ON FROBENIUS, K-THEORY, AND CHARACTERISTIC NUMBERS

MARKUS ROST
preliminary version

Contents

1. Introduction 1
2. Preliminaries 3
3. Exploiting Riemann-Roch 10
4. Examples 10
5. Further Remarks 10
References 11

1. Introduction

This text is in a very preliminary status.
The starting point was my proof of the degree formula. For the prime 2 this used the Hilbert scheme $\operatorname{Hilb}(2, X)$ and its canonical line bundle \bar{L}. One has for X smooth and proper of dimension d :

$$
\begin{equation*}
\operatorname{deg}\left(c_{1}(\bar{L})^{2 d}\right)=\frac{1}{2} \operatorname{deg}\left(c_{d}\left(-T_{X}\right)\right) \tag{1}
\end{equation*}
$$

This gives a simple short proof that for any X the Segre number $\operatorname{deg}\left(c_{d}\left(-T_{X}\right)\right)$ is 2-divisible.

Let's have a look at the situation in characteristic 2 . In this case there exist a canonical smooth divisor $j: \overline{\mathbf{P}} \rightarrow \operatorname{Hilb}(2, X)$ which represents \bar{L}. It fits into a commutative diagram

Here $\mathrm{Bl}_{\Delta}(X \times X)$ is the blow up of the diagonal and i is the inclusion of the exceptional fiber which is the projective tangent bundle of X.

Date: March 16, 2006; slightly revised on Feb 21, 2008.

Moreover $\bar{\rho}$ is the standard double cover. The morphism ρ is radicial of degree 2. The pullback of \bar{L} to $\mathrm{Bl}_{\Delta}(X \times X)$ is the canonical line bundle of the blow up, and hence the pullback of \bar{L} to $\mathbf{P}\left(\Omega_{X}\right)$ is the canonical line bundle of the projective bundle.

One may take also the following point of view: The canonical line bundle has a connection with respect to itself with trivial 2-curvature. By general principles it descends canonically to something, and that something is $\overline{\mathbf{P}}$.

Let $L=j^{*}(\bar{L})$. Now, since $\overline{\mathbf{P}}$ represents $c_{1}(\bar{L})$, we get the following variant of (1):

$$
\operatorname{deg}\left(c_{1}(L)^{2 d-1}\right)=\frac{1}{2} \operatorname{deg}\left(c_{d}\left(-T_{X}\right)\right)
$$

Hence $\frac{1}{2}$ of the Segre number is the degree of a zero cycle on $\overline{\mathbf{P}}$.
One can do somewhat better: There is a commutative diagram

Here F and $\eta \circ \rho$ are the relative Frobenius morphisms. One finds

$$
\begin{equation*}
2\left(\pi^{(2)} \circ \eta\right)_{*}\left(c_{1}(L)^{2 d-1}\right)=c_{d}\left(-T_{X^{(2)}}\right)=F_{*}\left(c_{d}\left(-T_{X}\right)\right) \tag{2}
\end{equation*}
$$

Hence one gets in characteristic 2 not only the 2-divisibility of the image of the Segre class in $\mathrm{CH}_{0}(\operatorname{Spec} k)=\mathbf{Z}$ (the Segre number) but of its image in $\mathrm{CH}_{0}\left(X^{(2)}\right)$.

In the case of curves this is long known: The line bundle $\Omega_{X^{(2)}}$ has a canonical square root, namely $F_{*}\left(\mathcal{O}_{X}\right) / \mathcal{O}_{X^{(2)}}$. (See [2], [1], [5].)

Note: (2) is not yet contained in the text.
There is another result in this text, Proposition 1, which together with Riemann-Roch and the Hattori-Stong theorem yields the following: Let $P \in \mathbf{Z}\left[c_{1}, \ldots, c_{d}\right]$ be a polynomial of degree d (with $\operatorname{deg} c_{i}=i$), and suppose that there is a p-power q such that for any compact almost complex manifold X of dimension $2 d$ the number $P(X) / q$ is integral. Then for any smooth variety X in characteristic p of dimension d, the number $P(X) / q$ is the degree of an integral zero cycle on $X^{\left(p^{d}\right)}$.

