Proof: Let ϕL(σ)πϕL(σ)−1 = πi, i.e., logπ(σπ(e)
σ(e) ) = i and set j := logπ( τ(e)

e ). Then
τ(e) = πj(e) and we get στ(e) = σπj(e) = πijσ(e).

We come to the proof of our theorem:

Proof: (of (5.1)). Now what remains to show is

[qγ mod k̄∗] = [pγ mod k̄∗] ∈ H1
(
Γ,PGL(V̄ )

)
.

We will show for every γ ∈ Γ,

ξ
logπ( e

γ(e) )
γ · qγ = pγ

for the representatives from above. Let γ, τ ∈ Γ, then

ξ
logπ( e

γ(e) )
γ · qγ

(
τ(e)

)
= ξ

logπ( e
γ(e) )

γ · ξlogπ(
γτ(e)
e )

γ · γτ(e) = ξ
logπ(

γτ(e)
γ(e) )

γ · γτ(e)

by (5.5). And
pγ
(
τ(e)

)
= aγ,τ · γτ(e) ,

where
aγ,τ = ̂hK(γ) · (idA⊗γ)

( ̂hL(τ)
)
· ̂hK(γ)

−1
· (idA⊗γ)

( ̂hL(τ)
)−1

= X(ξγ) · Y logπ(
γτ(e)
γ(e) ) ·X(ξγ)−1 · Y − logπ(

γτ(e)
γ(e) )

= ξ
logπ(

γτ(e)
γ(e) )

γ ,

where for the representatives ̂hK(γ) and ̂hL(τ) we used X(ξγ) and Y logπ(
τ(e)
e ) respec-

tively. Further we used in the second equation

(idA⊗γ)
( ̂hL(τ)

)
= (idA⊗γ)(Y logπ(

τ(e)
e ))

= (ξγ · Y )logπ(
γπ(e)
γ(e) )·logπ(

τ(e)
e )

= (ξγ · Y )logπ(
γτ(e)
γ(e) )

= Y logπ(
γτ(e)
γ(e) ) .

We are done.

66



Chapter III

The Notion of Chain Equivalence

§6. Kummer Elements and Kummer Relation

In §3 we have seen that a twisted cyclic k-algebra (A,L,K) gives rise to elements
X ∈ K(L,K) and Y ∈ K(K,L) which are in a—what we are going to call—Kummer
relation, i.e., XY = ζY X, where ζ ∈ µn = µn(k̄) is a primitive n-th root of unity.
Since these elements generate L̄ and K̄, they already give rise to our twisted cyclic
decomposition of A. We are going to use these Kummer elements in order to describe
twisted cyclic decompositions.

In this section we fix a field k and a positive integer n ≥ 2 which is prime to the
characteristic of k, and ζ denotes a primitive n-th root of unity in k̄. Let A be a central
simple k-algebra of degree n.

1. Kummer Elements

For every element X ∈ A we have its reduced characteristic polynomial

Prd(X, t) = tn − Srd1(X)tn−1 + · · ·+ (−1)n Srdn(X) ∈ k[t] ,

especially the reduced trace Trd(X) = Srd1(X) ∈ k and the reduced norm Nrd(X) =
Srdn(X) ∈ k.
If A is a matrix algebra, then Nrd(X) and Trd(X) are just determinant and trace of the
matrix X. (Cf. [SchQH], chap. 8, §8, p. 296, or [BI]).
The condition Nrd(X) 6= 0 is equivalent to X ∈ A∗.
If A = Mn(k), then Srdν(X) is a homogeneous polynomial of degree ν in the n2 entries
of the matrix X. The coefficients lie in Z (or better: in the image of Z in k).

(6.1) Definition. A Kummer Element in A is an element X ∈ A such that

Prd(X, t) = tn − a ,

where a ∈ k∗; or equivalently X ∈ A∗, Srdν(X) = 0 for all ν = 1, . . . , n− 1.

(6.2) Notation. We denote the set of all Kummer elements of A by

W(A) := {X ∈ A∗ : Prd(X, t) = tn − a} .

Since W(A) is stable under scaling by elements of k∗, we also call the “projective
version”

W(A) := W(A)/k∗ = {[X] ∈ A∗/k∗ : X ∈ W(A)}
the set of Kummer elements or more accurate Kummer lines.
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(6.3) Example. In A = Mn(k̄), we have the Kummer elements X0(ζ), where ζ is any
primitive n-th root of unity, and Y0:

Prd
(
X0(ζ), t

)
= Prd(Y0, t) = tn − 1 .

In fact, we have

W
(
Mn(k̄)

)
=
{

[GX0(ζ)G−1] : G ∈ GLn(k̄)
}
,

since an X ∈ W(A), scaled such that det(X) = 1, has eigenvalues EigVal(X) = µn(k̄)
and therefore is similar to X0(ζ) or Y0.

(6.4) Remark. For a Kummer element X ∈ W(A) the reduced characteristic poly-
nomial Prd(X, t) = tn − a has n distinct roots. Hence Prd(X, t) is also the minimal
polynomial of X.

(6.5) Lemma. We assume that (n!) is prime to the characteristic of k. For any X ∈ A
the following conditions are equivalent:

(i) Prd(X, t) = tn − a,

(ii) Trd(X) = Trd(X2) = . . . = Trd(Xn−1) = 0.

Proof: We may assume k = k̄ and A = Mn(k̄). Furthermore we can assume that X is
a triangular matrix with the diagonal elements α1, . . . , αn ∈ k. Then (i) is equivalent
to

σν(α1, . . . , αn) = 0 for all ν = 1, . . . , n− 1 ,

where σν(T1, . . . , Tn) ∈ Z[T1, . . . , Tn] is the elementary symmetric polynomial of degree
ν. The condition (ii) is equivalent to

τν(α1, . . . , αn) = 0 for all ν = 1, . . . , n− 1 ,

where τν(T1, . . . , Tn) := T ν1 + · · ·+ T νn ∈ Z[T1, . . . , Tn].
The equivalence of these conditions immediately follows from Newton’s formula (cf.
[WaAL],§33, Aufgabe 1)

τν − τν−1σ1 + τν−2σ2 − · · ·+ (−1)ν−1τ1σν−1 + (−1)ννσν = 0

for 1 ≤ ν ≤ n, using the fact that ν = 1, . . . , n− 1 is invertible in k.

(6.6) Proposition. If n = 2, 3, then W(A) 6= ∅.

Proof: n = 2: We may assume A is a division algebra. (Otherwise A ∼= M2(k) and Y0

is a Kummer element.) Take any X ′ ∈ A− k · 1A and set

X := X ′ − Trd(X ′)
2

· 1A .

Then X ∈ W(A), since Trd(X) = 0.
n = 3: Cf. (19.2) in [BI].

68



§ 6. Kummer elements and Kummer relation

(6.7) Lemma. If X,Y ∈ GLn(k̄) are invertible matrices such that XY = ζY X, then
there are α, β ∈ k̄∗ such that we have for the eigenvalues of X and Y :

EigVal(X) = α · µn and EigVal(Y ) = β · µn ,

and αn = (−1)n−1det(X), βn = (−1)n−1det(Y ).

Proof: From Y −1XY = ζX we see

ζ · EigVal(X) = EigVal(ζX) = EigVal(Y −1XY ) = EigVal(X) .

Let α ∈ EigVal(X)− {0}, then ζα, ζ2α, . . . ∈ EigVal(X). We have

det(X) =
∏
ξ∈µn

ξα

=
( ∏
ξ∈µn

ξ
)
αn

= (−1)n−1αn .

The same holds for Y .

(6.8) Proposition. If X,Y ∈ A∗ are invertible elements such that XY = ζY X, then
X,Y ∈ W(A) are Kummer elements.

Proof: Since the reduced characteristic polynomial remains stable under base field
extension we may assume that k = k̄ and A = Mn(k̄). Because of (6.7) there is an
α ∈ k̄∗ such that X is similar to αX0(ζ) ∈ W(A). The same holds for Y .

(6.9) Corollary. If X,Y ∈ A∗ are invertible elements such that XY = ζY X, then
also XY ∈ W(A) is a Kummer element.

Proof: XY = ζY X implies (XY )Y = ζY (XY ).

(6.10) Lemma. If X,Y ∈ W(A) such that XY = ζY X, then for X ′, Y ′ ∈ A:

XY ′ = ζY ′X ⇐⇒ Y ′ ∈ k[X] · Y = Y · k[X]
X ′Y = ζY X ′ ⇐⇒ X ′ ∈ k[Y ] ·X = X · k[Y ]

Proof: The direction “⇐” is clear since the elements of k[X] commute with X and the
elements of k[Y ] commute with Y .
“⇒”: Let XY ′ = ζY ′X, then

Y −1Y ′X = ζY −1XY ′ = XY −1Y ′ ,

i.e., Y −1Y ′ commutes with X. Therefore Y −1Y ′ ∈ k[X], since k[X] is a maximal
commutative subalgebra of A.—Analogous for X ′.
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2. Description of Twisted Cyclic Algebras via Elements in Kummer
Relation

We start with an important technical lemma:

(6.11) Lemma. Let X,Y ∈ GLn(k) such that det(X) = det(Y ) = (−1)n−1 and

XY = ζY X. Then the pair (X,Y ) is similar to
(
X0(ζ), Y0

)
, i.e., there exists a matrix

G ∈ GLn(k) such that

GXG−1 = X0(ζ) and GY G−1 = Y0 .

Proof: Because of det(X) = det(Y ) = (−1)n−1 and (6.7) we know EigVal(X) =
EigVal(Y ) = µn. Therefore there exists a G1 ∈ GLn(k) such that G1XG

−1
1 = X0(ζ).—

Note that ζ ∈ k because ζ = XYX−1Y −1. Since conjugation by G1 does not change
our assumption, we may for the proof assume that actually X = X0(ζ). Since

XY = ζY X and XY0 = ζY0X ,

we know by (6.10) that Y −1Y0 = D ∈ k[X0(ζ)] = L0 is a diagonal matrix. Let
D = diag(d1, . . . , dn) for d1, . . . , dn ∈ k∗, then we know, since det(Y −1Y0) = 1, that
d1 · · · dn = 1. Define (we now use the “Hilbert’s Theorem 90-trick”)

G := diag(1, d1, d1d2, . . . , d1 · · · dn−1) .

Then
Y −1

0 GY0 = diag(d1, d1d2, . . . , d1 · · · dn) ,
hence

G−1(Y −1
0 GY0) = diag(d1, d2, . . . , dn) = Y −1Y0 ,

i.e.,
GY G−1 = Y0 .

But since G ∈ L0 is diagonal, we still have GXG−1 = X = X0(ζ) and we are done.

As an immediate consequence we get:

(6.12) Corollary. Let X,Y ∈ GLn(k) with XY = ζY X, then there exists a G ∈
GLn(k̄) and α, β ∈ k̄∗ such that

GXG−1 = αX0(ζ) and GXG−1 = βY0 .

In this case αn = (−1)n−1det(X), βn = (−1)n−1det(Y ).

(6.13) Definition. Let A be a central simple k-algebra of degree n and X,Y ∈ A∗.
Then we say (X,Y ) is a ζ-pair, or X and Y are in (ζ-)Kummer relation if

XY = ζY X ,

where ζ is a primitive n-th root of unity. We will also denote this fact by the symbol

X
ζ−→ Y .
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(6.14) Proposition. Let A be a central simple k-algebra of degree n and (X,Y ) a
ζ-pair in A. Then X and Y generate A, we even have

A =
⊕

i,j=0,...,n−1

k ·XiY j .

If there are elements α, β ∈ k∗ in the ground field such that αn = (−1)n−1Nrd(X) = Xn

and βn = (−1)n−1Nrd(Y ) = Y n, then the morphism of k-algebras, given by

A ∼−→ A0

XiY j 7−→
(
αX0(ζ)

)i(βY0)j

for i, j = 1, . . . , n− 1, is an isomorphism.

Proof: There is an isomorphism of k̄-algebras

Ā = A⊗k k̄ ∼−→ Ā0 = Mn(k̄) ,

which maps X to αX0(ζ) and Y to βY0: Take any isomorphism ϕ: Ā → Ā0. Since
(X,Y ) is a ζ-pair

(
ϕ(X), ϕ(Y )

)
is also one. Now, take the G ∈ GLn(k̄) of (6.12) and

compose ϕ with κG. Obviously

Ā0 =
⊕

i,j=0,...,n−1

k̄ ·X0(ζ)iY j0 =
⊕

i,j=0,...,n−1

k̄ ·
(
αX0(ζ)

)i(
βY0

)j
,

therefore
Ā =

⊕
i,j=0,...,n−1

k̄ ·XiY j .

Now, in order to show the first part of the proposition, it is enough to prove it after the
(faithfully flat) base extension k̄|k; what we have done above.
The second part also follows, since the isomorphism κG ◦ϕ is already defined over k.

Now we can characterize twisted cyclic algebras by ζ-pairs:

(6.15) Proposition. LetA be a central simple k-algebra of degree n and L,K ⊆ A two
commutative k-subalgebras of degree n. Then the following conditions are equivalent:

(i) (L,K) is a twisted cyclic decomposition of A,

(ii) There exist X ∈ L̄ and Y ∈ K̄ such that (X,Y ) is a ζ-pair.

In this case

L̄ = k̄[X] and K̄ = k̄[Y ] .

and
X ∈ K(L,K) = {ζiXj : i, j = 0, . . . , n− 1}
Y ∈ K(K,L) = {ζiY j : i, j = 0, . . . , n− 1} .

Proof: Let (A,L,K) be a twisted cyclic k-algebra and α: Ā ∼−→ Ā0 a Γ-isomorphism
as in the definition (3.3). Then take X := α−1

(
X0(ζ)

)
and Y := α−1(Y0).

The other direction follows with the isomorphism of (6.14) in the case k = k̄.
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§ 6. Kummer elements and Kummer relation

In (6.6) we said something about the existence of Kummer elements. Now we ask for
the existence of ζ-pairs.

(6.16) Proposition. Assume that µn = µn(k̄) ⊆ k. If A is a division algebra and
X ∈ W(A) a Kummer element in A, then there exist Kummer elements Y ∈ W(A)
such that (X,Y ) is a ζ-pair.

Proof: k[X] is a commutative subalgebra of A of dimension n. Therefore it is a field,
in particular simple. The automorphism k[X] ∼−→ k[X], X 7−→ ζ−1X can be extended
by Skolem-Noether to an inner automorphism κY for some Y ∈ A∗, i.e., we have
Y XY −1 = ζ−1X.

3. Galois Action on Kummer Elements and Twisted Cyclic Decomposi-
tions

Let k′|k be a Galois extension and A a central simple k-algebra. Then G := Gal(k′|k)
acts on the central simple k′-algebra Ak′ = A⊗k k′.
This action gives rise to actions on the set of Kummer elements and twisted cyclic
decompositions.

(6.17) Remark. For σ ∈ G and X ∈ Ak′ we have the identity

Prd(σX, t) = σPrd(X, t) ,

where σ acts on the coefficients of the polynomial. Therefore, if X ∈ W(Ak′) is a
Kummer element, then σX ∈ W(Ak′) is also one. The same holds for W(Ak′).

(6.18) Proposition. The map

W(A) −→ W(Ak′) , X 7−→ X

has Galois descent, i.e., it induces the bijection

W(A) ∼−→ W(Ak′)G .

Proof: This follows from the Galois descent of the map A −→ Ak′ .

The Galois group G acts in the following way on the set of twisted cyclic decompositions
of Ak′ .

(6.19) Lemma. Let (L′,K ′) be a twisted cyclic decomposition of the central simple k′-
algebra Ak′ . Then for σ ∈ G, the pair (σL′, σK ′) is also a twisted cyclic decomposition
of Ak′ .

Proof: Because of (6.15) there are X ∈ L̄′ = L′ ⊗k′ k̄ and Y ∈ K̄ ′ = K ′ ⊗k′ k̄ such
that (X,Y ) is a ζ-pair and L̄′ = k̄[X] and K̄ ′ = k̄[Y ]. But this implies that (σX, σY )
is a σζ-pair and σL′ = k̄[σX], σK ′ = k̄[σY ]. Again with (6.15) we are done.
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§ 6. Kummer elements and Kummer relation

(6.20) Proposition. The map

{twisted cyclic decompositions of A} −→ {twisted cyclic decompositions of Ak′}
(L,K) 7−→ (L⊗k k′,K ⊗k k′)

has Galois descent.

Proof: The map is obviously injective and well defined (cf. (3.4)). Let (L′,K ′) be
a decomposition which is invariant under G. Then G acts semilinear on L′ and K ′.
Therefore we have for L := L′G and K := K ′G,

L′ = L⊗k k′ and K ′ = K ⊗k k′ ;

cf. (18.1) in [BI].

4. Description of Split Twisted Cyclic Algebras

We will give a criterion for a triple (A,L,K) of k-algebras to be isomorphic to the
standard one. This will be used to prove the last remark of (3.4).

(6.21) Lemma. We assume µn ⊆ k. Let (A,L,K) be a triple, where A is a k-algebra,
L and K are commutative k-subalgebras of A. Then the condition

(A,L,K) ∼= (A0, L0,K0)

is equivalent to the following set of two conditions:

(i) A ∼= A0, L ∼= L0, K ∼= K0 as k-algebras;

(ii) One can number the primitive idempotents {e1, . . . , en} of L and {f1, . . . , fn}
of K in a way such that the elements X := ζ1e1 + ζ2e2 + · · · + ζnen ∈ L and
Y := ζ1f1 + ζ2f2 + · · ·+ ζnfn ∈ K are in a Kummer relation.

Note that the point (i) implies that L ∼= kn and K ∼= kn and therefore they have n
primitive idempotents.

Proof: If (A,L,K) ∼= (A0, L0,K0), the point (i) is clear. The point (ii) follows, since
it is true for the case (A,L,K) = (A0, L0,K0); this we can see putting together (3.9)
and (3.19).
The other direction follows with (6.14): Since Xn = Y n = 1, we can set in this propo-
sition α = β = 1, and that gives the isomorphism (A, k[X], k[Y ]) ∼= (A0, L0,K0). But
for dimension reasons the inclusions k[X] ⊆ L and k[Y ] ⊆ K are actually equalities.

(6.22) Proposition. Let (A,L,K) be a triple, where A is a k-algebra, L and K are
commutative k-subalgebras of A and k′|k is an algebraic (not necessarily separable) field
extension. Then we have the equivalence:
(A,L,K) is a twisted cyclic k-algebra of degree n ⇐⇒ (A,L,K)k′ is a twisted cyclic
k′-algebra of degree n.

Proof: The direction “⇒”is clear.
For the other direction we may assume that k′ = k̃ is an algebraic closure of k.
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§ 6. Kummer elements and Kummer relation

Furthermore—because of (3.4)—we may assume that k = k̄ is separably closed.
The separable closure of k̃ is of course k̃, therefore (Ã, L̃, K̃) := (A,L,K)k̃ is isomorphic
to (Ã0, L̃0, K̃0) := (A0, L0,K0)k̃, i.e., Ã is isomorphic to a matrix algebra. Thus A is
a central simple k-algebra; and hence, A is already split, since k is its own separable
closure. So A ∼= Mn(k) = A0.
Since L̃0

∼= k̃n and K̃0
∼= k̃n are diagonalizable, the same holds for L̃ and K̃, i.e., L̃ and

K̃ are separable k̃-algebras of degree n. Since

n = Homk̃(L̃, k̃) = Homk(L, k̃) and n = Homk̃(K̃, k̃) = Homk(K, k̃) ,

L and K are separable k-algebras. And since k is separably closed, we get

L ∼= kn ∼= L0 and K ∼= kn ∼= K0 ;

in other words: The primitive idempotents e1, . . . , en of L̃ and f1, . . . , fn of K̃ already
lie in L and K respectively. Now

L = k · e1 ⊕ · · · ⊕ k · en and K = k · f1 ⊕ · · · ⊕ k · fn

as well as
L̃ = k̃ · e1 ⊕ · · · ⊕ k̃ · en and K̃ = k̃ · f1 ⊕ · · · ⊕ k̃ · fn .

Since (Ã, L̃, K̃) ∼= (Ã0, L̃0, K̃0), we may, by (6.21), assume that the elements X :=
ζ1e1 + ζ2e2 + · · ·+ ζnen and Y := ζ1f1 + ζ2f2 + · · ·+ ζnfn are in a Kummer relation.
But X and Y already lie in L and K respectively. Using the other direction of (6.21)
we get the claim.
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§7. Chains of Twisted Cyclic Extensions

In this section we establish the first version of chains, give some elementary properties
and classify these by virtue of certain “structure morphisms”.
We fix a field k and positive integers n ≥ 2 and ` such that n is prime to the characteristic
of k. Let A be a central simple k-algebra of degree n.

1. Definition of Chains

(7.1) Definition. A k-chain in A of length ` is an (` + 1)-tuple (L0, . . . , L`) of sep-
arable commutative k-subalgebras of A such that (Li, Li+1) is a twisted cyclic decom-
position of A for all i = 0, . . . , `− 1.

(7.2) Notation. We denote the set of all k-chains in A of length ` by the expression

Chain`(A) .

(7.3) Remark. If k′|k is a field extension, then we have a natural injective map

Chain`(A) −→ Chain`(A⊗k k′)
(L0, . . . , L`) 7−→ (L0, . . . , L`)k′ ,

where (L0, . . . , L`)k′ := (L0 ⊗k k′, . . . , L` ⊗k k′); cf. (3.4).

Furthermore if k′|k is a Galois extension, then Gal(k′|k) acts on Chain`(A⊗k k′), in the
way of (6.19). Analogously to (6.20) we have:

(7.4) Proposition. If k′|k is a Galois extension, then the map

Chain`(A) −→ Chain`(Ak′) ,

has Galois descent.

2. Chains with Fixed Starting and End Points

We fix two separable commutative k-subalgebras L,K ⊆ A of degree n.
Since we are interested in the question if two separable commutative subalgebras can
be connected by chains, we make the following definition.

(7.5) Definition. Let k′|k be a field extension. A k′-chain in A from L to K of length
` is a k′-chain (L′0, . . . , L

′
`) ∈ Chain`(Ak′) such that

L′0 = Lk′ and L′` = Kk′ .
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§ 7. Chains of twisted cyclic extensions

(7.6) Notation. We make the following notations

Chain`(L,K;A)k′ := {(L′0, . . . , L′`) ∈ Chain`(Ak′) : L′0 = Lk′ , L
′
` = Kk′}

and
Chain`(L,−;A)k′ := {(L′0, . . . , L′`) ∈ Chain`(Ak′) : L′0 = Lk′} .

If k′ = k, we leave the index “k”.

(7.7) Remark. Obviously

Chain`(L,K;A)k′ = Chain`(Lk′ ,Kk′ ;Ak′) .

If k′|k is a Galois extension, then Gal(k′|k) acts on this set, since the Galois action
leaves Lk′ and Kk′ fixed. An easy consequence of (7.4) is:

(7.8) Proposition. We have the natural injective map

Chain`(L,K;A) −→ Chain`(L,K;A)k′

(L0, . . . , L`) 7−→ (L0, . . . , L`)k′ .

If k′|k is a Galois extension, then this map has Galois descent.

We remind that we wrote Γ = Gal(k̄|k) for the absolute Galois group of k.
Let Cn be the category of the Γ-modules C which are cyclic groups of order n. Then we
have on Cn the following involutionary endo-functor

T := HomZ(−, µn): Cn −→ Cn

C 7−→ HomZ(C, µn) ,

where µn = µn(k̄). The natural transformation ϕ: id ∼−→ T ◦ T is given by

ϕC : C −→ HomZ
(
HomZ(C, µn), µn

)
c 7−→ evc ,

the evaluation morphism. The following is well known.

(7.9) Lemma. For any C,D ∈ Cn we have the identity

IsomΓ(C ⊗Z D,µn) === IsomΓ

(
C, T (D)

)
.

Let (L0, . . . , L`) ∈ Chain`(A) be a k-chain, then (A,Li, Li+1) is twisted cyclic k-algebra
for i = 0, . . . , `− 1.
This induces the twisted cyclic structures

Ci := C(A,Li,Li+1) on Li

and
Di+1 := D(A,Li,Li+1) on Li+1

and the isomorphism of Γ-modules

ci := c(Ai,Li,Li+1): Ci ⊗Z Di+1
∼−→ µn = µn(k̄) ;

cf. §3, 2.
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§ 7. Chains of twisted cyclic extensions

(7.10) Definition. A coherent chain in A is a chain (L0, . . . , L`) ∈ Chain`(A) with

Ci = Di for all i = 1, . . . , `− 1 .

(7.11) Notation. We write for the set of coherent chains of length `,

c-Chain`(A) := {(L0, . . . , L`) ∈ Chain`(A) : (L0, . . . , L`) is coherent}

and

c-Chain`(L,K;A) := c-Chain`(A) ∩ Chain`(K,L;A) ,

and analogously for all other notations of this kind.

If (L0, . . . , L`) ∈ c-Chain`(A) is a coherent chain, then we can compose the Γ-morphisms,
given by (7.9):

T i(ci): T i(Ci) ∼−→ T i+1(Di+1) = T i+1(Ci+1) ,

and we get

C0
∼−→ T 1(C1) ∼−→ T 2(C2) ∼−→ · · · ∼−→ T `−1(C`−1) ∼−→ T `(D`) ,

which we will denote by
ρ(L0,...,L`): C0

∼−→ T `(D`) .

Thus we can classify coherent chains by means of this isomorphism.

(7.12) Notation. For C,D ∈ Cn and ρ ∈ IsomΓ

(
C, T `(D)

)
we define

Chainρ` (L,K;A) :=
{(L0, . . . , L`) ∈ c-Chain`(L,K;A) : C0 = C,D` = D, ρ(L0,...,L`) = ρ} .

(7.13) Remark. Obviously we have the disjoint union

c-Chain`(L,K;A) =
∐
C,D

∐
ρ

Chainρ` (L,K;A) ,

where C and D run through the set of twisted cyclic structures of L and K respectively
and ρ runs through the set IsomΓ

(
C, T `(D)

)
.

(7.14) Proposition. If A is a division algebra and
(
n, ϕ(n)

)
= 1, then

c-Chain`(A) = Chain`(A) .

Proof: This follows immediately from the uniqueness of twisted cyclic structures,
proven in (1.30).
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(7.15) Corollary. If A is a division algebra and
(
n, ϕ(n)

)
= 1, and if we assume that

Chain`(L,K;A) 6= ∅, then there are unique twisted cyclic structures C and D on L and
K respectively, and we have the disjoint union

Chain`(L,K;A) =
∐

ρ∈IsomΓ(C,T `(D))

Chainρ` (L,K;A) .

(7.16) Definition. Let C and D be some twisted cyclic structures on L and K re-

spectively and let ρ ∈ IsomΓ

(
C, T `(D)

)
, then we say that L and K are (`, ρ)-chain

equivalent over k′, if the set

Chainρ` (L,K;A)k′ = Chainρ` (Lk′ ,Kk′ ;Ak′) 6= ∅

is non-empty. (Note that C and D are also twisted cyclic structures on Lk′ and Kk′ .)

(7.17) Proposition. Let k′|k be an algebraic field extension, then we have for any
(L0, . . . , L`) ∈ Chain`(A) the equivalence

(L0, . . . , L`) is coherent ⇐⇒ (L0, . . . , L`)k′ is coherent .

In particular, there is the injective map

c-Chain`(A) −→ c-Chain`(Ak′)
(L0, . . . , L`) 7−→ (L0, . . . , L`)k′ ,

which has Galois descent, if k′|k is a Galois extension.

Proof: One only has to observe that the associated twisted cyclic structures Ci and
Di do not change under base extension.

Finally, we want to state a useful lemma, which we will need later.

(7.18) Lemma. Let (L0, . . . , L`) ∈ Chain`(A) be a chain. Then (L0, . . . , L`) is coher-
ent if and only if

K(Li,Li−1) = K(Li,Li+1)

for i = 1, . . . , ` − 1.—More precisely: The last condition for i is equivalent to the
condition Ci = Di for i.

Proof: We fix an i ∈ {1, . . . , `− 1}. Let d ∈ Di and c ∈ Ci be generators of the cyclic
groups and e ∈MLi a primitive idempotent of L̄i. Then (3.19) says

K(Li,Li−1) =

{
ζ ′
n−1∑
ν=0

ζνdν(e) : ζ ′, ζ ∈ µn

}
and

K(Li,Li+1) =

{
ζ ′
n−1∑
ν=0

ζνcν(e) : ζ ′, ζ ∈ µn

}
.
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If Ci = Di, then we may choose c = d and the claim K(Li,Li−1) = K(Li,Li+1) is clear.
If K(Li,Li−1) = K(Li,Li+1), then by the following lemma

Di = D(A,Li−1,Li)

= C(A,Li,Li−1)

= C(A,Li,Li+1)

= Ci ,

where the first and last equality are the definitions, the second equality is the tautological
one and the third equality follows from (7.19).

(7.19) Lemma. Let (A,L,K) be a twisted cyclic k-algebra of degree n, further [X] ∈
K(L,K)/µn and [Y ] ∈ K(K,L)/µn generators of the cyclic groups. Then

C(A,L,K) = {(L̄ ∼−→ L̄,X 7−→ ξX) : ξ ∈ µn}

and
D(A,L,K) = {(K̄ ∼−→ K̄, Y 7−→ ξY ) : ξ ∈ µn} .

Therefore C and D depend solely on K(L,K) ⊆ L̄∗ and K(K,L) ⊆ K̄∗ respectively

Proof: This is just a corollary of (3.12) and (3.16): The k̄-automorphisms are defined
by the image of X and Y respectively. (3.16) shows that for these images there are only
the n possibilities of multiples by elements of µn.
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If we want to consider k̄-chains in a central simple algebra A, we can make use of the
interpretation of twisted cyclic decompositions we got in (6.15).
We fix a field k and positive integers n ≥ 2 and ` such that n is prime to the characteristic
of k. Let A be a central simple k-algebra of degree n.

1. Definition of Chains of Kummer Elements

First we define the chains of Kummer elements:

(8.1) Definition. A chain of Kummer elements in A of length ` is a ` + 1-tuple
([X0], . . . , [X`]) ∈W(A)`+1 of Kummer elements such that consecutive elements are in
Kummer relation, i.e.,

Xi−1Xi = ζiXiXi−1

for i = 1, . . . , ` and primitive n-th roots of unity ζi ∈ µn = µn(k̄).

Note that the condition Xi−1
ζi−→ Xi is independent of the choice of representatives

Xi ∈ [Xi].

(8.2) Notation. We denote the set of chains of Kummer elements in A of length ` by
the symbol

K-Chain`(A) .

Let Z := (ζ1, . . . , ζ`) be a `-tuple of primitive n-th root of unity. Then we write

K-ChainZ` (A) :=
{

([X0], . . . , [X`]) ∈ K-Chain`(A) : Xi−1Xi = ζiXiXi−1, i = 1, . . . , `
}
.

If Z = (ζ, . . . , ζ), then we write just ζ instead of Z:

K-Chainζ` (A) := K-ChainZ` (A) .

The notations K-Chain`([X], [Y ];A), K-ChainZ` ([X], [Y ];A), . . . are to be read in the
same obvious way like the corresponding ones in §7.

(8.3) Remark. Clearly, for Kummer elements [X], [Y ] ∈W(A),

K-Chain`(A) =
∐
Z

K-ChainZ` (A) ,

and herein
K-Chain`([X], [Y ];A) =

∐
Z

K-ChainZ` ([X], [Y ];A) ,

where Z runs through the `-tuples of primitive n-th roots of unity.

How are the different sets on the right hand side connected mutually?
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§ 8. Chains of Kummer elements

(8.4) Proposition. Let Z = (ζ1, . . . , ζ`) and Z ′ = (ζ ′1, . . . , ζ
′
`) be two `-tuples of

primitive n-th roots of unity. Let νi ∈ (Z/nZ)∗ for i = 1, . . . , `, be the unique elements
such that ζ ′i = ζνii . Define ε0 := 1 and for i = 1, . . . , `

εi :=
νi
νi−1

νi−2

νi−3
· · · =

i∏
j=1

ν
(−1)i−j

j ,

then the map

ψZ
′

Z : K-ChainZ` (A) ∼−→ K-ChainZ
′

` (A)
([X0], . . . , [X`]) 7−→ ([Xε0

0 ], [Xε1
1 ], . . . , [Xε`

` ])

is a bijection. Furthermore we have the functoriality

ψZZ = id and ψZ
′′

Z = ψZ
′′

Z′ ◦ ψZ
′

Z ,

where Z ′′ is a third `-tuple of primitive n-th roots of unity. In the special case of
Z = (ζ, . . . , ζ) and Z ′ = (ζ ′, . . . , ζ ′), where ζ ′ = ζν , we get

εi =
{
ν, if i is odd
1, if i is even.

Proof: The map ψZ
′

Z is well defined: First note that [Xn
i ] = [1]; moreover Xi−1

ζi−→ Xi

implies Xεi−1
i−1

ζ′i−→ Xεi
i , since εi−1εi = νi and

X
εi−1
i−1 X

εi
i X

−εi−1
i−1 X−εii = ζ

εi−1εi
i = ζνii = ζ ′i .

The functoriality is obvious and it implies the bijectivity by the standard argument.

(8.5) Corollary. Let [X], [Y ] ∈ W(A) be two Kummer elements. In the situation of

(8.4) the map ψZ
′

Z induces the bijections

ψZ
′

Z : K-ChainZ` ([X],−;A) ∼−→ K-ChainZ
′

` ([X],−;A)

and

ψZ
′

Z : K-ChainZ` ([X], [Y ];A) ∼−→ K-ChainZ
′

` ([X], [Y ε` ];A) .

In particular, we have the bijective map

ψZ
′

Z :
∐

i∈(Z/nZ)∗

K-ChainZ` ([X], [Y i];A) ∼−→
∐

i∈(Z/nZ)∗

K-ChainZ
′

` ([X], [Y i];A) .

Now we see that for many questions, it is enough to consider the case Z = (ζ, . . . , ζ).
For these cases, we have the addendum:
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(8.6) Corollary. Let ζ and ζ ′ = ζν be two primitive n-th roots of unity, such that
ν ∈ (Z/nZ)∗.
If ` is even, we have the bijective map

ψζ
′

ζ : K-Chainζ` ([X], [Y ];A) ∼−→ K-Chainζ
′

` ([X], [Y ];A)

([X0], . . . , [X`]) 7−→ ([X0], [Xν
1 ], [X2], . . . , [Xν

`−1], [X`]) .

If ` is odd, we have the bijective map

ψζ
′

ζ : K-Chainζ` ([X], [Y ];A) ∼−→ K-Chainζ
′

` ([X], [Y ν ];A)

([X0], . . . , [X`]) 7−→ ([X0], [Xν
1 ], [X2], . . . , [X`−1], [Xν

` ]) .

(8.7) Notation. For any `-tuple Z of primitive n-th roots of unity and Kummer ele-
ments [X], [Y ] ∈W(A), we define˜K-ChainZ` ([X], [Y ];A) :=

∐
i∈(Z/nZ)∗

K-ChainZ` ([X], [Y i];A) .

(8.8) Remark. By virtue of the bijections ψZ
′

Z , we can canonically identify these sets
for different `-tuples Z and Z ′.

2. The Notion of Chain Equivalence of Kummer Elements

Analogously to §7, 2. we make the following notations and definitions:

(8.9) Notation. Let k′|k be a field extensions, and let [X], [Y ] ∈W(A) be two Kum-
mer elements, then we denote with

K-Chain`([X], [Y ];A)k′ := K-Chain`([X], [Y ];Ak′)

the set of all k′-chains from [X] to [Y ] in A of length `.

(8.10) Definition. Two Kummer elements [X], [Y ] ∈W(A) are called (`, Z, ν)-chain
equivalent (or -related) over k′, if

K-ChainZ` ([X], [Y ν ];A)k′ 6= ∅ ,

where ν ∈ (Z/nZ)∗ and Z an `-tuple of primitive n-th roots of unity. If Z = (ζ, . . . , ζ)
we write (`, ζ, ν) instead of (`, Z, ν).

(8.11) Remark. In the situation of (8.5) we can see:

[X], [Y ] are (`, Z, ν)-related ⇐⇒ [X], [Y ] are (`, Z ′, ε` · ν)-related .

Hence we always can reduce the question of being (`, Z, ν)-related to the question of
being (`, ζ, ν′)-related, for suitable ν′.

(8.12) Lemma. Let [X], [Y ] ∈W(A) be Kummer elements, ζ, ζ ′ primitive n-th roots
of unity and ν, ν′ ∈ (Z/nZ)∗. Then we have the following equivalences:
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§ 8. Chains of Kummer elements

If ` is even, then

[X], [Y ] are (`, ζ, ν)-related ⇐⇒ [X], [Y ] are (`, ζ ′, ν)-related .

If ` is odd and ζν
′

= ζ ′ν , then

[X], [Y ] are (`, ζ, ν)-related ⇐⇒ [X], [Y ] are (`, ζ ′, ν′)-related .

Proof: The first part follows directly with (8.6). The second part has to be shown just
in one direction: For Z = (ζ, . . . , ζ) and Z ′ = (ζ ′, . . . , ζ ′) with the notations of (8.5) we
have ζ ′ = ζε` , therefore ζν

′
= ζ ′ν = ζε`·ν , i.e., ν′ = ε` · ν ∈ (Z/nZ)∗. But (8.11) tells us

that: [X], [Y ] are (`, ζ, ν)-related ⇐⇒ [X], [Y ] are (`, ζ ′, ε` · ν)-related .

(8.13) Remark. If [X] and [Y ] are (`, ζ, ν)-related, then they are (`+ 1, ζ, ν)-related:
This follows from the fact that a chain of Kummer elements can be expanded at any
link: If (Xi−1, Xi) is a ζ-pair, then (Xi−1, Xi−1Xi) and (Xi−1Xi, Xi) are also ζ-pairs.
Cf. §6, 1.

3. Connection between K-Chains and c-Chains

To every chain of Kummer elements we can assign a chain of twisted cyclic extensions:

(8.14) Theorem. Let Z be a `-tuple of primitive n-th roots of unity and [X], [Y ] ∈
W(A) any Kummer elements. Then we have a canonical bijection

ψZ : ˜K-ChainZ` ([X], [Y ];A)k̄ ∼−→ c-Chain`(k[X], k[Y ];A)k̄
([X0], . . . , [X`]) 7−→ (k̄[X0], . . . , k̄[X`])

and for another Z ′, we have the compatibility relation

ψZ′ ◦ ψZ
′

Z = ψZ .

Proof: The map is well defined, since the algebras k̄[Xi] are separable commutative
k̄-subalgebras of Ā = Ak̄. Because of (6.15) the pairs (k̄[Xi−1], k̄[Xi]) are twisted cyclic
decompositions of Ā. Furthermore one observes

K(k̄[Xi],k̄[Xi−1]) = {[X0
i ], . . . , [Xn−1

i ]}

and
K(k̄[Xi],k̄[Xi+1]) = {[X0

i ], . . . , [Xn−1
i ]} ,

therefore by (7.18) the chain (k̄[X0], . . . , k̄[X`]) is coherent. The last formula is clear.
Injectivity of ψZ : Let be given two chains ([X0], . . . , [X`]) and ([X ′0], . . . , [X ′`]) out of˜K-ChainZ` ([X], [Y ];A)k̄ which are mapped to the same coherent chain via ψZ . Let i
be the least integer such that [Xi] 6= [X ′i]. Since [X0] = [X] = [X ′0] we know i ≥ 1.
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§ 8. Chains of Kummer elements

Furthermore we know that (Xi−1, Xi) and (Xi−1, X
′
i) = (X ′i−1, X

′
i) are ζi-pairs, where

Z = (ζ1, . . . , ζ`). Since

k̄[Xi−1] = k̄[X ′i−1] and k̄[Xi] = k̄[X ′i]

the sets
K(k̄[Xi],k̄[Xi−1]) = K(k̄[X′

i
],k̄[X′

i−1])

are equal and [Xi] as well as [X ′i] are the unique element of this set which is in ζi-relation
with [Xi−1] = [X ′i−1]. Hence [Xi] = [X ′i], and we have shown injectivity.
Surjectivity of ψZ : Let (L̄0, . . . , L̄`) ∈ c-Chain`(k[X], k[Y ];A)k̄ be a coherent chain.
For i = 1, . . . , ` choose a generator [Xi] of the cyclic group K(L̄i,L̄i−1) (= K(L̄i,L̄i+1) for

i < `). Then L̄i = k̄[Xi] and ([X0], . . . , [X`]) ∈ ˜K-ChainZ
′

` ([X], [Y ];A)k̄ for [X0] := [X]
and some `-tuple Z ′ of primitive n-th root of unity. This chain maps to (L̄0, . . . , L̄`) via
ψZ′ . Because of ψZ′ = ψZ ◦ ψZZ′ , our surjectivity follows.
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Chapter IV

Geometry of Kummer Elements and Chains

The objects we considered in the last chapter have, in a natural way, a geometric struc-
ture: We will see that W(A), K-Chain`(A), K-Chain`([X],−;A), . . . can be identified
with the k-rational points of smooth varieties.