Another example of such divisibilities has been provided by Deligne: For a smooth surface X in characteristic 2, let $F: X \rightarrow X^{(2)}$ be the
relative Frobenius. Then one has in $\mathrm{CH}_{0}\left(X^{(2)}\right)$:

$$
\begin{equation*}
4 c_{2}\left(F_{*}\left(\mathcal{O}_{X}\right)\right)=\left(c_{1}^{2}+c_{2}\right)\left(T_{X^{(2)}}\right) \tag{3}
\end{equation*}
$$

Taking degrees, one gets

$$
\operatorname{deg}\left(c_{2}\left(F_{*}\left(\mathcal{O}_{X}\right)\right)\right)=3 \operatorname{Todd}(X)
$$

Note: (3) is not yet contained in the text.
I have learned Lemma 2 from Deligne. I don't have a reference for it. I am also wondering about a reference for Lemma 1, Lemma 3 and, in particular, for Lemma 4.

2. Preliminaries

References: [4, Section 7].
For the Frobenius maps we use the following notations. Let X be a scheme in characteristic p.

The absolute Frobenius is denoted by

$$
f=f_{X}: X \rightarrow X
$$

If $X=\operatorname{Spec} R$ is affine, then f is given by the p-th power map

$$
\begin{gathered}
\varphi: R \rightarrow R \\
\varphi(a)=a^{p}
\end{gathered}
$$

For a sheaf M of \mathcal{O}_{X}-modules let

$$
M^{[p]}=f^{*}(M)
$$

be the pull back of M along f. Similarly, in the affine case $X=\operatorname{Spec} R$ we denote for R-modules V

$$
V^{[p]}=V \otimes_{R, \varphi} R
$$

Here the tensor product is understood so that $v a \otimes b=v \otimes a^{p} b$ and the R-module structure on $V^{[p]}$ is given by $(v \otimes a) b=v \otimes a b$.

The symmetric algebras are denoted by

$$
S^{\bullet} M=\bigoplus_{k \geq 0} S^{k} M, \quad S^{\bullet} V=\bigoplus_{k \geq 0} S^{k} V
$$

There is a natural morphism

$$
j_{M}: M^{[p]} \rightarrow S^{p} M
$$

given locally by

$$
\begin{aligned}
& j_{V}: V^{[p]} \rightarrow S^{p} V \\
& j_{V}(v \otimes a)=v^{p} a
\end{aligned}
$$

Let

$$
B(M)=S \bullet M /\left\langle j_{M}\left(M^{[p]}\right)\right\rangle
$$

be the quotient of the symmetric algebra of M by the ideal sheaf generated by the image of j_{M}.

Similarly we understand $B(V) \ldots$
The natural multiplication map

$$
B(M) \otimes B\left(M^{\prime}\right) \rightarrow B\left(M \oplus M^{\prime}\right)
$$

is an isomorphism.
For a line bundle L one has

$$
B(L)=S^{\bullet} L /\left\langle L^{\otimes p}\right\rangle=\mathcal{O}_{X} \oplus L^{\otimes 1} \oplus L^{\otimes} \oplus \cdots \oplus L^{\otimes(p-1)}
$$

Lemma 1. Suppose that M is a vector bundle on X of rank n. Then
(1) j_{M} is a monomorphism.
(2) If M is invertible ($n=1$), then j_{M} is an isomorphism, so that $M^{[p]}=M^{\otimes p}$.
(3) $B(M)$ is a vector bundle of rank p^{n}.

Proof. The question being local, we may assume that $X=\operatorname{Spec} R$ and that M is given by a free R-module V with basis $e_{i}, i=1, \ldots, n$. Then $S^{\bullet} V$ is the polynomial ring $R\left[e_{1}, \ldots, e_{n}\right]$. Moreover $V^{[p]}$ is free with basis $e_{i} \otimes 1, i=1, \ldots, n$ and j_{V} is given by $j_{V}\left(e_{i} \otimes 1\right)=e_{i}^{p}$.