§9. The Variety of Kummer Elements

In this section we fix a field k and a positive integer n ≥ 2 which is not divisible by the
characteristic of k. Let A be a central simple k-algebra of degree n and ζ ∈ µn = µn(k̄)
a primitive n-th root of unity.

1. A as a k-Scheme

Since A is an n2-dimensional k-vector space, it gives rise, in the well known way, to an
n2-dimensional affine space over k, which is isomorphic to An

2

k as k-scheme.

(9.1) Definition. Let Ǎ := Homk-lin(A, k) be the (k-vector space) dual of A and S(Ǎ)
its associated symmetric algebra, then we define the k-schemes

A(A) := Spec
(
S(Ǎ)

)
and P(A) := Proj

(
S(Ǎ)

)
.

(9.2) Remark. For every field extension k′|k we have the canonical identification of
the k′-rational points of A(A) with the elements of Ak′ = A⊗k k′:

A(A)(Spec k′) = Homk-alg

(
S(Ǎ), k′

)
= Homk-lin(Ǎ, k′)

= Homk-lin(Ǎ, k)⊗ k′

= Ak′ .

Analogously
P(A)(Spec k′) =

(
Ak′ − {0}

)
/k′∗ .

If we choose a k-basis a1, . . . , an2 of A, then the isomorphism of the (graded) k-algebras

k[X1, . . . , Xn2 ] ∼−→ S(Ǎ)
Xi 7−→ ǎi

for i = 1, . . . , n2 and the dual basis ǎ1, . . . , ǎn2 of a1, . . . , an2 , induces isomorphisms
A(A) ∼−→ A

n2

k and P(A) ∼−→ P
n2−1
k . Additionally we have a multiplication morphism
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§ 9. The variety of Kummer elements

on the affine scheme: The multiplication induces a morphism A⊗k A→ A, x⊗ y 7→ xy
of k-modules, and after dualizing we get

Ǎ −→ Ǎ⊗k Ǎ .

If we compose this morphism with the double tensor product of the canonical injections
Ǎ⊗k Ǎ→ S(Ǎ)⊗k S(Ǎ), we get the k-linear morphism

Ǎ −→ S(Ǎ)⊗k S(Ǎ) ;

by the universal property of the symmetric algebras. This factorizes in the formijk
ψ

l
S(Ǎ)⊗k S(Ǎ) ,S(Ǎ)

Ǎ⊗k ǍǍ

where ψ is unique. Then it induces the morphism of k-schemes

Spec(ψ): A(A)×k A(A) −→ A(A) ,

which is on the k′-rational points just the multiplication on Ak′ .

In §6, 1., we defined the maps
Srdν : A −→ k ,

ν = 1, . . . , n, in particular the reduced norm Nrd = Srdn and trace Trd = Srd1. Fur-
thermore we define the maps

T ν : A −→ k

X 7−→ Trd(Xν) .

(9.3) Lemma. Assume k is algebraically closed. Then the maps Srdν and T ν are
regular functions on the scheme A(A), i.e., there are uniquely defined (homogeneous)
elements in S(Ǎ) = O

(
A(A)

)
—which we also denote by Srdν and T ν—such that they

represent these maps. Srdν and T ν are homogeneous of degree ν.

Proof: Choose an isomorphism α: A ∼−→ A0 = Mn(k) of k-algebras. This also induces
an isomorphism A(A) ∼−→ A(A0) of k-schemes as well as the graded isomorphism of
the global section rings S(Ǎ0) ∼−→ S(Ǎ). Therefore we may assume that A = A0. We
choose the canonical basis Eij , i, j = 1, . . . , n, of the k-vector space A0, and we denote
with Xij , i, j = 1, . . . , n, its dual basis. Then

S(Ǎ0) = k[X11, X12, . . . , Xnn] ,

and it is clear that Srdν is a homogeneous polynomial in the Xij of degree ν, e.g.,

Srd1 = Trd = X11 +X22 + · · ·+Xnn .

The ν-th power of the matrix (Xij) is given by n2 homogeneous polynomials of degree
ν. Therefore Trd

(
(Xij)ν

)
is also a homogeneous polynomial of degree ν.
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§ 9. The variety of Kummer elements

(9.4) Remark. In the proof we have of course Srdν , T ν ∈ Z[X11, X12, . . . , Xnn].

Now let k again be an arbitrary field of characteristic prime to n.

(9.5) Lemma. The regular functions of (9.3) are already defined over the base field:

Srdν , T ν ∈ S(Ǎ) .

Proof: First of all

Srdν , T ν ∈ S(Ǎ)⊗k k̄ = O(A(A)×k k̄) ,

where k̄ is a separable closure. In fact this is true for A = A0, as we have seen above,
and there are already k̄-isomorphisms α: Ā ∼−→ Ā0, hence α∗: A(Ā) ∼−→ A(Ā0), because
A is a central simple k-algebra.
Now all we have to show is that for f := Srdν , T ν and γ ∈ Γ = Gal(k̄|k), the diagramm fn

id⊗γ

o
f

p
γ

k̄Ā

k̄Ā

is commutative. This follows from the commutative diagramq
α

r fs
id⊗γ

t
κXγ ◦(id⊗γ)

u
γ

v
α

w
f

k̄ .Mn(k̄)Ā

k̄Mn(k̄)Ā

For the left part cf. §4,2. The commutativity of the right part is clear, since Srdν and
T ν are invariant under any conjugation κXγ , and commute with the Galois action.

(9.6) Remark. T ν ∈ S(Ǎ) already follows from Trd ∈ S(Ǎ) since the morphism
“taking the ν-th power” A(A)→ A(A) is a morphism, which is defined over k. The k-
rationality of Trd is clear, since Trd is linear, so the k-rationality only has to be checked
on a k-basis of A and this is clear.

(9.7) Notation. We denote the distinguished open subschemes of A(A) and P(A),
associated to Nrd, by

GL1(A) := SpecS(Ǎ)Nrd = D(Nrd) ⊆ A(A)

and
PGL1(A) := Spec

(
S(Ǎ)

)
(Nrd)

= D+(Nrd) ⊆ P(A) .

(9.8) Remark. For every field extension k′|k we have the identifications of the k′-
rational points GL1(A)(Spec k′) = (A⊗k k′)∗ and PGL1(A)(Spec k′) = A∗k′/k

′∗. More-
over there are morphisms of k-schemes

GL1(A)×k A(A) −→ A(A)

87



§ 9. The variety of Kummer elements

and
GL1(A)×k P(A) −→ P(A) ,

which are on the k′-rational points just the conjugation:

A∗k′ ×Ak′ −→ Ak′

(g, a) 7−→ gag−1 .

2. W(A) and W(A) as Varieties over an Algebraically Closed Field

We want to see W(A) and W(A) as subvarieties of A(A) and P(A) respectively.
First we want to consider this in the algebraically closed setting. So in this subsection
let k be algebraically closed.
In the last subsection we have seen that the maps Srdν , T ν : A → k are homogeneous
elements of the global section ring O

(
A(A)

)
. So we can make the following definition

(9.9) Definition. We define the subvarieties

W̄(A) := V (Srd1, · · · ,Srdn−1) ⊆ A(A)
W̄(A) := V+(Srd1, · · · ,Srdn−1) ⊆ P(A)
W(A) := W̄(A) ∩D(Nrd) ⊆ A(A)
W(A) := W̄(A) ∩D+(Nrd) ⊆ A(A) ,

where D(Nrd) and D+(Nrd) are the distinguished open subsets associated to Nrd.

(9.10) Remark. The closed, i.e., k-rational points of W(A) and W(A) are exactly
the Kummer elements and Kummer lines of A. Hence we used the same symbols as in
the sections above.

In the language of schemes we can define the varieties in the following way:

(9.11) Lemma. Let I := (Srd1, . . . ,Srdn−1) ⊆ S(Ǎ) be the graded Ideal generated

by the elements Srd1,. . ., Srdn−1 and let
√
I denote the radical of I. Then

W̄(A) := Spec
(
S(Ǎ)/

√
I
)

W̄(A) := Proj
(
S(Ǎ)/

√
I
)

W(A) := Spec
(
S(Ǎ)/

√
I
)

Nrd

W(A) := Spec
(
S(Ǎ)/

√
I
)

(Nrd)
.

We will see that I is actually radical in S(Ǎ)Nrd.
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§ 9. The variety of Kummer elements

(9.12) Claim. If (n!) is prime to the characteristic of k, then T 1, . . . , Tn−1 is another
set of generators of the Ideal I:

(T 1, . . . , Tn−1) = (Srd1, . . . ,Srdn−1) ⊆ S(Ǎ) .

Proof: Like in (6.5) this follows from the formula

T ν − T ν−1 Srd1 +T ν−2 Srd2− · · ·+ (−1)ν−1T 1 Srdν−1 +(−1)νν Srdν = 0 ,

ν = 1, . . . , n − 1, which follows from Newton’s formula: In the case A = A0 = Mn(k)
one diagonalizes the generic matrix, and then the formula directly follows.

(9.13) Remark. The morphisms GL1(A) × A(A) → A(A) and GL1(A) × P(A) →
P(A), mentioned in (9.8) induce morphisms

GL1(A)×W(A) −→ W(A) and GL1(A)×W(A) −→ W(A) ,

i.e., GL1(A) acts on W(A) and W(A) by conjugation. The last action is transitive,
cf. (6.3), i.e., for any closed point [X] ∈W(A) the morphism

GL1(A) −→ W(A)

G 7−→ [GXG−1]

is surjective. The first action is not transitive—one misses the scaling; however the
morphism

GL1(A)× (Gm)k ×W(A) −→ W(A)

(G, g,X) 7−→ gGXG−1

gives a transitive action.

(9.14) Proposition. W(A) and W(A) are irreducible topological spaces.

Proof: This is a corollary of (9.13) since GL1(A) (which is open, dense in A(A) ∼= A
n2

)
and GL1(A) × (Gm)k are irreducible and they map surjectively to W(A) and W(A)
respectively, by the action on some fixed element [X] ∈W(A) or X ∈ W(A).

(9.15) Corollary. The open subsets W(A) ⊆ W̄(A) and W(A) ⊆ W̄(A) are dense,
hence W̄(A) and W̄(A) are irreducible topological spaces.

Proof: We may assume A = A0 = Mn(k). Let X ∈ W̄(A)−W(A) or equivalently [X] ∈
W̄(A)−W(A), i.e., Prd(X, t) = tn. Therefore X is nilpotent and (after conjugation with
a suitable element in GL1(A)) we may assume that X is a strictly (upper) triangular
matrix: The diagonal entries are zero.
For every λ ∈ k∗ and any primitive n-th root ζ ∈ µn of unity we have

X + λX0(ζ) ∈ W(A) and [X + λX0(ζ)] ∈W(A) ,

since Prd(X + λX0(ζ), t) = tn − λn. Hence X lies in the closure of W(A). The claim
follows.

As a further consequence of the transitive action we immediately get
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§ 9. The variety of Kummer elements

(9.16) Proposition. The varieties W(A) and W(A) are non-singular.

Now we are going to give another proof of the non-singularity ofW(A) and W(A). This
will be done by direct computation, using the Jacobi criterion.

(9.17) Lemma. Let A = A0 = Mn(k) and let Srdν ∈ k[X11, X12, . . . , Xnn] be the
homogeneous polynomials of degree ν from above. Then the partial derivatives of Srdν
in the point X = X0(ζ) in the coordinate Xij is given by

∂ Srdν
∂Xij

(
X0(ζ)

)
=
{

0, if i 6= j,
(−1)ν−1ζi(ν−1), if i = j .

Proof: Let X := (Xij)i,j=1,...,n. We have

det(t−X) = tn − tn−1 Srd1(X) + · · ·+ (−1)n Srdn(X) ;

therefore we know

∂ det(t−X)
∂Xij

= −tn−1 ∂ Srd1(X)
∂Xij

+ tn−2 ∂ Srd2(X)
∂Xij

− · · ·+ (−1)nt0
∂ Srdn(X)
∂Xij

.

On the other hand we have

∂ det(t−X)
∂Xij

∣∣∣∣
X

=
∂ det

(
t− (X + λEij)

)
∂λ

∣∣∣∣∣
λ=0

=



∂

∂λ

[
n∏
ν=1

(t− ζν)

]∣∣∣∣∣
λ=0

= 0, if i 6= j

∂

∂λ

(t− ζi − λ)
n∏
ν=1
ν 6=i

(t− ζν)


∣∣∣∣∣∣∣
λ=0

= − t
n − 1
t− ζi

, if i = j ,

but
tn − 1
t− ζi

=
tn − (ζi)n

t− ζi
= tn−1 + tn−2ζi + tn−3ζ2i + · · ·+ ζ(n−1)i .

Comparing the last with the first formula completes the proof.

(9.18) Theorem. The varieties W(A) and W(A) are non-singular k-varieties of di-
mension n2 − (n− 1) and n2 − n respectively.

Proof: We may assume A = A0. Because of the transitive actions onW(A) and W(A)
mentioned in (9.13), all we have to prove (by virtue of the Jacobi criterion) is that the
(n− 1)× n2-matrix(

∂ Srdν
∂Xij

)
ν=1,...,n−1
i,j=1,...,n

∣∣∣∣∣
X0(ζ)

=
(
∂ Srdν
∂Xij

(
X0(ζ)

))
ν=1,...,n−1
i,j=1,...,n
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§ 9. The variety of Kummer elements

has rank n − 1. Again, ζ ∈ µn is a primitive n-th root of unity. But by lemma (9.17)
this matrix has a (n− 1)× n minor of the form(

(−1)ν−1ζi(ν−1)
)
ν=1,...,n−1
i=1,...,n

.

We even know that besides this minor there are only trivial (zero) entries in the matrix.
But this minor is a (modified) minor of the Vandermonde matrix (ζij)i,j=1,...,n which
has full rank n. Therefore our minor has rank (n− 1) and we are done.

We immediately get from the proof:

(9.19) Corollary. The ideal I = (Srd1, . . . ,Srdn−1) ⊆ O(W(A)) = S(Ǎ)Nrd is al-
ready the ideal of vanishing functions. Since W(A) is irreducible, I is a prime ideal,
especially

√
I = I in S(Ǎ)Nrd.

3. W(A) and W(A) as k-Schemes

Now let k again be an arbitrary field of characteristic prime to n. Then we define the
following k-schemes:

(9.20) Definition. For a central simple k-algebra A of degree n we define the k-
subschemes of A(A) and P(A)

W0(A) := Spec
(
S(Ǎ)/(Srd1, . . . ,Srdn−1)

)
Nrd
⊆ A(A)

and
W0(A) := Spec

(
S(Ǎ)/(Srd1, . . . ,Srdn−1)

)
(Nrd)

⊆ P(A)

(9.21) Remark. For any field extension k′|k we have

W0(Ak′) =W0(A)×Spec(k) Spec(k′) and W0(Ak′) = W0(A)×Spec(k) Spec(k′) .

(9.22) Proposition. W0(A) and W0(A) are smooth integral k-schemes of dimension
n2−(n−1) and n2−n respectively. For any field extension k′|k we have the identification
of k′-rational points and Kummer elements

W0(A)(Spec k′) = W(Ak′) and W0(A)(Spec k′) = W(Ak′) ,

which is induced by the identification of (9.2).

Proof: The first part only has to be proven over an algebraic closure of k—what we
have done in the last subsection, since there W0(A) = W(A) and W0(A) =W(A). The
second part is clear.
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We fix a field k and a positive integer n ≥ 2 which is not divisible by the characteristic
of k. Let A be a central simple k-algebra of degree n and ζ ∈ µn = µn(k̄) a primitive
n-th root of unity lying in k. Furthermore we choose a k-basis a1, a2, . . . , an2 of the
vector space A, and we denote its dual basis by ǎ1, . . . , ǎn2 .

1. The “Vectorbundle of Kummer Pairs”

We want to assign to the set

{(X,Y ) ∈ W(A)×A : XY − ζY X = 0}

of Kummer pairs (in a slight broader sense, i.e., we don’t demand Y to be invertible)
the structure of a scheme—and more: of a vector bundle over the k-scheme W0(A).
Because of (6.10) for any Kummer elementX ∈ W(A), the set {Y ∈ A : XY −ζY X = 0}
is a vector space of dimension n: Using the basis a1, a2, . . . , an2 one can interpret the
equation XY − ζY X = 0 (in Y ) as n2 linear equations in the entries y1, y2, . . . , yn2 of
Y = y1 · a1 + y2 · a2 + · · ·+ yn2 · an2 for yi ∈ k. If k is algebraically closed it is clear by
(6.10) that our set is an n-dimensional vector subspace of A. Therefore the gradients
of the n2 linear equations span an (n2 − n)-dimensional vector space. That means, one
can leave out n of the n2 equations. Since the gradients do not change under base field
extension, everything holds for a general field k.

We will write

R := O
(
W0(A)

)
=
(
S(Ǎ)/(Srd1, . . . ,Srdn−1)

)
Nrd

for the global section ring of the affine scheme W0(A)—cf. §9.

The bilinear map A×A→ A, (x, y) 7→ xy − ζyx induces, after dualizing, a morphism

ϕ: Ǎ −→ Ǎ⊗k Ǎ

of k-modules.
If we compose ϕ with the morphism Ǎ⊗k Ǎ→ R⊗k S(Ǎ), a⊗ b 7→ a⊗ b, of k-modules,
we get a morphism Ǎ → R ⊗k S(Ǎ) which induces—by the universal property of the
symmetric algebra—a morphism

φ: S(Ǎ) −→ R⊗k S(Ǎ)

of graded k-algebras. We set fi := φ(ǎi) = ϕ(ǎi).
Applying the functor Spec to it, we get the morphism

Spec(φ): W0(A)×k A(A) −→ A(A) ,

which on the rational points is just the map

(x, y) 7−→ xy − ζyx .

So the fibre over the k-rational point zero is our choice for the scheme of Kummer pairs
(in the broader sense).
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§ 10. The variety of chains

(10.1) Lemma. The fibre of Spec(φ) over zero is given by

Spec
(
R⊗k S(Ǎ)

)
/(imϕ) = Spec

(
R⊗k S(Ǎ)

)
/
(
φ(S(Ǎ)+)

)
,

where (imϕ) is the ideal in R⊗k S(Ǎ) generated by the elements of im(ϕ)—or equiva-
lently by the elements of φ

(
S(Ǎ)+

)
, which are of degree > 0.

(10.2) Remark. The ideal
(
φ(S(Ǎ)+)

)
= (imϕ) is a graded ideal, already generated

by the n2 elements f1, f2, . . . , fn2 , which are of degree 1. The grading of R ⊗k S(Ǎ) is
given by the grading of the symmetric algebra S(R⊗k Ǎ) = R⊗k S(Ǎ).

Proof: (of Lemma (10.1)). The fibre is given by the spectrum of(
R⊗k S(Ǎ)

)
⊗S(Ǎ) k ,

where the structure morphisms of the two S(Ǎ)-algebras involved in the tensor product
are φ and the projection S(Ǎ) → k with kernel S(Ǎ)+. The last ring morphism is the
one which corresponds to the k-rational point 0 in A(A). Therefore(

R⊗k S(Ǎ)
)
⊗S(Ǎ) k =

(
R⊗k S(Ǎ)

)
⊗S(Ǎ)

(
S(A)/S(A)+

)
= R⊗k S(Ǎ)/

(
φ(S(Ǎ)+)

)
,

where
(
φ(S(Ǎ)+)

)
= (imϕ) since the ideal S(Ǎ)+ is generated by the elements of Ǎ,

which are just the elements of S(Ǎ) of degree 1.

(10.3) Definition. We define the k-scheme

E
(
W0(A)

)
:= Spec

(
R⊗k S(Ǎ)

)
/(imϕ) = Spec

(
R⊗k S(Ǎ)

)
/
(
φ(S(Ǎ)+)

)
.

(10.4) Remark. Let k′|k be any field extension. Then we have the identity for the
k′-rational points

E
(
W0(A)

)
(Spec k′) =

{
(X,Y ) ∈ W(Ak′)×Ak′ : XY − ζY X = 0

}
.

(10.5) Remark. The scheme E
(
W0(A)

)
is equipped with the two morphisms

π0: E
(
W0(A)

)
−→ W0(A) ,

induced by R→
(
R⊗k S(Ǎ)

)
/(imϕ), r 7→ r ⊗ 1 and

π1: E
(
W0(A)

)
−→ A(A) ,

induced by S(Ǎ) →
(
R ⊗k S(Ǎ)

)
/(imϕ), s 7→ 1 ⊗ s, which are on the rational points

just the projections on the first and second factor.

Now we want to show that

π0: E
(
W0(A)

)
−→ W0(A) ,
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is a vector bundle. For this aim, we will define a locally free sheaf F of OW0(A)-modules
for which it is the vector bundle, associated to F :

E
(
W0(A)

)
= V(F )

(
:= SpecS(F )

)
.

Let σ: W0(A)→ Spec(k) be the structure morphism and

M := OW0(A) ⊗k Ǎ = σ∗(Ǎ) .

This is an OW0(A)-algebra, which is a free OW0(A)-module of rank n2.
M is the sheaf of OW0(A)-modules associated to the R-module M := R ⊗k Ǎ. Let
N := R · im(ϕ) ⊆M be the R-submodule of M , generated by im(ϕ); or say

N := R · f1 +R · f2 + · · ·+R · fn2 .

Let N be the sheaf of OW0(A)-modules associated to the R-module N .
N is a sheaf of OW0(A)-submodules of M . We define the sheaf of OW0(A)-modules F
to be

F := M /N ;
or in other words: F is the sheaf of OW0(A)-modules associated to the R-module M/N .
We are going to show first that M/N is a projective R-module of constant rank n.

(10.6) Lemma. Let p ∈ Spec(R) = W0(A) be a prime ideal and κ(p) its residue

field. Then the vectors f1, f2, . . . , fn2 ∈M ⊗R κ(p) = Ǎκ(p)
∼= κ(p)n

2
span an (n2 − n)-

dimensional vector subspace.

Proof: The elements f1, f2, . . . , fn2 ∈ Ǎκ(p) describe the equation XY − ζY X = 0
for the Kummer element X = p in W(Aκ(p)) ⊆ Aκ(p). We have seen that the space
of solutions of this set of linear equations in Aκ(p) is n-dimensional. Hence the linear
equations f1, f2, . . . , fn2 span a vector subspace of codimension n.

(10.7) Lemma. Let a, b and m be positive integers with a ≤ m, T a topological space,
P ∈ T a point and Ω a field with some topology such that {0} is closed in Ω.
If for j = 1, 2, . . . , a+b, the maps Fj = (Fij)i=1,...,m: T −→ Ωm are continuous functions
(Ωm is equipped with the product topology) such that the rank of the m×(a+b) matrices(

F1(Q), F2(Q), . . . , Fa+b(Q)
)

=
(
Fij(Q)

)
i=1,...,m
j=1,...,a+b

for all Q ∈ T and the (m× a) matrix(
F1(P ), F2(P ), . . . , Fa(P )

)
=
(
Fij(P )

)
i=1,...,m
j=1,...,a

is a, then there exists an open neighbourhood U ⊆ T of P and continuous functions

α
(ν)
µ : U −→ Ω for µ = 1, . . . , a and ν = a+ 1, . . . , a+ b such that

(i) α
(ν)
µ ∈ ω

(
Fij |U : i = 1, . . . ,m; j = 1, . . . , a + b

)
, where ω is the prime field of Ω,

i.e., Q or Fp; in other words, the α
(ν)
µ are quotients of polynomials in the Fij |U

with coefficients in Z.

(ii) In U we have: Fν = α
(ν)
1 F1 + α

(ν)
2 F2 + · · ·+ α

(ν)
a Fa for ν = a+ 1, . . . , a+ b.
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Proof: After re-indexing in i, we may assume that

det
(
Fij(P )

)
i,j=1,...,a

6= 0

and hence there is an open neighbourhood U ⊆ T of P with

det
(
Fij(Q)

)
i,j=1,...,a

6= 0

for all Q ∈ U . Since for ν = a+ 1, . . . , a+ b, we have

rank
(
F1(Q), F2(Q), . . . , Fa(Q)

)
= rank

(
F1(Q), F2(Q), . . . , Fa(Q), Fν(Q)

)
= a ,

there are uniquely defined elements α(ν)
µ (Q) ∈ Ω for µ = 1, . . . , a such that

Fν(Q) = α
(ν)
1 (Q)F1(Q) + α

(ν)
2 (Q)F2(Q) + · · ·+ α(ν)

a (Q)Fa(Q) .

In this way we get maps α(ν)
µ : U → Ω with property (ii).

It remains to prove property (i). (Continuity is then for free!): By Cramer’s Rule we
have

α(ν)
µ (Q) det

(
Fij(Q)

)
i,j=1,...,a

=

= det
(
Fi1(Q), . . . , Fi,µ−1(Q), Fiν(Q), Fi,µ+1(Q), . . . , Fia(Q)

)
i=1,...,a

.

On U the left determinant is invertible, hence we get property (i).

Putting together the last two lemmas yields the

(10.8) Proposition. Let p ∈ Spec(R) be a maximal prime ideal. Then—if necessary,
after re-indexing of the f1, f2, . . . , fn2—we have

Np = Rp · f1 + . . .+Rp · fn2 = Rp · f1 + . . .+Rp · fn2−n ⊆ Mp .

Proof: We use lemma (10.7): Let T =W0(A)(Spec Ω) = Hom(R,Ω) be the topological
space (with the Zariski topology) of the geometric points of W0(A), where Ω is an
algebraic closure of k, and set m := n2, a := n2 − n, b := n. Using the identification
(via the ǎi’s) Ǎ = kn

2 ⊆ ǍΩ = Ωn
2

we define for j = 1, . . . , n2

Fj = fj : T −→ M ⊗R Ω = Ωn
2

x 7−→ fj(x) ,

where fj(x) is the image of fj under the morphism idM⊗x:M = M ⊗R R→M ⊗R Ω.
Then (10.6) shows that the prerequisites of (10.7) hold true for every point x ∈ T with
p = ker(x). Note that, since R is an integral Jacobson ring, we can identify the elements
of R and M with their induced functions on T .
Now, (i) tells us that the functions α(ν)

µ are elements of Rp and (ii) gives the claim, i.e.,
the equation (ii) first holds true for functions on T , but that implies that it holds for
the elements of M .
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(10.9) Proposition. The R-module M/N is projective of rank n, in other words: For
all p ∈ Spec(R) the Rp-module (M/N)p is free of rank n.

Proof: We only have to prove the second part for a maximal prime ideal p. We will
show: Np is a free direct summand of Mp of rank (n2 − n) with a free complementary
summand. Then we are done. But this is now easy to show. By (10.8) the Rp-module
Np is generated by some (n2 − n) elements f1, f2, . . . , fn2−n such that

f1(p), f2(p), . . . , fn2−n(p) ∈M(p) = Mp ⊗Rp κ(p)

are linearly independent. We complete this set of vectors by n vectors to a basis of
M(p). We choose liftings g1, g2, . . . , gn ∈ Mp of them. We know from Commutative
Algebra that f1, f2, . . . , fn2−n, g1, g2, . . . , gn is a basis of the Rp-module Mp. Hence

Mp = Np ⊕ 〈g1, g2, . . . , gn〉 = Np ⊕Rpg1 ⊕Rpg2 ⊕ · · · ⊕Rpgn .

Now we are done.

(10.10) Corollary. The sheaves F , M and N of OW0(A)-modules are locally free of
rank n, n2 and (n2 − n) respectively.

(10.11) Theorem. The morphism

π0: E
(
W0(A)

)
−→ W0(A)

is a vector bundle of rank n; to be precise

E
(
W0(A)

)
= V(F )

(
= SpecS(F )

)
.

Proof: Observe

E
(
W0(A)

)
= Spec

(
R⊗k S(Ǎ)

)
/(imϕ)

= Spec
(
R⊗k S(Ǎ)

)
/(f1, . . . , fn)

= Spec
(
S
(
R⊗k Ǎ/〈f1, . . . , fn〉

))
= Spec

(
S(M/N)

)
= Spec

(
S(M /N )

)
= Spec

(
S(F )

)
= V(F ) .

With (9.22) this theorem yields:

(10.12) Corollary. The morphism

π0: E
(
W0(A)

)
−→W0(A)

is smooth of relative dimension n, hence E
(
W0(A)

)
is a smooth integral k-scheme of

the dimension n2 + 1 = dim
(
W0(A)

)
+ n.
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Now we take degree zero components of R, M and N :

R0 =
(
S(Ǎ)/(Srd1, . . . ,Srdn−1)

)
(Nrd)

M0 = R0 ⊗k Ǎ
N0 = R0 · im(ϕ) = R0 · f1 + · · ·+R0 · fn2 .

Since W0(A) = Spec(R0), the R0-modules M0 and N0 induce their associated sheaves
of OW0(A)-modules M0, N0 and F0 := M0/N0. Obviously, we have the same property:

(10.13) Remark. The sheaves F0, M0 and N0 of OW0(A)-modules are locally free of
rank n, n2 and n2 − n respectively.

(10.14) Definition. We define the following affine and projective bundles of rank n

over W0(A)
E
(
W0(A)

)
:= V(F0) ⊆ W0(A)×k A(A)

and
E
(
W0(A)

)
:= P(F0) ⊆ W0(A)×k P(A) .

These bundles are just the once and twice projectivised versions of E
(
W0(A)

)
, and like

in the former case each of the k-schemes comes with two morphisms

π0: E
(
W0(A)

)
−→ W0(A) and π0: E

(
W0(A)

)
−→ W0(A)

which are the bundle morphisms, and

π1: E
(
W0(A)

)
↪−→ W0(A)×k A(A)

pr2−→ A(A)

as well as
π1: E

(
W0(A)

)
↪−→ W0(A)×k P(A)

pr2−→ P(A) .
The inclusions are induced by (applying the functor V to) the canonical epimorphism
M0→→F0 of sheaves of OW0(A)-modules.
Again from (10.13) follows:

(10.15) Proposition. The morphisms

π0: E
(
W0(A)

)
−→ W0(A) and π0: E

(
W0(A)

)
−→ W0(A)

are smooth of relative dimension n and (n− 1) respectively.
Also E

(
W0(A)

)
and E

(
W0(A)

)
are smooth integral k-schemes of dimension

dim W0(A) + n = n2 and dim W0(A) + (n− 1) = n2 − 1 .

For any field extension k′|k we have the canonical identifications

E
(
W0(A)

)
(Spec k′) =

{(
[X], Y

)
∈W(Ak′)×Ak′ : XY − ζY X = 0

}
and (here with PAk′ = (Ak′ − 0)/k′∗)

E
(
W0(A)

)
(Spec k′) =

{(
[X], [Y ]

)
∈W(Ak′)× PAk′ : XY − ζY X = 0

}
.

We take the open subschemes of E
(
W0(A)

)
and E

(
W0(A)

)
of pairs of invertible elements

(X,Y ) and
(
[X], [Y ]

)
:
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(10.16) Definition. We define the open subschemes

W1(A) := E
(
W0(A)

)
∩
(
W0(A)×k D(Nrd)

)
and

W1(A) := E
(
W0(A)

)
∩
(
W0(A)×k D+(Nrd)

)
.

(10.17) Remark. By virtue of (6.8) we also can write

W1(A) := E
(
W0(A)

)
∩
(
W0(A)×kW0(A)

)
and

W1(A) := E
(
W0(A)

)
∩
(
W0(A)×k W0(A)

)
.

We still have the projection morphisms, induced by π0:

π1
0 : W1(A) −→ W0(A) and π1

0 : W1(A) −→ W0(A) .

(10.18) Proposition. The fibres of the morphisms

π1
0 : W1(A) −→ W0(A) and π1

0 : W1(A) −→ W0(A) .

are non-empty, hence they have (full) dimension n and n− 1 respectively, and they are
dense in the corresponding fibres of π0: E

(
W0(A)

)
→ W0(A) and π0: E

(
W0(A)

)
→

W0(A).

Proof: One may assume that k is algebraically closed. Then the density and non-
emptiness follows from the fact that for any Kummer element X ∈ W(A), one can find
an invertible element Y ∈ A which is in ζ-relation with X. All fibres are irreducible,
since they are open subsets of vector spaces.

(10.19) Theorem. The morphisms

π1
0 : W1(A) −→ W0(A) and π1

0 : W1(A) −→ W0(A) .

are smooth of relative dimension n and n − 1 respectively. W1(A) and W1(A) are
smooth integral schemes of dimension (n2 + 1) and (n2 − 1) respectively. For any field
extension k′|k we have the canonical identifications

W1(A)(Spec k′) = {(X,Y ) ∈ W(Ak′)×W(Ak′) : XY − ζY X = 0}

and
W1(A)(Spec k′) = K-Chainζ1(Ak′) .

(10.20) Remark. Regarding (10.17) there are also morphisms

π1
1 : W1(A) −→ W0(A) and π1

1 : W1(A) −→ W0(A)

induced by the restriction of the morphisms

π1: E
(
W0(A)

)
−→ A(A) and π1: E

(
W0(A)

)
−→ P(A)

which then factorize through W0(A) and W0(A).
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2. Construction of the Varieties of Chains

In the last subsection we constructed the k-schemes
E1(A) := E

(
W0(A)

)
⊆ W0(A)×k A(A)

E1(A) := E
(
W0(A)

)
⊆ W0(A)×k P(A)

W1(A) ⊆ W0(A)×kW0(A)

W1(A) ⊆ W0(A)×k W0(A) ,

and all come with their projections π1
0 and π1

1 to their first and second factor. They
represent chains in A of the length one (or better: pairs of elements in the relation
XY − ζY X = 0).
Now we want to make the analogous construction for chains of higher length.
Again, ` denotes a positive integer. We are going to construct k-schemes

E`(A) ⊆
(
W0(A)

)` ×k A(A)

E`(A) ⊆
(
W0(A)

)` ×k P(A)

W`(A) ⊆
(
W0(A)

)`+1

W`(A) ⊆
(
W0(A)

)`+1
,

together with the projections π`0, . . . , π
`
` to their `+1 factors, with the obvious properties.

This will be done inductively.

(10.21) Definition. Given the objects E`(A), E`(A), W`(A) and W`(A) with their
projection morphisms π`0, . . . π

`
` , the analogous objects for the index (`+ 1) are defined

in the following way:

E`+1(A) := W`(A)×W0(A) E1(A)

E`+1(A) := W`(A)×W0(A) E1(A) ,

i.e., the diagrams x (π`+1
`

,π`+1
`+1)y

(π`+1
0 ,...,π`+1

`
)

z
π1

0

{
π`` W0(A)W`(A)

E1(A)E`+1(A)

and | (π`+1
`

,π`+1
`+1)}

(π`+1
0 ,...,π`+1

`
)

~
π1

0

�
π`` W0(A)W`(A)

E1(A)E`+1(A)

are cartesian. They also explain the projection morphisms π`+1
0 , . . . , π`+1

`+1 .

The k-schemes W`+1(A) and W`+1(A) are the open subschemes defined by

W`+1(A) := E`+1(A) ∩
(
W0(A)`+1 ×k D(Nrd)

)
W`+1(A) := E`+1(A) ∩

(
W0(A)`+1 ×k D+(Nrd)

)
together with the restrictions of the projection morphisms.
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(10.22) Remark. The upper two diagrams are embedded in the cartesian diagrams� pr`+1,`+2���
pr` W0(A)W0(A)`+1

W0(A)×k A(A)W0(A)`+1 ×k A(A)

and � pr`+1,`+2���
pr` W0(A) ,W0(A)`+1

W0(A)×k P(A)W0(A)`+1 ×k P(A)

where the vertical arrows are the obvious projections. We count the factors starting
with zero!

(10.23) Remark. One can define the objectsW`+1(A) and W`+1(A) by the following
cartesian diagrams � (π`+1

`
,π`+1
`+1)�

(π`+1
0 ,...,π`+1

`
)

�
π1

0

�
π`` W0(A)W`(A)

W1(A)W`+1(A)

and � (π`+1
`

,π`+1
`+1)�

(π`+1
0 ,...,π`+1

`
)

�
π1

0

�
π`` W0(A)W`(A)

W1(A)W`+1(A)

This follows from the fact that the definition of the objects W`+1(A) and W`+1(A) is
equivalent to saying that the diagrams� (π`+1

`
,π`+1
`+1)�

incl

�
incl

�
(π`+1
`

,π`+1
`+1)

E1(A)E`+1(A)

W1(A)W`+1(A)

and � (π`+1
`

,π`+1
`+1)�

incl

�
incl

�
(π`+1
`

,π`+1
`+1)

E1(A)E`+1(A)

W1(A)W`+1(A)

are cartesian. Now we only have to compose these diagrams with the ones from (10.21).
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(10.24) Remark. Like in (10.17), we can write

W`+1(A) = E`+1(A) ∩
(
W0(A)

)`+2

W`+1(A) = E`+1(A) ∩
(
W0(A)

)`+2
,

i.e., the last projections π`+1
`+1 factorize through W0(A) ↪→ A(A) and W0(A) ↪→ P(A)

respectively.
To see this, one just looks at the diagrams in (10.23) and uses (10.20).

(10.25) Remark. If we define

FW`(A) := (π``)
∗(F ) and FW`(A) := (π``)

∗(F0)

to be the pre-images of the OW0(A)-module F and the OW0(A)-module F0 under the
morphisms π`` : W`(A)→W0(A) and π`` : W`(A)→W0(A), then one has directly

E`+1(A) = V(FW`(A)) and E`+1(A) = P(FW`(A)) .

The morphisms π`+1
0 , . . . , π`+1

` are the old morphisms π`0, . . . , π
`
` composed with the

bundle morphism.
And the new projection morphism π`+1

`+1 is then given in the same way as in the remark
after (10.14).

(10.26) Theorem. The morphisms

(π`+1
0 , . . . , π`+1

` ): E`+1(A) −→ W`(A) and (π`+1
0 , . . . , π`+1

` ): E`+1(A) −→ W`(A)

as well as

(π`+1
0 , . . . , π`+1

` ): W`+1(A) −→ W`(A) and (π`+1
0 , . . . , π`+1

` ): W`+1(A) −→ W`(A)

are smooth of relative dimension n and (n−1) respectively. Therefore E`(A) and E`(A)
as well as the objects W`(A) and W`(A) are smooth integral k-schemes of dimension

n2 + 1 + (`− 1) · n = (`+ n− 1)n+ 1 and n2 − 1 + (`− 1)(n− 1) = (`+ n)(n− 1)

respectively.
For any field extension k′|k we have the canonical identifications, induced by the mor-
phisms (π`0, . . . , π

`
`):

W`(A)(Spec k′) = {(X0, . . . , X`) ∈ W(Ak′)`+1 : Xi−1Xi − ζXiXi−1 = 0; i = 1, . . . , `}

W`(A)(Spec k′) = K-Chainζ` (Ak′) .

Proof: The smoothness follows from the cartesian diagrams in (10.21) and (10.23),
since it is stable under base extension. The dimension formulas follow by induction.
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3. Chains with Starting Point

Let X ∈ W(A) be a Kummer element, or equivalently a k-rational point

X: Spec(k) −→ W0(A) and [X]: Spec(k) −→ W0(A) .

(10.27) Definition. We define the fibres

E`(X;A) := X ×W0(A) E`(A)

E`([X];A) := [X]×W0(A) E`(A)

W`(X;A) := X ×W0(A)W`(A)

W`([X];A) := [X]×W0(A) W`(A) ,

where the morphisms in the second factor of the product are the projections π`0.

(10.28) Proposition. The k-schemes E`(X;A) and E`([X];A) as well as W`(X;A)
and W`([X];A) are smooth of dimension (` n) and `(n − 1). For a field extension k′|k
we have the identification

W`([X];A)(Spec k′) = K-Chainζ` ([X],−;A)k′ .

Proof: Just note that the composition

π`0: E`(A) −→ W`−1(A) −→ W`−2(A) −→ · · · −→ W0(A)

is smooth of relative dimension (` n). Analogously for the other cases.

(10.29) Remark. Like in (10.25) we can see that E`+1(X;A) and E`+1([X];A) are
vector bundles over W`(X;A) and W`([X];A). Therefore, by induction one observes
that all the schemes are irreducible, hence integral.
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We fix a field k and a positive integer n ≥ 2 which is not divisible by the characteristic
of k. Let A be a central simple k-algebra of degree n and ζ ∈ µn = µn(k̄) a primitive
n-th root of unity. For simplicity we assume that k is algebraically closed.

The variety W1(A) is given in D+(Nrd) × D+(Nrd) (⊆ P(A)2) by the homogeneous
equation XY − ζY X = 0. We will show that its topological closure in P(A)2 is the
subvariety of W̄(A)× W̄(A) which is given by the same equation.
This is by no means obvious: We have to show that, given elements [X], [Y ] ∈ W̄(A)
with XY − ζY X = 0, there are elements [Y ′] ∈W(A) in any neighbourhood of [Y ] such
that XY ′ − ζY ′X = 0. In order to achieve this, we need some linear algebra.

1. Some Linear Algebra

In this subsection n is allowed to be any positive integer, and k may be an arbitrary
field, if we assume that all eigenvalues that appear already lie in k.

(11.1) Lemma. Let W = Wn ⊇Wn−1 ⊇ · · · ⊇W0 = W−1 = 0 be a finite dimensional
filtered k-vector space. We set W̄i := Wi/Wi−1, mi := dimkWi and m̄i := dimk W̄i for
i = 0, . . . , n. Let f ∈ Endfilt(W ) be an endomorphism of the filtered k-vector space W ,
i.e., f(Wi) ⊆ Wi for all i, then we can make the following statement about the set of
eigenvalues: If

dimkW = #

(
n⋃
i=1

EigVal(f |W̄i
)

)
,

—that means, if # EigVal(f |W̄i
) = m̄i and the sets EigVal(f |W̄i

) are disjoint—then

EigVal(f) =
n∐
i=1

EigVal(f |W̄i
) .

is the disjoint sum. To be precise: For every eigenvector v̄ ∈ EigVec(f |W̄i
, θ) for the

eigenvalue θ (i.e., if (f |W̄i
− θ)v = 0), there exists a lifting v ∈ Wi of v̄ such that

(f − θ)v = 0.

Proof: This is certainly true for n = 1.
By induction on n, we may assume that v̄ ∈ EigVec(f |W̄n

, θ) and θ ∈ EigVal(f |W̄n
), i.e.,

(f |W̄n
− θ)v̄ = 0. Let v1 ∈W be any lifting of v̄. Then

v2 := (f − θ)v1 ∈Wn−1 .

By induction θ 6∈ EigVal(f |Wn−1), therefore (f − θ)|Wn−1 is an automorphism of Wn−1,
and hence there is a v3 ∈Wn−1 such that

(f − θ)v3 = −v2 .

For v := v1 + v3 we have
(f − θ)v = 0 ,

and v is a lifting of v̄.
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§ 11. The topological closure of W1(A)

Now let V be an n-dimensional k-vector space. Fix an element λ ∈ k∗ and a non trivial
nilpotent endomorphism g ∈ Endk(V ), i.e., gn = 0 and g 6= 0.
We set

Uλ := {f ∈ Endk(V ) : f ◦ g = λ · g ◦ f} .
We will consider V as an R-module, where R := k[t]/(tn) and t acts on V as g.
Then g induces a filtration

V = Vn ⊇ Vn−1 ⊇ · · · ⊇ V0 = V−1 = 0 ,

with Vi := ker(gi) for i = 0, 1, . . . , n . Moreover we take the R-module

W := V/tV = V/ im(g)

with its induced filtration

W = Wn ⊇Wn−1 ⊇ · · · ⊇W0 = W−1 = 0 ,

where
Wi = (Vi + tV )/tV = Vi/(Vi ∩ tV ) = Vi/tVi+1 ;

note that Vi ∩ tV = tVi+1! Furthermore we set

ni := dimk Vi , n := dimk V , mi := dimkWi , m := dimkW

and
W̄i := Wi/Wi−1 , m̄i := dimk W̄i .

(11.2) Lemma. We have the formula: n =
∑n
i=1 m̄i · i .

Proof: Writing the nilpotent g in its Jordan canonical form, one observes that, as
R-module,

V ∼=
r⊕

ν=1

k[t]/(tlν ) ,

lν ≥ 1 for all ν = 1, . . . , r. Therefore

Vi ∼=
⊕
{ν:lν≤i}

k[t]/(tlν ) ⊕
⊕
{ν:lν>i}

t(lν−i)k[t]/(tlν )

and thus
Wi = Vi/tVi+1

∼=
⊕
{ν:lν≤i}

k[t]/(t) =
⊕
{ν:lν≤i}

k .

Now it follows
m̄i = #{ν : lν = i}

and
n∑
i=1

m̄i · i =
n∑
i=1

#{ν : lν = i} · i =
r∑

ν=1

lν = n .

Note that m̄i is the number of the Jordan blocks of g of the size i× i.
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§ 11. The topological closure of W1(A)

In this situation let us fix an f ∈ Uλ. Then f ∈ Endfilt(V ) and the induced endomor-
phism f ∈ Endfilt(W ) respect the filtrations.
We further set

EigVal(f |W̄i
) := {θij : j = 1, . . . , ε(i)}

with ε(i) := # EigVal(f |W̄i
) and then

˜EigVal(f |W̄i
) := {θijλν : j = 1, . . . , ε(i); ν = 0, . . . , i− 1} .

We know
# EigVal(f |W̄i

) ≤ dimk W̄i = m̄i

and therefore
# ˜EigVal(f |W̄i

) ≤ dimk W̄i = m̄i · i .

(11.3) Proposition. If n = #
(⋃n

i=1
˜EigVal(f |W̄i

)
)
, then

(i) EigVal(f) =
∐n
i=1

˜EigVal(f |W̄i
),

(ii) For every eigenvalue θ ∈ EigVal(f |W̄i
) and eigenvector v̄ ∈ EigVec(f |W̄i

, θ) for θ,
there exists a lifting v ∈ Vi of v̄ such that (f − θ)v = 0.

Proof: (ii) implies (i), in the following way:
Let θ and v be as in (ii). Then v ∈ Vi − Vi−1, since v̄ 6= 0. Therefore the vectors
v, gv, g2v, . . . , gi−1v are all non-zero, and for ν = 0, . . . , i− 1,

(f − λνθ)gνv = gν(λνf − λνθ)v = gνλν(f − θ)v = 0 ,

hence
n⋃
i=1

˜EigVal(f |W̄i
) ⊆ EigVal(f) .

Since the left hand side is already a set of order n, we have equality.
Because of (11.2) we know that this union is disjoint and more: All the sets

EigVal(f |W̄i
) · λν

for i = 1, . . . , n and ν = 0, . . . , i− 1, are pairwise disjoint sets of order ε(i) = m̄i.
Now we prove (ii):
Let 0 ≤ j < i. From (11.1), applied to the space Wi/Wj , follows immediately

(1) EigVal(f |Wi/Wj
) =

∐
j+1≤ν≤i

EigVal(f |W̄ν
) .

Let v̄ ∈ EigVec(f |W̄i
, θ) be an eigenvector to the eigenvalue θ := θij ∈ EigVal(f |W̄i

). By
(11.1) this vector has a lifting

(v′ mod tVi+1) ∈Wi = Vi/tVi+1 ,

with v′ ∈ Vi, which is an eigenvector of f |Wi to the eigenvalue θ, i.e.,

(2) (f − θ)v′ = tv′i+1
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§ 11. The topological closure of W1(A)

for some v′i+1 ∈ Vi+1. Now, for every q = 0, 1, 2, . . ., we are going to recursively construct
a triple of vectors

vi+q ∈ Vi+q , v′i+q+1 ∈ Vi+q+1 , v
′′
q ∈ Vq

(one may read Vp = V for q > n) in the following way: For q = 0 we set

vi = v′ , v′i+1 from above , v′′ = 0 .

For q > 0 we get them from the vectors for q − 1.
First we claim:

θ

λq
6∈ EigVal(f |Wi+q/Wq

)
(1)
=

i+q⋃
l=q+1

EigVal(f |W̄l
) .

Otherwise for some l with q ≤ l − 1,

θij = θ = θl,j′λ
q ∈ EigVal(f |W̄l

) · λq ⊆ ˜EigVal(f |W̄l
) ,

which is a contradiction to the disjointness of the sets EigVal(f |W̄i
) and EigVal(f |W̄l

)·λq:
For i 6= l this is clear, for i = l observe that 0 < q ≤ l − 1 = i− 1.
Therefore (f − θ

λq )|Wi+q/Wq
is an automorphism, and there is a vi+q ∈ Vi+q with

λq(f − θ

λq
)vi+q ≡ −v′i+q (mod Vq + tVi+q+1)

—note that Wi+q/Wq = Vi+q/(Vq + tVi+q+1). So there are vectors v′i+q+1 ∈ Vi+q+1 and
v′′q ∈ Vq such that

(3) (λqf − θ)vi+q + v′i+q = v′′q + tvi+q+1 .

Now we set

(4) v := vi + tvi+1 + t2vi+2 + · · · ∈ Vi ;

this sum is finite, it stops after at most n steps. We have

(f − θ)v (4)
= (f − θ)vi + (f − θ)tvi+1 + (f − θ)t2vi+2 + · · ·

= (f − θ)vi + t(λf − θ)vi+1 + t2(λ2f − θ)vi+2 + . . .

(3)
= (f − θ)vi + t(−v′i+1 + tv′i+2 + v′′1 ) + t2(−v′i+2 + tv′i+3 + v′′2 ) + · · ·
(2)
= tv′i+1 + t(−v′i+1 + tv′i+2 + v′′1 ) + t2(−v′i+2 + tv′i+3 + v′′2 ) + · · ·

= tv′i+1 − tv′i+1 + t2v′i+2 − t2v′i+2 + t3v′i+3 − · · ·

= 0

and we are done.

(11.4) Lemma. The canonical map

ϕ: Uλ −→ Endfilt(W ) −→
n⊕
i=1

End(W̄i)

is surjective.
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Proof: We choose a basis {vijν : i = 1, . . . , n; j = 1, . . . , m̄i; ν = 0, . . . , i − 1} of V
such that the associated matrix of g has Jordan canonical form.
The set {vij0, . . . , vij(i−1)} corresponds to a Jordan block (i.e., elementary Jordan ma-
trix) of size i× i. Setting viji := 0, we can write

g(vijν) = vij(ν+1)

for ν = 0, . . . , i− 1. We have

Vi =
⊕

1≤l≤n
j=1,...,m̄l

max{l−i,0}≤ν≤l−1

k · vljν ,

and

Wi =
⊕

1≤l≤i
j=1,...,m̄l

k · vlj0 and W̄i =
⊕

j=1,...,m̄i

k · vij0 .

Let now

f̄i = (yijβ)j,β=1,...,m̄i ∈ Mm̄i(k) = End(W̄i)

be any endomorphism of W̄i for i = 1, . . . , n, with respect to {vij0 : j = 1, . . . , m̄i}, the
basis of W̄i from above.
We define f ∈ Uλ ⊆ Mn(k) in the following way:

f(vijν) := λν
m̄i∑
β=1

yijβ · viβν

for i = 1, . . . , n, j = 1, . . . , m̄i, ν = 0, . . . , i− 1. Then

f
(
g(vijν)

)
= f(vij(ν+1)) = λν+1

m̄i∑
β=1

yijβ · viβ(ν+1)

and

g
(
f(vijν)

)
= g

λν m̄i∑
β=1

yijβ · viβν

 = λν
m̄i∑
β=1

yijβ · viβ(ν+1) ,

therefore f ◦ g = λ · g ◦ f , i.e., f ∈ Uλ. Restricted to

W̄i =
m̄i⊕
j=1

k · vij0 .

we see

f(vij0) =
m̄i∑
β=1

yijβ · viβ0 = f̄i(vij0) .

Since the f̄i were chosen arbitrarily we are done.
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(11.5) Lemma. Let W be a k-vector space of dimension m, and let f ∈ Endk(W )
be nilpotent. For any set of elements θ1, . . . , θm ∈ k, there exists an endomorphism
f̃ ∈ Endk(W ) such that for any α ∈ k

EigVal(f + αf̃) = {αθ1, . . . , αθm} .

Proof: Let v1, . . . , vm ∈ W be a basis of W such that the matrix Y associated to f
with respect to this basis is strictly (upper or lower) triangular, e.g., take the Jordan
canonical form. Then we set for Ỹ—the matrix representing f̃—the diagonal matrix
with the entries θ1, . . . , θm. Then Y + αỸ is a triangular matrix with the diagonal
elements αθ1, . . . , αθm.

Let again V be an n-dimensional k-vector space and g, Vi, Wi, . . . as above. We choose
numbers θij ∈ k∗, i = 1, . . . , n; j = 1, . . . , m̄i such that all the numbers θijλν for
i = 1, . . . , n; j = 1, . . . , m̄i; ν = 0, . . . , i− 1, are pairwise distinct.

(11.6) Proposition. Let f ∈ Endk(V ) be nilpotent and f ∈ Uλ. Then there exists

an f̃ ∈ Uλ such that
f + αf̃ ∈ Uλ

for all α ∈ k and

EigVal(f + αf̃) = {αθijλν : i = 1, . . . , n; j = 1, . . . , m̄i; ν = 0, . . . , i− 1} .

Proof: Because of (11.3), it is enough to show that there is an f̃ ∈ Uλ such that

EigVal
(
(f + αf̃)|W̄i

)
= {αθij : j = 1, . . . , m̄i} .

for i = 1, . . . , n. By (11.5) we choose f̃i ∈ End(W̄i) such that

EigVal(f |W̄i
+ αf̃i) = {αθij : j = 1, . . . , m̄i} .

Since the map ϕ in (11.4) is surjective we can find an element f̃ ∈ Uλ which maps to
the tuple (f̃i). We know

EigVal
(
(f + αf̃)|W̄i

)
= EigVal(f |W̄i

+ αf̃i)

= {αθij : j = 1, . . . , m̄i} .

Therefore we are done.

2. The Closure of W1(A)

In W̄(A)× W̄(A) ⊆ P(A)×P(A) we have the closed set

W̄1 :=
{(

[X], [Y ]
)
∈ W̄(A)× W̄(A) : XY − ζY X = 0

}
.

This set contains the open subset

W1 :=
{(

[X], [Y ]
)
∈W(A)×W(A) : XY − ζY X = 0

}
.
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(11.7) Theorem. W̄1
is the (Zariski) topological closure of W1 in P(A)2.

Proof: All we have to show is that W1 is dense in W̄1.
We first show that W1 is dense in

Q :=
{(

[X], [Y ]
)
∈ W̄(A)×W(A) : XY − ζY X = 0

}
.

So let
(
[X], [Y ]

)
be an element in Q. We may assume that [X] 6∈W(A). Then take any

[X̃] ∈W(A) with X̃Y − ζY X̃ = 0; which always exists. Now(
[X + αX̃], [Y ]

)
∈W1

for almost all α ∈ k∗, since Nrd(X + αX̃) 6= 0 for almost all α. Therefore in any
neighbourhood of

(
[X], [Y ]

)
are elements of W1.

Now we prove that Q is dense in W̄1. Let
(
[X], [Y ]

)
∈ W̄1. We may assume that

[Y ] 6∈ W(A). For reasons of symmetry we may assume that also [X] 6∈ W(A), i.e., X
and Y are nilpotent. Otherwise we had the former case with switched components.
We further assume A = Mn(k). In the situation of subsection 1., we set V = kn,
λ = ζ−1, g = X and f = Y . Then Y ∈ Uλ. Because of (11.6) there exists for the case

{θijλν} = {ζ0, . . . , ζn−1}

—which is easily realized—a Ỹ ∈ Uλ such that

EigVal(Y + αỸ ) = {αζ0, . . . , αζn−1}

for all α ∈ k∗, i.e., Y + αỸ ∈W(A). So we may find a pair(
[X], [Y + αỸ ]

)
∈ Q

in any neighbourhood of
(
[X], [Y ]

)
.
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Chapter V

Chain Equivalence for Algebras of Degree 2 and 3

Let k be a field and n ≥ 2 a positive integer which is not divisible by the characteristic
of k. Let A be a central simple k-algebra of degree n, and ζ ∈ µn = µn(k̄) denotes a
primitive n-th root of unity. We assume that ζ ∈ k.

If X and Y are Kummer elements of A, we are interested in the question if they are
(`, ζ, ν)-related for a ν ∈ (Z/nZ)∗ and a positive integer `, i.e., if the set

K-Chainζ`
(
[X], [Y ν ];A

)
6= ∅

is non-empty for some ` and ν.
If we are interested in this question for generic [X] and [Y ] ∈W0(A), then we only have
to consider the case ν = 1. That means the following:
If we have shown—for some fixed ` and ζ—that K-Chainζ`

(
[X], [Y ];A

)
6= ∅ (or has

a certain constant order c) for generic [X] and [Y ] ∈ W0(A), then it is clear that
K-Chainζ`

(
[X], [Y ν ];A

)
6= ∅ (or has the order c) for generic [X] and [Y ] ∈ W0(A),

since [Y ] 7→ [Y ν ] is an automorphism of W0(A). Moreover we then can say, that for
another primitive n-th root ζ ′ the set K-Chainζ

′

`

(
[X], [Y ν ];A

)
6= ∅ (or has the order c)

for generic [X] and [Y ] ∈W0(A). This follows from (8.6).
We may formulate the question in the language of schemes:
Let ` be a positive integer. Is the morphism of projection to the first and last factor

(π`0, π
`
`): W`(A) −→ W0(A)×k W0(A)

surjective on the k-rational points, or is it dominant? If yes, then how big are the
fibres?
In (10.26) we saw

dim W`(A) = (`+ n)(n− 1)
and from (9.22) we know

dim W0(A)×k W0(A) = 2n(n− 1) .

Hence for dominance we need at least ` ≥ n.

It is announced by M. Rost that for prime numbers n, the morphism (πn0 , π
n
n) is

dominant of degree prime to n.
We are going to show this for the cases n = 2 and 3; we even will show that the degree
is actually 1 and 2 respectively.
It is clear that dominance and degree are independent under base change k′|k. So one
may treat and prove the questions of degree and dominance in the case (n, `) for just
one special central simple k-algebra A and then automatically get the results for every
central simple k′-algebra, where k′ is any other field of the same characteristic as k.
Especially one may consider the extreme cases of A being a division algebra or a matrix
algebra.—Of course surjectivity depends on the base field and may change with it.
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The group scheme GL1(A) acts on the schemes W`(A) and W0(A) ×k W0(A) by con-
jugation in every factor and the projection morphisms π`0: W`(A)→W0(A) as well as
pr1: W0(A)×kW0(A)→W0(A) are GL1(A)-morphisms. Since GL1(A) acts transitively
on W0(A) we may ask our questions in the following formulation: Is the morphism

π`` : W`([X];A) −→W0(A)

dominant and what is the degree (which is the same as the degree above)?

§12. The Case of Algebras of Degree 2

We fix a field k of characteristic 6= 2. Let A be a central simple k-algebra of degree 2
and ζ = −1.

1. Chain Equivalence for n = ` = 2

We are going to prove that (almost) any two Kummer elements [X], [Y ] ∈ W(A) are
connected by one chain of length two.
We will split up this problem into the two cases that A is a division algebra or a matrix
algebra.

(12.1) Lemma. For [X] and [X ′] ∈ W(A) the condition XX ′ − X ′X = 0 implies
[X] = [X ′].

Proof: X ′ commutes with X, therefore X ′ ∈ k[X], i.e., X ′ = αX + β, where α, β ∈ k.
But

0 = Trd(X ′) = Trd(αX + β) = Trd(β) = 2β ,
hence X ′ = αX.

(12.2) Notation. For any central simple k-algebra A of (arbitrary) degree n, with
characteristic of k not dividing n and any primitive n-th root ζ of unity we denote

u(ζ, [X]) := u(ζ, [X];A) := {[Y ] ∈W(A) : XY − ζY X = 0}

for any [X] ∈W(A). In other words

{[X]} × u(ζ, [X]) = W1([X];A)(Spec k) .

Now we first assume that A is a division algebra of degree 2.

(12.3) Proposition. If A is a division algebra and [X], [Y ] ∈ W(A) are Kummer

elements, then K-Chainζ2([X], [Y ];A) 6= ∅. To be precise:

K-Chainζ2([X], [Y ];A) =
{{(

[X], [XY − Y X], [Y ]
)}
, if [X] 6= [Y ]

{[X]} × u(ζ, [X])× {[Y ]}, if [X] = [Y ]

Proof: The second case is clear, since ζ = ζ−1 = −1; and u(ζ, [X]) 6= ∅ because of
(6.16). If [X] 6= [Y ], then by (12.1) the commutator XY − Y X 6= 0 is invertible, and
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we obviously have X
ζ−→ (XY − Y X)

ζ−→ Y , e.g., X(XY − Y X) + (XY − Y X)X =
X2Y −XYX +XYX − Y X2 = X2Y − Y X2 = 0.
In particular [XY − Y X] ∈W(A)—cf. (6.8). All we have to show now is that there is

only one [Z] ∈W(A) with X
ζ−→ Z

ζ−→ Y . In this case, since ζ = ζ−1, we have

[Z] ∈ u(ζ, [X]) ∩ u(ζ, [Y ])

and since u(ζ, [X]) and u(ζ, [Y ]) are one-dimensional linear subspaces of P(A) they
intersect in exactly one point or they are equal. But only the first case is true: Otherwise
we got k[X]Z = k[Y ]Z, hence k[X] = k[Y ]. By (12.1) we had [X] = [Y ].

Now we assume that A is a matrix algebra. First let A = A0 = M2(k)

(12.4) Remark. From the definition of Kummer elements follows:

W(A0) =
{(

a b
c −a

)
: a2 + bc 6= 0

}
.

(12.5) Lemma. For X0 =
(−1

0
0
1

)
we have

u(ζ, [X0]) =
{[(

0 β
γ 0

)]
: βγ 6= 0

}
.

Proof: Consider the equivalences(
α β
γ δ

)
∈ u(ζ, [X0]) ⇐⇒

(
−1 0
0 1

)(
α β
γ δ

)(
−1 0
0 1

)
= −

(
α β
γ δ

)
∈ GL2(k)

⇐⇒ α = δ = 0, βγ 6= 0 .

(12.6) Proposition. Let X0 =
(−1

0
0
1

)
and Y =

(
a
c
b
−a
)
∈ W(A0) be two Kummer

elements. Then

K-Chainζ2([X0], [Y ];A0) =

=


{(

[X0], [X0Y − Y X0], [Y ]
)}
, if bc 6= 0

{[X0]} × u(ζ, [X0])× {[Y ]}, if b = c = 0, i.e., [X0] = [Y ]
∅, if (b 6= 0, c = 0) or (b = 0, c 6= 0) .

Proof: Because of (12.5) we just have to solve the equation(
0 β
γ 0

)(
a b
c −a

)
= −

(
a b
c −a

)(
0 β
γ 0

)
for γβ 6= 0. But this equation is equivalent to βc+ γb = 0.
If b = c = 0 all β, γ ∈ k∗ do the job.
If cb 6= 0, then β

γ = b
−c , which gives us the one solution.

If (b 6= 0, c = 0) or (b = 0, c 6= 0) the equation is not solvable for βγ 6= 0.
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Now let A be any algebra isomorphic to A0 = M2(k).

(12.7) Corollary. Let X,Y ∈W(A) be any Kummer elements. Then

K-Chainζ2([X], [Y ];A) =

=


{(

[X], [XY − Y X], [Y ]
)}
, if det(XY − Y X) 6= 0

{[X]} × u(ζ, [X])× {[Y ]}, if XY − Y X = 0, i.e., [X] = [Y ]
∅, otherwise

Proof: The first two cases are clear. Note that the uniqueness in the first case can be
proved after base field extension such that [X] is conjugate to [X0]. The last case may
also be shown after base extension: Then we again may assume that [X] = [X0] and
Y =

(
a
c
b
−a
)
∈ W(A). But the condition det(X0Y − Y X0) = 0 and X0Y − Y X0 6= 0

just means (b 6= 0, c = 0) or (b = 0, c 6= 0): Observe X0Y − Y X0 =
(

0
2c
−2b

0

)
.

2. The Geometric Point of View

In §9 and §10 we gave a description of W(A) and K-Chainζ2(A) as the k-schemes W0(A)
and W2(A).
The projection onto the first and last component

(π2
0 , π

2
2): W2(A) −→ W0(A)×k W0(A)

is a morphism of k-schemes. In fact, we will show that it is—cum grano salis—a blowing
up in the diagonal.

We assume that k is algebraically closed and A = A0 = M2(k) is a matrix algebra.

(12.8) Remark. Since W̄(A) is the subvariety of P(A) given by the polynomial Trd,
we can write

W̄(A) =
{[(

a b
c −a

)]
: (a, b, c) 6= (0, 0, 0)

}
.

One can identify W̄(A) with P2
k via

ψ: W̄(A) ∼−→ P
2
k[(

a
c

b
−a

)]
7−→ (2a : b− c : b+ c)

or
ψ′: W̄(A) ∼−→ P

2
k[(

a
c

b
−a

)]
7−→ (2a : c− b : b+ c) .

The inverse of, e.g., ψ is given by:

ψ−1(α : β : γ) =
[( α

2
β+γ

2
γ−β

2 −α2

)]
.
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(12.9) Lemma. The diagram� (pr1,pr3)�
ϕ:=ψ×ψ′×ψ

�
p13:=(pr1,pr3)

�
ψ×ψ

P
2
k × P2

kB :=
{(

[u], [v], [w]
)
∈ (P2

k)3 : v(u) = 0, v(w) = 0
}

W̄(A)× W̄(A)
{(

[X], [Y ], [Z]
)
∈ W̄(A)3 : XY + Y X = 0, XZ + ZX = 0

}

is commutative with vertical isomorphisms. For [v] = (v0 : v1 : v2), [u] = (u0 : u1 : u2)
the expression v(u) = 0 stands for v0u0 + v1u1 + v2u2 = 0.

Proof: The relations XY + Y X = 0 and Y Z + ZY = 0 are transformed by ϕ into
v(u) = 0 and v(w) = 0, where [u] = ψ([X]), [v] = ψ′([Y ]) and [w] = ψ([Z]): Set
X =

(
a
c
b
−a
)

and Y =
(
a′

c′
b′

−a′
)
, then

XY + Y X =
(

2aa′+bc′+cb′

0
0

2aa′+bc′+cb′

)
= 0

⇐⇒ 4aa′ + 2bc′ + 2cb′ = 0
⇐⇒ (2a)(2a′) + (b− c)(c′ − b′) + (b+ c)(b′ + c′) = 0
⇐⇒ v(u) = 0 .

Analogous for the other relation. The rest is clear.

The projection morphism p13: B −→ P
2
k×P2

k is the blowing up of P2
k×P2

k in its diagonal.
In order to show that, we need some lemmas.

(12.10) Lemma. The projection morphism onto the first and third factor

p13 := (pr1,pr3):
{

(x, [y], z) ∈ A2
k × P1

k × A2
k : x ∈ [y]

}
−→ A

2
k × A2

k

is the blowing up of A2
k ×A2

k in {0} ×A2
k. Here the relation x ∈ [y] means y1x2 = y2x1

for x = (x1, x2) and [y] = (y1 : y2).

Proof: By definition, the projection morphism on the first factor

pr1:
{

(x, [y]) ∈ A2
k × P1

k : x ∈ [y]
}
−→ A

2
k

is the blowing up of A2
k in {0}, and the morphism of the claim is the base extension

with A2
k −→ Spec k.

(12.11) Lemma. The projection morphism onto the first and third factor

p13:
{

(x, [y], z) ∈ A2
k × P1

k × A2
k : x− z ∈ [y]

}
−→ A

2
k × A2

k

is the blowing up of A2
k × A2

k in its diagonal.

Proof: This follows from (12.10) by the following coordinate transformation� p13��
p13

�
A

2
k × A2

k ,
{

(u, [v], w) ∈ A2
k × P1

k × A2
k : u ∈ [v]

}
A

2
k × A2

k

{
(x, [y], z) ∈ A2

k × P1
k × A2

k : x− z ∈ [y]
}
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where the left vertical arrow is given by (x, [y], z) 7→ (u, [v], w), with u = x− z, w = z,
[v] = [y]; and the right vertical arrow is given by (x, z) 7→ (u,w). with u = x−z, w = z.
It induces an isomorphism between the diagonal of A2

k × A2
k and {0} × A2

k.

(12.12) Proposition. The following morphism is an isomorphism{
(x, [y], z) ∈ A2

k × P1
k × A2

k : x− z ∈ [y]
} ∼−→{(

u, [v], w
)
∈ A2

k × P2
k × A2

k : v(u) = 0, v(w) = 0
}

defined by(
(x1, x2), (y1 : y2), (z1, z2)

)
7−→

(
(x1, x2), (y1z2 − y2z1 : y2 : −y1), (z1, z2)

)(
(u1, u2), (v2 : −v1), (w1, w2)

)
←−7

(
(u1, u2), (v0 : v1 : v2), (w1, w2)

)
Here the expression v(u) = 0 means v0 + v1u1 + v2u2 = 0, where [v] = (v0 : v1 : v2) and
u = (u1, u2).

Proof: We only have to prove that the two mappings are well-defined, since they are
(almost) obviously inverse to each other.
Let x = (x1, x2), z = (z1, z2) ∈ A2

k and y = (y1 : y2) ∈ P1
k. Then

x− z ∈ [y] =⇒ (x1 − z1)y2 = y1(x2 − z2)
=⇒ (x1 − z1)y2 + (x2 − z2)(−y1) = 0
=⇒ v(u) = v0 + v1u1 + v2u2 = (y1z2 − y2z1) + x1y2 + x2(−y1) = 0

and

x− z ∈ [y] =⇒ v(w) = v0 + v1w1 + v2w2 = (y1z2 − y2z1) + z1y2 + z2(−y1) = 0

for u = x, [v] = (y1z2 − y2z1 : y2 : −y1) and w = z.
On the other hand, let u = (u1, u2), w = (w1, w2) ∈ A2

k and [v] = (v0 : v1 : v2) ∈ P2
k,

then v(u) = 0 and v(w) = 0 implies

0 = v(u)− v(w) = (u1 − w1)v1 + (u2 − w2)v2

hence (u1 − w1)(−v1) = (u2 − w2)(v2), i.e., x− z ∈ [y] for x = u, [y] = (v2 : −v1) and
z = w.
But it also implies v0 = −v1w1 − v2w2 hence

v = (v0 : v1 : v2)
= (−v1w1 − v2w2 : v1 : v2)
= (v2w2 + v1w1 : −v1 : v2)
= (y1z2 − y2z1 : y2 : −y1)

what we need for proving that one composition of the two mappings is the identity.

(12.13) Corollary. The morphism p13: B −→ P
2
k × P2

k is the blowing up of P2
k × P2

k

in its diagonal.

Proof: All we have to show is that the map, restricted to the open sets of an open
covering of P2

k × P2
k is a blowing up. Therefore we take a neighbourhood of a point
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([u], [w]) ∈ P2
k×P2

k, [u] = (u0 : u1 : u2), [w] = (w0 : w1 : w2). Applying a suitable unitary
transformation on all factors P2

k of the map p13—it leaves the conditions v(u) = v(w) = 0
invariant—we may assume u0 = w0 = 1, and we consider the open neighbourhood

A
2
k × A2

k ↪−→ P
2
k × P2

k(
(u1, u2), (w1, w2)

)
7−→

(
(1 : u1 : u2), (1 : w1 : w2)

)
the rest is just (12.12) with (12.11).

Now we know with (12.9) that the map

p13:
{(

[X], [Y ], [Z]
)
∈ W̄(A)3 : XY + Y X = 0, XZ + ZX = 0

}
−→ W̄(A)2

is a blowing up in the diagonal. Restricting (or taking base extension) to the open
subscheme W(A) × W(A) we get the blowing up of W(A) × W(A) in its diagonal.
Additionally, for any [X0] ∈W(A) we may take base extension with {[X0]} ×W(A) ↪→
W(A)×W(A). In all we get

(12.14) Theorem. The morphisms{(
[X], [Y ], [Z]

)
∈W(A)× W̄(A)×W(A) : XY + Y X = 0, XZ +ZX = 0

}
p13−→ W(A)2

and{(
[X], [Y ], [Z]

)
∈ {[X0]} × W̄(A)×W(A) : XY + Y X = 0, XZ +ZX = 0

}
pr3−→ W(A)

are blowing ups in the diagonal and in {[X0]} respectively. The left varieties are the
(Zariski) closures of W2(A) in W(A)×W̄(A)×W(A) and W2([X0];A) in W̄(A)×W(A).

(12.15) Remark. Comparing (12.14) with (12.7) one observes that the pre-image
(under pr3) of the point (b 6= 0, c = 0) and (b = 0, c 6= 0) lie in

(
W̄(A)−W(A)

)
×W(A).
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We fix a field of characteristic prime to 6 with a primitive 3-rd root ζ ∈ µ3(k) of unity
lying in k. Let A be a central simple k-algebra of degree 3. We choose a ζ-pair (X,Y ),
i.e., X,Y ∈ W(A) such that XY − ζY X = 0.

1. Preliminaries and Conditions for Chains of Length 2

From (6.14) we know

A =
⊕

0≤i,j≤2

k ·XiY j

or, if we set L := k[X] = k ⊕ kX ⊕ kX2,

A = L⊕ Y L⊕ LY −1 .

(13.1) Notation. Every element T ∈ A has a unique presentation in the form

T = α+ Y β + γY −1

with α, β, γ ∈ L. In this section, if we write T , we will always work with this presenta-
tion.
Y acts on L via conjugation:

κY :L −→ L

X 7−→ Y XY −1 = ζ−1X .

We denote this action by α 7→ α.

(13.2) Lemma. For α ∈ L, we have the equivalences

α = ζα ⇐⇒ α = ζα ⇐⇒ α ∈ kX2 ,

α = ζα ⇐⇒ α = ζα ⇐⇒ α ∈ kX ,

α = α ⇐⇒ α ∈ k .

Furthermore, if we write α = α0 + α1X + α2X
2 for α0, α1, α2 ∈ k, then

Trd(α) = Trd(α) = 3α0 .

Proof: Observe for α = α0 + α1X + α2X
2 that α = α0 + ζ−1α1X + ζα2X

2.

(13.3) Lemma. For T = α+ Y β + γY −1 ∈ A we have

Trd(T ) = Trd(α)

Trd(T 2) = Trd(α2) + 2 Trd(βγ) .

117



§ 13. The case of algebras of degree 3 and length 3

Proof: Note that X, Y , X2, Y 2, Y X, Y X2, XY 2, X2Y 2 are Kummer elements
(cf. (6.9)) hence their reduced trace is zero.

Trd(T ) = Trd(α) + Trd(Y β) + Trd(γY −1)
= Trd(α) ,

Trd(T 2) = Trd(α2 + Y βγY −1 + γY −1Y β)

= Trd(α2) + Trd(βγ) + Trd(γβ)

= Trd(α2) + Trd(βγ) + Trd(βγ) .

(13.4) Lemma. For invertible T ∈ A∗, the following conditions are equivalent:

(i) T ∈ W(A) is a Kummer element,

(ii) Trd(α) = 0 and Trd(α2) = −2 Trd(βγ) .

Proof: Since the characteristic of k is prime to (3!) we know from (6.5) that (i) is
equivalent to Trd(T ) = Trd(T 2) = 0, and this is by (13.3) equivalent to (ii).

Any Kummer element X1 ∈ W(A) which is in ζ-relation with X0 := X, i.e., X0X1 −
ζX1X0 = 0, has the form X1 = Y λ for a λ ∈ L∗.
What are the conditions for an element T ∈ A to be the third entry in a ζ-chain
([X0], [X1], [T ]) ∈ K-Chainζ2(A)?

(13.5) Lemma. Let X1 := Y λ with λ ∈ L and T = α + Y β + γY −1 ∈ A, then the
following conditions are equivalent:

(i) X1T − ζTX1 = 0

(ii) αλ = ζαλ, γλ = ζγλ, βλ = ζβλ.

Proof: Observe
X1T − ζTX1 = (Y λ)(α+ Y β + γY −1)− ζ(α+ Y β + γY −1)(Y λ)

= Y λα+ Y λY β + Y λγY −1 − ζαY λ− ζY βY λ− ζγλ

= (λγ − ζγλ) + Y (λα− ζαλ) + Y 2(λβ − ζβλ) .

The coefficients are zero if and only if (i) holds.

(13.6) Proposition. If for T = α+ Y β + γY −1 ∈ W(A) the conditions

(I) Trd(αX2) = 0
(II) Trd(βγX) = 0

(III’) β ∈ L∗ or (III’’) γ ∈ L∗

hold, then there exists an X1 ∈ W(A) with

X0X1 − ζX1X0 = 0 and X1T − ζTX1 = 0 .

Proof: With (13.2) and (13.4) we know for α = α0+α1X+α2X
2 that α0 = 1

3 Trd(α) =
1
3 Trd(T ) = 0.
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§ 13. The case of algebras of degree 3 and length 3

Condition (I) implies that α1 = 1
3 Trd(αX−1) = Trd(αX2)/(3X3) = 0. Therefore

α = α2X
2, hence α2 = α2

2X
4 and Trd(α2) = 0. Because of (13.4) we get Trd(βγ) = 0.

Together with condition (II) we get βγ ∈ kX.
Now we assume that (III’) holds true: In this case set

λ := βX and X1 := Y λ ∈ W(A) ,

and then we have X0X1 − ζX1X0 = 0. Moreover the equations of (13.5)(ii) are valid:
From α = α2X

2 follows α = ζα, hence αλ = ζαλ.
λ
β = X implies

(
λ
β

)
= ζ
(
λ
β

)
, i.e., βλ = ζβλ.

Finally, βγ ∈ kX shows λγ ∈ kX2, hence γλ = ζγλ.
If we assume (III’’) then set

λ := γ−1X2 and X1 := Y λ ∈ W(A) ,

and the rest follows analogously.

(13.7) Proposition. Let T = α+ Y β + γY −1 ∈ A such that there is an X1 ∈ W(A)
with

X0X1 − ζX1X0 = 0 and X1T − ζTX1 = 0 .

Then

(I) Trd(αX2) = 0, i.e., α1 = 0

(II) Trd(βγX) = 0.

Proof: Because of the first Kummer relation, X1 = Y λ for a λ ∈ L∗. The situation,
applied to (13.5), gives us

αλ = ζαλ, γλ = ζγλ, βλ = ζβλ .

Since λ is invertible, we can divide it out of the first equation and get α = ζα, hence by
(13.2) α ∈ kX2, which implies (I).
Conjugating the third equation by Y we get βλ = ζβλ; multiplying this one with the
second equation yields βλγλ = ζ2βλγλ, i.e., γβ = ζ−1γβ, hence we get γβ ∈ kX, which
shows (II).

(13.8) Proposition. If for a T = α+ Y β + γY −1 ∈ A∗, with β ∈ L∗ or γ ∈ L∗, there

exists an X1 ∈ W(A) such that ([X0], [X1], [T ]) ∈ K-Chainζ2(A), then [X1] is unique
with this property.

Proof: Any X1 with X0
ζ−→ X1

ζ−→ T has the form X1 = Y λ for a λ ∈ L∗. Then if

β ∈ L∗, we know from the proof of (13.7) that
(
λ
β

)
= ζ

(
λ
β

)
, i.e., λ

β ∈ kX or λ ∈ kβX.
But that means λ is unique up to scaling with an element of k∗. Therefore [Y λ] is
unique.
Analogous if γ ∈ L∗.

119



§ 13. The case of algebras of degree 3 and length 3

(13.9) Example. There are exactly two chains of length three connecting [X] with
[Y ], namely

([X], [XY ], [XY 2], [Y ]) and ([X], [X2Y ], [XY ], [Y ]) .

Indeed, one get the chains by expanding the ζ-pair ([X], [Y ]) to ([X], [XY ], [Y ]) and
then again expanding in the first or second link—cf. (6.9). But they are the only ones:
Let ([X], [X1], [T ], [Y ]) ∈ K-Chainζ3(A) be a ζ-chain. Then we know for T = α + Y β +
γY −1 from (6.10) that T ∈ k[Y ] ·X, i.e.,

α0 = α2 = β0 = β2 = γ0 = γ2 = 0

or T = α1X + Y β1X + γ1XY
−1. Furthermore we know from (13.7) that

(I) α1 = 0 and
(II) β1γ1 = 0.

This has two (projective) solutions (β1 = 0, γ1 6= 0) and (β1 6= 0, γ1 = 0) which lead to
the two chains from above.
Note that the two solution-chains are already k-rational!

2. Existence of Connecting Chains of Length 3

Now we formulate the main theorem of this section which roughly says that almost any
two Kummer elements can be connected by exactly two chains of length three.

(13.10) Theorem. The morphism

π3
3 : W3([X];A) −→ W0(A)

is a dominant morphism of degree 2. In other words, there is an open non-empty,
therefore dense, subset U ⊆ W0(A) with the following property: If [Z] ∈ U then
(π3

3)−1([Z]) is a set of two points of degree (of the residue field extension) 1 or one point
of degree 2.

(13.11) Remark. We can formulate the theorem in the following way: Let k′|k be
a field extension in some algebraic closure k̄ of k and let [Z] ∈ W(Ak′) ∩ U be a k′-
rational point, i.e., Kummer element, lying in U . Then there exists a field extension
l|k′ of degree one or two such that

K-Chainζ3([X], [Z];Al) = K-Chainζ3([X], [Z];Ak̄) ,

and this is a set of two elements.

At the beginning of this chapter we mentioned that the degree of (π3
3)—and therefore

the whole theorem—does not depend on the special choice of the central simple algebra
A (of degree 3) and the field k for a fixed characteristic. So for the proof we choose and
fix A and k in a way such that A is a division algebra. (In particular k is not separably
closed!)
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Let
f1: A −→ k

T 7−→ Trd(αX2)
and

f2: A −→ k

T 7−→ Trd(βγX) ,

where T = α+ Y β + γY −1.
For a 3-dimensional vector subspace E ⊆ A we say that the system (f1, f2) is non
degenerate in E if the following two conditions hold:

(i) f1|E 6= 0
(ii) The quadratic form f2 restricted to E ∩ ker(f1) is non degenerate.

Note, that by (i) the vector space E′ := E ∩ ker(f1) has dimension 2. Condition (ii)
means that the quadratic form q := f2|E′ is non degenerate.

Let A := A ⊗k OW0(A)—so, A is the dual to the sheaf of OW0(A)-modules M , which
we know from §10—, and let E be the the OW0(A)-submodule of A of rank 3, which is
given by the equation

TZ − ζZT = 0 where T ∈ A and [Z] ∈W0(A) .

—Cf. §10. There we can see that E is the dual of F .

(13.12) Lemma. There exists an open and dense subscheme U ⊆W0(A) such that for
each point u ∈ U , the system (f1, f2) is non degenerate in E (u) = Eu ⊗OW0(A),u

κ(u) ⊆
A⊗k κ(u).

Proof: The non degeneracy condition is an open condition and the variety W0(A) is
irreducible by (9.22). Therefore it suffices to find one point u ∈W0(A) such that (f1, f2)
is non degenerate in E (u).
We put u = [Y ]. Then E (u) = X · k[Y ] and we have T = α1X + Y β1X + γ1XY

−1 for
α1, β1, γ1 ∈ κ(u).
The system (f1, f2) restricted to E (u) is given by

(α1, β1, γ1) 7−→ (3X3α1, 3X3β1γ1)

which is obviously non degenerate.

Let V ⊆ P(A)×k W0(A) be the subscheme defined by the equations
(1) TZ − ζZT = 0
(2) Trd(αX2) = 0
(3) Trd(βγX) = 0.

where [T ] = [α+ Y β + γY −1] ∈ P(A) and [Z] ∈W0(A).
As we have seen in §10, equation (1) defines the 2-dimensional projective bundle P(F ) =
Proj

(
S(Ě )

)
on W0(A). Thus V is the subscheme of P(F ) given by the system (f1, f2).

Let p: V → W0(A) be the restriction of the projection P(A) ×k W0(A) −→ W0(A)
and let η ∈ W0(A) be the generic point of W0(A), with residue field F := κ(η) and
Vη = p−1(η) the fiber over η.
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(13.13) Proposition. We have the following facts:

(i) One has Vη = Spec(K) where the F -algebra K is a separable extension of F of
degree 2.

(ii) The F -algebra AF is a division algebra.

(iii) If K is a field, the K-algebra AK is a division algebra.

Proof: (i) follows from (13.12).
For (ii) note that A is a division algebra and that W0(A) has a smooth k-rational point,
e.g., [X] or [Y ].
(iii) follows since [K : F ] = 2 is prime to the index of A.

Let S ⊆ P(A)×k W0(A) be the closed subscheme given by the equations

Nrd(β) = Nrd(γ) = 0 where [T ] = [α+ Y β + γY −1] ∈ P(A) .

(13.14) Proposition. Vη ∩ S = ∅.

Proof: Let x ∈ Vη and let H := κ(x) be the residue field. Thus H = K if K is a field
or H = F if K = F ⊕ F . The point x ∈ Vη is of the form(

[Tx], [Zη]
)
∈ P(A)(SpecH)×W0(A)(SpecF )

where [Zη] ∈W0(A)(SpecF ) is the generic element, i.e., the F -rational point localized
in the generic point η and [Tx] = [α+ Y β + γY −1] with α, β, γ ∈ H[X].
If x ∈ Vη ∩ S then Nrd(β) = Nrd(γ) = 0. Since AH is a division algebra by (13.13)(ii)
and (iii), we must have even β = γ = 0. Further, since Trd(α) = 0 and Trd(αX2) = 0
(the first equation holds, because [T] is a Kummer element and the second by the
equation (2)) we have [Tx] = [X2].
But then

TxZη = ζZηTx

implies
X2Zη = ζZηX

2 .

This would mean that the generic element of W0(A) stands in Kummer relation to X2.
This is a contradiction.

Let
g := (π3

2 , π
3
3): W3([X];A) −→ P(A)×k P(A) .

By proposition (13.7) the image of g is contained in V . Therefore we have a commutative
diagram  

g

¡
π3

3

¢
p W0(A) .V

W3([X];A)

By proposition (13.6) and (13.14) we have

Vη ⊆ im(g) .

Hence there exists a point y ∈ W3([X];A) such that g(y) ∈ Vη, i.e., y maps under π3
3

to the generic point of W0(A).
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Since dim W3([X];A) = dim W0(A), the point must be the generic point of W3([X];A).
Hence

g−1(Vη) = {y}
consists of only one point. It follows that

Vη = {g(y)}

is irreducible and Vη = Spec(K) where K|F is a field extension. Moreover by proposition
(13.8) the morphism, i.e., field extension, Spec(K) = κ

(
g(y)

)
↪→ κ(y) must be of degree

one, hence an isomorphism. This proves our theorem.
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In the last section we proved that almost any two Kummer elements can be connected
by a chain of length 3, if necessary, after a base field extension of degree 2. For chains
of length 4 this is true for any two Kummer elements and over the base field itself if A
is a skew field.

We fix a field of characteristic prime to 3 with a primitive 3-rd root ζ ∈ µ3(k) of unity
lying in k. Let A be a central simple k-algebra of degree 3.
Moreover, we assume that A is a division algebra.
We choose a ζ-pair (X,Y ), i.e., X,Y ∈ W(A) such that XY − ζY X = 0. From above
we know

A = L⊕ Y L⊕ LY −1 ,

with L = k[X].

(14.1) Notation. For any Kummer element Z ∈ W(A) we set

e(ζ, Z) := {Z ′ ∈ A : ZZ ′ − ζZ ′Z = 0} .

For example
e(ζ,X) = k[X]Y = Y k[X] = Y L

and
e(ζ2, X) = k[X]Y −1 = Y −1k[X] = LY −1 .

(14.2) Theorem. If A is a division algebra then any two Kummer elements of A can
be connected by a ζ-chain in A of length 4, i.e., the map induced by (π4

0 , π
4
4)

K-Chainζ4(A) −→ W(A)×W(A)

is surjective.

For completeness we reproduce the proof with minor changes given in M. Rost [RoCL].

Additionally to the elements X and Y , we take an arbitrary Kummer element Z ∈ W(A)
and we will show that there exist invertible elements X1, X2, X3 ∈ A∗ = A− {0} such
that the following conditions hold:

(1) X1 ∈ e(ζ,X)

(2) X1X2 − ζX2X1 = 0

(3) X2X3 − ζX3X2 = 0

(4) X3 ∈ e(ζ2, Z)

(5) X2 ∈ X2k ⊕ e(ζ2, X) = X2k ⊕ LY −1

(6) X3 ∈ e(ζ,X)⊕ e(ζ2, X) = Y L⊕ LY −1
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§ 14. The case of algebras of degree 3 and length 4

(14.3) Remark. The conditions (1)–(4) just mean that

X
ζ−→ X1

ζ−→ X2
ζ−→ X3

ζ−→ Z

is a ζ-chain.

(14.4) Lemma. dimk

(
e(ζ2, Z) ∩

(
e(ζ,X)⊕ e(ζ2, X)

))
≥ 1.

Proof: This follows from

dimk e(ζ2, Z) = 3 and dimk

(
e(ζ,X)⊕ e(ζ2, X)

)
= 6

and the fact that these vector spaces lie in the 8-dimensional vector subspace of the A
of trace zero elements. Hence the vector spaces have non-trivial intersection.

Now let X3 be a non-zero element of e(ζ2, Z)∩
(
e(ζ,X)⊕ e(ζ2, X)

)
, i.e., the points (4)

and (6) hold for X3 and it remains to find X1 and X2 such that (1)–(3) and (5) are
valid.
Now, X3 has the form

X3 = Y µ′ + µ′′Y −1

for some µ′, µ′′ ∈ L.

In two trivial cases it is easy to find the remaining elements.

Case I : If µ′ = 0, then X3 = µY −1 for µ ∈ L∗.
Then the elements

X1 := X−1
3 = Y µ−1 and X2 := X2

fulfill the remaining conditions. In fact we have:
X1 = Y µ−1 ∈ Y L = e(ζ,X) hence (1),
X1 = Y µ−1 ∈ Y L = e(ζ−1, X2) = e(ζ−1, X2) hence (2),
X3 = µY −1 ∈ LY −1 = e(ζ,X2) hence (3),
X2 ∈ kX2 hence (5).

Case II : If µ′′ = 0, then X3 = Y µ for µ ∈ L∗, hence X3 ∈ e(ζ,X).
Then the elements

X1 := X3X = Y (µX) and X2 := X2
3X = X3X1

fulfill the remaining conditions. In fact:
X1 ∈ Y L ∈ e(ζ,X) hence (1),
X1X2 = X3XX

2
3X = ζX3X3XX3X = ζX2X1 hence (2),

X2X3 = X2
3XX3 = ζX2

3X3X = ζX3X2 hence (3),
X2 = Y µY µX ∈ Y 2L = LY −1 = e(ζ2, X) hence (5).

For the rest we may assume that µ′, µ′′ ∈ L∗. Since the only property of Y we need is
X

ζ−→ Y , we may change Y to (Y µ′′). Then we have

X3 = Y µ+ Y −1

for µ = µ′µ′′ ∈ L∗.
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§ 14. The case of algebras of degree 3 and length 4

(14.5) Lemma. Let T = Y µ+ Y −1 for any µ = m0 +m1X +m2X
2 ∈ L for mi ∈ k.

Furthermore let c2 be the second coefficient of the reduced characteristic polynomial of
T . Then c2 = −3m0.

Proof: Trd(T ) = Trd(Y µ)+Trd(Y −1) = 0 and Trd(T 2) = 2 Trd(µ) = 6m0—cf. (13.3).
Since 2c2 = Trd(T )2 − Trd(T 2), it follows that 2c2 = −6m0. This proves the claim for
characteristic 6= 2. For characteristic 2, consider c2 = −3m0 as a polynomial identity
in the variables mi. It suffices to verify this identity for a standard ζ-pair in M3(Z[ζ]).
This follows from the characteristic 0 case.

This lemma gives us for X3 := T

µ = m1X +m2X
2 and X3 = Y (m1X +m2X

2) + Y −1

for some m1, m2 ∈ k.

Case III : If m1 = 0, then X3 = m2Y X
2 + Y −1.

Then the elements

X1 := Y and X2 := (Y X)−1 = X−1Y −1

fulfill the remaining points. In fact:
(1) is clear. X1X2 = Y X−1Y −1 = ζX−1Y Y −1 = ζX2X1 hence (2). The point (3)
follows from

X2X3 = (X−1Y −1)(m2Y X
2 + Y −1)

= m2X +X−1Y −2

= ζm2Y XY
−1 + ζY −1X−1Y −1

= ζX3X2 .

Point (5) is obvious since X−1Y −1 ∈ LY −1 ∈ e(ζ2, X).
Finally we have

Case IV : If m1 6= 0, let

b := Y −3 ∈ k∗, c := ζ−1m1b/NL|k(µ) ∈ k∗, λ := cµX ∈ L∗

and set
X1 := Y λ and X2 := X2(1 + (Y λ)−1) .

With these settings, (1) and (5) are obvious, and (2) is easily seen:

X
ζ−→ Y λ, i.e., Y λ

ζ−→ X2 and therefore e(ζ, Y λ) = X2k[(Y λ)].
It remains to verify (3):

X2(1 + (Y λ)−1)(Y µ+ Y −1) = ζ(Y µ+ Y −1)X2(1 + (Y λ)−1) .

This is equivalent to either of the following lines:

X2(1 + (Y λ)−1)(Y µ+ Y −1) = ζX2(ζY µ+ ζ2Y −1)(1 + (Y λ)−1) ,

i.e.,
(1 + (Y λ)−1)(Y µ+ Y −1) = (ζ2Y µ+ Y −1)(1 + (Y λ)−1) ,
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§ 14. The case of algebras of degree 3 and length 4

i.e.,

Y µ+ Y −1 + λ−1µ+ λ−1Y −2 = ζ2Y µ+ Y −1 + ζ2Y µλ−1Y −1 + Y −1λ−1Y −1 .

We use the identity λ−1µ = ζ2Y µλ−1Y −1, which follows from µλ−1 = λ−1µ = c−1X−1,
in order to get the equivalent version

Y µ+ λ−1Y −2 = ζ2Y µ+ Y −1λ−1Y −1 .

Now with Y 3 = b−1 and the notation λ := Y λY −1 from (13.1) we reformulate our
problem to proving the equation

Y µ+ Y λ−1b = ζ2Y µ+ Y bλ
−1

or equivalently
µ+ λ−1b = ζ2µ+ bλ−1 .

This immediately follows from

(14.6) Lemma. µλλ+ λ b = ζ2 µλλ+ b λ.

Proof: We have to show

(1− ζ2)µλλ = b (λ− λ) .

Since
NL|k(µ) = µµµ and λ = c µX

we have for the left hand side

(1− ζ2)µλλ = (1− ζ2)µ cµX cµX

= (1− ζ2)
(
µµµ c

)
cX2

= (1− ζ2)ζ2m1 b cX
2 .

For the right hand side we have

b
(
λ− λ

)
= b

(
c µX − c µX

)
= b cX

(
ζ µ− ζ2 µ

)
= b cX

(
ζ(m1ζX −m2ζ

2X2)− ζ2(m1ζ
2X +m2ζX

2)
)

= b cX (ζ2m1X − ζm1X)

= b cX (ζ2 − ζ)m1X

and we are done.
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Chapter VI

Relation to the Product Map of Tori

Out interest lies in the degree of the morphism

πnn : Wn([X];A) −→ W0(A)

for a central simple k-algebra of degree n and [X] ∈W(A), or equivalently in the degree
of

(πn0 , π
n
n): Wn(A) −→ W0(A)×k W0(A) .

Cf. chapter V. There we mentioned that it does not depend on k and the special form
of A but only on n.

Now, in the whole chapter, k is assumed to be algebraically closed (and therefore A ∼=
Mn(k)).

We are going to construct an explicit map which has—up to the factor (nn−1)—the
same degree as πnn .
Later we will see that this morphism can be interpreted as a multiplication map of tori.

§15. A Covering of W(A)

If we projectivise the variety GLn in another way as the usual, namely regarding the
column vectors in the matrices, we will see that we can get an n-fold covering of the
variety of Kummer lines.

We fix an algebraically closed field k and a positive integer n ≥ 2 not divisible by the
characteristic of k. Let ζ ∈ µn(k) be a primitive n-th root of unity and A a central
simple k-algebra of degree n.
Furthermore we fix a ζ-pair (X,Y ) in A, i.e., Kummer elements X, Y ∈ W(A) such
that XY − ζY X = 0, and we set L := k[X], K := k[Y ].
Let D := RL|k(Gm) be the torus of L-units.

(15.1) Example. Since k is algebraically closed we have essentially only the one case:
A = Mn(k), X = X0(ζ) and Y = Y0. Then D is the torus of invertible diagonal
matrices.

1. The Variety GL1(A)/D

The torus D acts on GL1(A) by the right multiplication. Now we are going to divide
out this action (i.e., subgroup) and fix the following

128



§ 15. A covering of W(A)

(15.2) Notation. The variety
GL1(A)/D

is defined to be the units of A modulo the units of L. The canonical epimorphism is
denoted by

{}: GL1(A) −→ GL1(A)/D
v 7−→ {v} := vD .

(15.3) Remark. In our standard case of (15.1) we easily see that GL1(A)/D =
GLn,k /D =: PnGLn,k is the open subvariety of (Pn−1

k )n = P
n−1
k ×k · · ·×k Pn−1

k , defined
by the condition

([v1], . . . , [vn]) ∈ PnGLn,k ⇐⇒ (v1, . . . , vn) ∈ GLn,k .

The vi’s are column vectors!

Therefore we know

(15.4) Remark. GL1(A)/D is a smooth k-variety of dimension n(n− 1).

There are several operations on GL1(A)/D:
The multiplication on GL1(A) induces on GL1(A)/D the left-action

GL1(A)×GL1(A)/D −→ GL1(A)/D
(g, {v}) 7−→ g{v} := {gv} .

This action is transitive.
Another action is given by multiplying with Y :

(15.5) Lemma. The right multiplication with Y induces a (right-)action of Z/nZ on
GL1(A)/D given by

GL1(A)/D × (Z/nZ) −→ GL1(A)/D(
{v}, (m mod nZ)

)
7−→ σm{v} := {vY m} .

This action is fixed point free, especially it is faithful.

Proof: Since Y normalizes D, i.e., DY = Y D, the action is well defined. If {v} is
a fixed point, i.e., {vY m} = {v} = {v1A}, then by the upper left-action we see that
{Y m} = {1A}, i.e., Y m ∈ D. But since K ∩ L we have m ≡ 0 (mod n).

(15.6) Remark. These two actions respect each other, i.e., for g ∈ GL1(A) and m ∈ Z
we have

gσm{v} = {gvY m} = σmg{v} ,

(15.7) Example. In our standard situation of (15.1) one has

σm([v1], . . . , [vn]) = ([v1+m], . . . , [vn+m]) = ([vσm(1)], . . . , [vσm(n)])

for m ∈ Z, ([v1], . . . , [vn]) ∈ PnGLn,k, and the indices are viewed modulo n. Further we
view σ on the right hand side as the permutation σ = (1 2 . . . n) ∈ Sn.
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§ 15. A covering of W(A)

This follows from

(v1, . . . , vn) · Y0 = (v2, . . . , vn, v1)

in GLn(k).

2. The Covering

In (6.3) we mentioned that every Kummer element (or better: Kummer line) of Mn(k)
is conjugate to [X0(ζ)], or

κ(X): GL1(A) −→ W(A)

g 7−→ [gXg−1] = [κg(X)]

is a surjective morphism. In other words GL1(A) acts transitively on W(A) by conju-
gation.
Since the elements of GL1(A) which commute with X are exactly the elements of D,
we immediately get the

(15.8) Claim. The morphism κ(X): GL1(A)→W(A) of k-varieties induces the mor-
phism

M := MX : GL1(A)/D −→ W(A)

{v} 7−→ M{v} := [vXv−1] ,

such that κ(X) = M ◦ {}. This morphism is surjective.

(15.9) Remark. For any v ∈ GL1(A) we have Nrd(X) = Nrd(vXv−1).

(15.10) Lemma. For any v, w ∈ GL1(A) the following conditions are equivalent

(i) vXv−1 = wXw−1

(ii) {v} = {w}.

In other words, the lifted morphism

M̃ : GL1(A)/D −→ GL1(A)

{v} 7−→ vXv−1

is a well defined morphism and it is an injective map.

Proof: vXv−1 = wXw−1 ⇐⇒ w−1vX = Xw−1v ⇐⇒ w−1v ∈ L.

On W(A) we also have an action of GL1(A), namely the conjugation. The morphism
M respects the action of GL1(A):
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§ 15. A covering of W(A)

(15.11) Lemma. For any g ∈ GL1(A) the diagram£ M¤
g·

¥
κg

¦
M W(A)GL1(A)/D

W(A)GL1(A)/D

is commutative, i.e., M is GL1(A)-equivariant.

Proof: This is clear since for any v ∈ GL1(A),

Mg{v} = M{gv} = [gvXv−1g−1] = κg[vXv−1] = κgM{v} .

About the action of Z/nZ on GL1(A)/D we know the following

(15.12) Lemma. For any v ∈ GL1(A) and m ∈ Z,

M̃(σm{v}) = ζ−mM̃{v}

hence

M(σm{v}) = M{v} .

In other words M is (Z/nZ)-invariant.

Proof: M̃(σm{v}) = M̃{vY m} = vY mXY −mv−1 = ζ−mvXv−1 = ζ−mM̃{v}.

Patching together these lemmas we get

(15.13) Proposition. For {v}, {w} ∈ GLn(A)/D the following conditions are equiv-
alent

(i) M{v} = M{w}
(ii) {v} = σm{w} for some m ∈ Z.

Then (m mod nZ) ∈ Z/nZ is unique.

Proof: (i) is equivalent to M̃{v} = λM̃{w} for some λ ∈ Gm,k. With remark (15.9)
we see that this is equivalent to

M̃{v} = ζ−mM̃{w}

for some unique (m mod nZ) ∈ Z/nZ. By (15.12) this is equivalent to

M̃{v} = M̃σm{w}

and this is equivalent to (ii), by virtue of (15.10).
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§ 15. A covering of W(A)

(15.14) Theorem. The action of (Z/nZ) on GL1(A)/D induces free actions on the
fibres of the morphism

M = MX : GL1(A)/D −→ W(A) .

(15.15) Corollary. deg(MX) = n.

(15.16) Remark. We get

dim W(A) = dim GL1(A)/D = n2 − n .

Furthermore we get the morphism(
GL1(A)/D

)
/(Z/nZ) −→ W(A)

which is bijective. The two varieties are birational equivalent and since GL1(A) acts
transitively on both varieties—compatible with the morphism—, it is an isomorphism;
which again shows smoothness.

(15.17) Example. In our case of (15.1), the morphism

MX0(ζ): PnGLn,k −→ W(A)

can be interpreted in the following way: For ([v1], . . . , [vn]) ∈ PnGLn,k the element
M̃([v1], . . . , [vn]) ∈ GLn,k is the (unique) matrix with eigenvalues ζ1, . . . , ζn to the
eigenvectors v1, . . . , vn respectively.
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By virtue of the covering M = MX : GL1(A)/D →W(A) we will also find a covering of
the chain variety W`([X];A) for any positive integer `.
In order to do that we first have to find out how the ζ-relation is reflected in GL1(A)/D.

We use the same assumptions as in §15. Furthermore we assume that Xn = Y n ∈ k∗.
In this case there exists by Skolem-Noether an element φ ∈ GL1(A) = A∗ such that

φXφ−1 = Y and φY φ−1 = X−1 .

Just take the automorphism of A which maps the ζ-pair (X,Y ) to the ζ-pair (Y,X−1).
As a consequence we can write

Y = M̃{φ} = M̃X{φ} .

(16.1) Example. In the situation of (15.1) take φ to be the matrix (ζ−ij)i,j=1,...,n as
one can see in the proof of (3.7).

1. The Kummer Relation

(16.2) Lemma. Let d1, d2 ∈ D, then the condition φd1φ
−1 = d2, i.e., φd1 = d2φ

implies the condition [d1] = [d2] = [1A] in P(D) ⊆ P(A).

Proof: If φd1φ
−1 = d2 then d1 ∈ L and d1 = φ−1d2φ ∈ φ−1Lφ = K. Since L∩K = k,

the claim follows.

(16.3) Corollary. For d1, d2 ∈ D, the following conditions are equivalent

(i) [d1] = [d2] in P(D)

(ii) {d1φ} = {d2φ}
(iii) {vd1φ} = {vd2φ} for any v ∈ GL1(A).

Proof: The direction “(i)⇒(ii)” is clear; so is the equivalence of (ii) and (iii).
Now assume (ii). This means there exists a d ∈ D with d1φ = d2φd or equivalently

d−1
2 d1φ = φd

and this implies [d−1
2 d1] = [1A], i.e., [d1] = [d2].

(16.4) Remark. The corollary (16.3) just says that for any fixed v ∈ GL1(A) the
morphism

P(D) −→ GL1(A)/D
[d] 7−→ {vdφ}

is injective.
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§ 16. A covering of chain varieties

(16.5) Lemma. Let v, w ∈ GL1(A). Then the following conditions are equivalent

(i) (M̃{v}, M̃{w}) is a ζ-pair

(ii) {w} = {vdφ} for some d ∈ D.

In this case, [d] is unique in P(D).

Proof: “(i)⇒(ii)”: By (6.14) there is a G ∈ GL1(A) such that

GM̃{v}G−1 = X and GM̃{w}G−1 = Y .

Therefore
M̃{Gv} = M̃{1A} and M̃{Gw} = M̃{φ} .

By (15.10) we get
{Gv} = {1A} and {Gw} = {φ} ,

i.e.,
Gv = d1 and Gw = φd2

for some d1, d2 ∈ D. Combining the two equations gives

w = G−1φd2 = vd−1
1 φd2 ,

hence {w} = {vdφ} for d := d−1
1 .

“(ii)⇒(i)”: Set G := vd. Then

M̃{v} = GXG−1 and M̃{w} = GY G−1 .

The first equation is clear, the second is

GY G−1 = GM̃{φ}G−1 = M̃{Gφ} = M̃{vdφ} = M̃{w} .

Uniqueness: {vd1φ} = {vd2φ}, then multiplying with v−1 we get {d1φ} = {d2φ} and
(16.3) yields the claim.

The injective morphism
ω̂v: P(D) −→ GL1(A)/D

[d] 7−→ {vdφ}

parametrizes all elements lying (via M̃) over Kummer elements which are in ζ-relation
with M̃{v}.

There are two operations of (Z/nZ) on P(D):
The first one is given in the following way. Let m ∈ Z, then

P(D) −→ P(D)
[d] 7−→ [X−md] = [dX−m]

gives the action of (m mod nZ) on P(D).
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§ 16. A covering of chain varieties

(16.6) Lemma. For m ∈ Z, the following diagram is commutative.§ ω̂v¨©
σm

ª
ω̂v GL1(A)/Dbf P(D)

GL1(A)/DP(D)

where the left vertical arrow is the action of (m mod nZ) on P(D).

Proof: X−1φ = φY implies {vdX−mφ} = {vdφY m}.

The second action is given in the following way. Let m ∈ Z then

P(D) −→ P(D)
[d] 7−→ [Y −mdY m]

gives the action of (m mod nZ) on P(D).

(16.7) Lemma. For m ∈ Z, the following diagram is commutative.« ω̂v¬
id

®
ω̂vYm GL1(A)/DP(D)

GL1(A)/DP(D)

where the left vertical arrow is the second action of (m mod nZ) on P(D).

Proof: {vY mY −mdY mφ} = {vdY mφ} = {vdφXm} = {vdφ}.

(16.8) Claim. Both actions are compatible, i.e., they commute.
Therefore we get an action of (Z/nZ× Z/nZ) on P(D) described by

(Z/nZ× Z/nZ)×P(D) −→ P(D)(
(m mod nZ, p mod nZ), [d]

)
7−→ (m,p)[d] := [Y −mX−pdY m]

Proof:
(m,0)(0,p)[d] = [Y −mX−pdY m]

= [X−pY −mdY mζ−pm]

= (0,p)(m,0)[d] .

(16.9) Example. In the standard situation of (15.1) we get for d = diag(d1, . . . , dn)

(m,p)[diag(d1, . . . , dn)] = [diag(ζ−1pd1+m, ζ
−2pd2+m, . . . , ζ

−npdn+p)] .
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§ 16. A covering of chain varieties

We choose an element v ∈ GL1(A), then the morphism

ω(1)
v : P(D) ω̂v−→ GL1(A)/D M−→ W(A)

[d] 7−→ {vdφ} 7−→ M{vdφ}

has as its image the elements of u(ζ,M{v}), the Kummer elements which are in a
ζ-relation with M{v}. This follows from (16.5).

(16.10) Proposition. The morphism

ω(1)
v : P(D) −→ u(ζ,M{v})

is surjective and the first action of (Z/nZ) on P(D) induces a free action an each fibre.

Proof: The surjectivity follows from (16.5). The fact that the action induces actions
on the fibres follows from (16.6) together with (15.12).
Free action: Let

ω(1)
v ([d1]) = ω(1)

v ([d2])

for [d1], [d2] ∈ P(D), then
M{vd1φ} = M{vd2φ} .

With (15.13)

{vd1φ} = σm{vd2φ} = {vd2φY
m} = {vd2X

−mφ}

for unique (m mod nZ) ∈ Z/nZ.
Hence [d1] = [d2X

−m] for the unique (m mod nZ) ∈ Z/nZ, by (16.3).

2. The Covering

We consider the following morphism of k-varieties:

(16.11) Notation. For any v ∈ GL1(A) and any positive integer ` we define the
morphism

ω̂(`)
v : P(D)` = P(D)× · · · ×P(D) −→ GL1(A)/D

([d1], . . . , [d`]) 7−→ {vd1φd2φ · · · d`φ} .

There is an action of (Z/nZ)` on P(D)` given in the following way:

(Z/nZ)` ×P(D)` −→ P(D)`(
(ā1, . . . , ā`), ([d1], . . . , [d`])

)
7−→

((b1,c1)[d1], . . . , (b`,c`)[d`]
)

where bi := ai−1 and ci := ai + ai−2 for i = 1, . . . , ` and a0 = a−1 = 0.
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§ 16. A covering of chain varieties

(16.12) Remark. The action of e1 = (1, 0, . . . , 0) on ([d1], . . . , [d`]) yields

([d1X
−1], [Y −1d2Y ], [X−1d3], [d4], . . .) .

The action of ei = (0, . . . , 0, 1, 0, . . . , 0) on ([d1], . . . , [d`]) yields for i ≤ `− 2

(. . . , [di−1], [diX−1], [Y −1di+1Y ], [X−1di+2], [di+3], . . .) .

The action of e`−1 = (0, . . . , 0, 1, 0) on ([d1], . . . , [d`]) yields

(. . . , [d`−1], [d`−1X
−1], [Y −1d`Y ]) .

The action of e` = (0, . . . , 0, 1) on ([d1], . . . , [d`]) yields

(. . . , [d`−1], [d`X−1]) .

On GL1(A)/D the group (Z/nZ)` may act in the following way

(Z/nZ)` ×GL1(A)/D −→ GL1(A)/D(
(ā1, . . . , ā`), {v}

)
7−→ {vY a`} = σa`{v} .

(16.13) Lemma. With these actions, the morphism ω̂
(`)
v : P(D)` −→ GL1(A)/D is

(Z/nZ)`-equivariant.

Proof: One observes that the action of ei = (0, . . . , 1, . . . , 0) commutes with ω̂(`)
v : Note

that for i ≤ `− 2

diX
−1φY −1di+1Y φX

−1di+2 = diφdi+1φdi+2

and
{v′d`−1X

−1φY −1d`Y φ} = {v′d`−1φd`φX} = {v′d`−1φd`φ}
for any v′ ∈ GL1(A). Further

{v′d`X−1φ} = {v′d`φY } = σ{v′d`φ} .

We used X−1φY −1 = φ and Y φX−1 = φ.

(16.14) Notation. Putting together ω̂
(1)
v , . . . , ω̂

(`)
v we define

Ω̂(`)
v :=

(
ω̂(1)
v , . . . , ω̂(`)

v

)
: P(D)` −→

(
GL1(A)/D

)`(
[d1], . . . , [d`]

)
7−→

(
{vd1φ}, {vd1φd2φ}, . . . , {vd1φ . . . d`φ}

)
The group (Z/nZ)` may act on

(
GL1(A)/D

)` in the following way

(Z/nZ)` ×
(
GL1(A)/D

)` −→ (
GL1(A)/D

)(
(ā1, . . . , ā`), ({v1}, . . . , {v`})

)
7−→

(
σa1{v1}, . . . , σa`{v`}

)
.

(16.15) Lemma. With these actions, the morphism Ω̂(`)
v : P(D)` −→

(
GL1(A)/D

)`
is (Z/nZ)`-equivariant.

Proof: This is a direct consequence of (16.13).

137



§ 16. A covering of chain varieties

(16.16) Proposition. The morphism Ω̂(`)
v : P(D)` −→

(
GL1(A)/D

)`
is injective.

Proof: We get this from (16.3) by induction:

{vd1φ} = {vd′1φ} =⇒ [d1] = [d′1]

then
{vd1φd2φ} = {vd′1φd′2φ} = {vd1φd

′
2φ} =⇒ [d2] = [d′2]

and so on.

Now we compose Ω̂(`)
v with (`-times) the morphism M = MX : GL1(A)/D → W(A) in

order to get
Ω(`)
v := M ` ◦ Ω̂(`)

v : P(D)` −→
{
M{v}

}
×W(A)`

(we just added a trivial first component) and by (16.5) we see that this morphism
factorizes through

W`(M{v};A) ↪−→
{
M{v}

}
×W(A)` .

(16.17) Theorem. The morphism

Ω(`)
v : P(D)` −→ W`(M{v};A)(

[d1], . . . , [d`]
)
7−→

(
M{v},M{vd1φ},M{vd1φd2φ}, . . . ,M{vd1φ · · · d`φ}

)
is surjective and the action of (Z/nZ)` on P(D)` induces free actions on the every fibre
of the map.

Proof: The surjectivity is now easily shown:
Let (M{v},M{v1}, . . . ,M{v`}) ∈W`(M{v};A), then by (16.5) we see inductively that
there exist [d1], . . . , [d`] ∈ P(D) such that {vi} = {vi−1diφ} for i = 1, . . . , ` with v0 := v,
and therefore

Ω(`)
v ([d1], . . . , [d`]) =

(
M{v},M{v1}, . . . ,M{v`}

)
.

Now, the fibre of

M `:
(
GL1(A)/D

)` −→ W`(M{v};A)

over the given point is by (15.13) the orbit{(
σa1{v1}, . . . , σa`{v`}

)
: ā1, . . . , ā` ∈ Z/nZ

}
= (Z/nZ)` · ({v1}, . . . , {v`}) .

But this set of n` elements is exactly what we get if we let (Z/nZ)` act on the tuple
([d1], . . . , [d`]) ∈ P(D)` and then map it via Ω̂(`)

v to
(
GL1(A)/D

)`. This proves the
claim.

(16.18) Remark. As a consequence we get again statements like the irreducibility of
W`([X];A) and the dimension formula: dim W`([X];A) = dim P(D)` = `(n− 1).

Now we go back to our problem at the beginning, the case ` = n.
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We have the commutative diagram¯ Ω(n)
v°

ω̂(n)
v

±
MX

²
πnn

W(A)GL1(A)/D

Wn(M{v};A)P(D)n

therefore
deg πnn · deg Ω(n)

v = deg ω̂(n)
v · degMX .

By (16.17) and (15.15) we get

deg πnn · nn = deg ω̂(n)
v · n

(16.19) Corollary. For any v ∈ GL1(A), the morphism

ω̂(n)
v : P(D)n −→ GL1(A)/D

([d1], . . . , [dn]) 7−→ {vd1φd2φ · · · dnφ}

has degree
deg ω̂(n)

v = nn−1 · deg πnn .
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First of all, we are going to “de-projectivise” the morphism ω̂
(n)
v for v = 1 = 1A ∈ A∗.

Then we will reformulate the map a second time such that it can be interpreted as the
product map of tori.

We keep the notations and assumptions of §16.

(17.1) Notation. We denote with

D̄ = D ×Gm · · · ×Gm D

the quotient of Dn+1 by the group action

Gm
n
,k ×Dn+1 −→ Dn+1(

(t1, . . . , tn), (d1, . . . , dn+1)
)
7−→ (t1, . . . , tn) · (d1, . . . , dn+1) := (d′1, . . . , d

′
n+1)

where
d′1 = d1t

−1
1

d′i = ti−1dit
−1
i for i = 2, . . . , n

d′n+1 = tndn+1 .

We define Ψn to be the morphism

Ψn: D̄ −→ GL1(A)
(d1, . . . , dn+1) 7−→ d1φd2φ · · · dnφdn+1 .

(17.2) Remark. The following diagram is commutative:³ Ψn´
p

µ
{}

¶
ω̂

(n)
1 GL1(A)/DP(D)n

GL1(A)D̄

where
p: D̄ −→ P(A)n

(d1, . . . , dn+1) 7−→ ([d1], . . . , [dn]) .
Note that

p−1([d1], . . . , [dn]) =
{

(d1, . . . , dn, d) : d ∈ D
}

=
{

(d1, . . . , dn)
}
×D .

D acts on D̄ and GL1(A) in the following way:

D × D̄ −→ D̄(
d, (d1, . . . , dn)

)
7−→ (d1, . . . , dnd)

and
D ×GL1(A) −→ GL1(A)

(d, g) 7−→ gd

The following is clear:
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(17.3) Lemma. With these actions, the morphisms p and {} are D-invariant and Ψn

is D-equivariant. These actions induce free actions an all fibres of p and {}.

From this lemma one instantaneously gets

(17.4) Proposition. deg Ψn = deg ω̂(n)
1A

= nn−1 · deg πnn .

Since φ2Xφ−2 = X−1, conjugation with φ2 is an automorphism of D.

(17.5) Lemma. For any i = 1, . . . , n, the following diagram is commutative· Ψn¸
βi

¹
φ−2·

º
αi GL1(A)D̄

GL1(A)D̄

where
βi: D̄ −→ D̄

(d1, . . . , dn+1) 7−→ (φ−2d1φ
2, . . . , φ−2diφ

2, di+1, . . . , dn+1)

and
αi: D̄ −→ GL1(A)

(d1, . . . , dn) 7−→ d1φd2 · · ·φdiφ−1di+1φ · · ·φdn+1 .

Therefore: deg Ψn = degαi.

Proof: Clear.

In this way we can change φ to φ−1 in any place without changing the degree of the
map.

Let’s assume that n is an odd number.

(17.6) Proposition. The morphism

Ψ′n: D̄ −→ GL1(A)

(d1, · · · , dn+1) 7−→
(
d1(φd2φ

−1)d3(φd4φ
−1) · · · dn(φdn+1φ

−1)
)

has degree: deg Ψ′n = deg Ψn.

Proof: One changes the φ to φ−1 at the places after d2, d4, . . . , dn−1 and multiply
additionally with φ−1 from the right.

Now projectivising again the morphism and writing S and T for the projective tori
associated to L and K = φLφ−1 we get
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(17.7) Corollary. The multiplication morphism

Φn: S × T × S × T × · · · × S × T = (S × T )
n+1

2 −→ PGL1(A)
([d1], [d2], . . . , [dn+1]) 7−→ d1d2 · · · dn+1

has degree
deg Φn = deg Ψn = nn−1 · deg πnn .

(17.8) Remark. If n is even, then one analogously gets: The multiplication morphism

Φn: S × T × S × T × · · · × S × T × S = (S × T )
n
2 × S −→ PGL1(A)

([d1], [d2], . . . , [dn+1]) 7−→ d1d2 · · · dn+1

has degree
deg Φn = deg Ψn = nn−1 · deg πnn .
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