From this (1) and (2) are clear. As for (3), note that

$$
B(V)=R\left[e_{1}, \ldots, e_{n}\right] /\left\langle e_{1}^{p}, \ldots, e_{n}^{p}\right\rangle=\bigotimes_{i=1}^{n} R\left[e_{i}\right] /\left\langle e_{i}^{p}\right\rangle
$$

Better:

$$
B\left(L_{1} \oplus \cdots \oplus L_{n}\right)=B\left(L_{1}\right) \otimes \cdots \otimes B\left(L_{n}\right)
$$

Remark 1. Let $K^{0}(X)$ denote the Grothendieck group of vector bundles on X. There is the ring homomorphism $f^{*}: K^{0}(X) \rightarrow K^{0}(X)$ induced by the absolute Frobenius. Since f^{*} is on line bundles the p-th power map (cf. Lemma 1 (2)), it follows that f^{*} is the p-th Adams operation in K-theory.

Let k be a field of characteristic p and let X be a scheme over k. The structure morphism of X is denoted by $\pi_{X}: X \rightarrow \operatorname{Spec} k$. The relative

Frobenius is described by the following commutative diagram

Spec $k \xrightarrow{\mathrm{id}} \operatorname{Spec} k \xrightarrow{f_{k}} \operatorname{Spec} k$
Here the right square is Cartesian and defines $X^{(p)}$ as the fiber product of X and k over k with respect to the absolute Frobenius, with W and $\pi_{X^{(p)}}$ the corresponding maps. One has $f_{k} \circ \pi_{X}=\pi_{X} \circ f_{X}$. The relative Frobenius F is the unique map with $W \circ F=f_{X}$ and $\pi_{X^{(p)}} \circ F=\pi_{X}$.

The morphism $W: X^{(p)} \rightarrow X$ is flat, since it is the pull back of the flat morphism f_{k}. If X is a localization of a scheme of finite type over k, then F is finite.

Lemma 2. Suppose that X is smooth over k of dimension d. Then F is flat and finite of rank p^{d}.

For the induced maps $F_{*}: K_{0}(X) \rightarrow K_{0}\left(X^{(p)}\right), F^{*}: K_{0}\left(X^{(p)}\right) \rightarrow$ $K_{0}(X)$ one has

$$
F^{*}\left(F_{*}(x)\right)=\left[B\left(\Omega_{X / k}\right)\right] \cdot x
$$

for $x \in K_{0}(X)$.
Better:
$F^{*} \circ F_{*}$ is multiplication by $\left[B\left(\Omega_{X / k}\right)\right]$.
Proof. For the first claim see [4]....
We consider the following commutative diagram of short exact sequences:

Here μ denotes the multiplication maps with kernels I, J and the vertical arrows are the natural maps. By definition one has $I / I^{2}=\Omega_{X / k}$ and $J / J^{2}=\Omega_{X / X^{(p)}}$. Moreover h induces an isomorphism $I / I^{2} \rightarrow J / J^{2}$. Let
$\operatorname{gr}_{I}\left(\mathcal{O}_{X} \otimes_{k} \mathcal{O}_{X}\right)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}, \quad \operatorname{gr}_{J}\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X^{(p)}}} \mathcal{O}_{X}\right)=\bigoplus_{n \geq 0} J^{n} / J^{n+1}$,
be the sheaves of graded rings associated to the filtrations induced by I, J, respectively, and let

$$
\operatorname{gr}(h): \operatorname{gr}_{I}\left(\mathcal{O}_{X} \otimes_{k} \mathcal{O}_{X}\right) \rightarrow \operatorname{gr}_{J}\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X^{(p)}}} \mathcal{O}_{X}\right)
$$

be the homomorphism induced from h. Since X is smooth, the natural ring homomorphism

$$
\alpha: S^{\bullet}\left(I / I^{2}\right) \rightarrow \operatorname{gr}_{I}\left(\mathcal{O}_{X} \otimes_{k} \mathcal{O}_{X}\right)
$$

with α the identity on I / I^{2} is an isomorphism. For $x \in J$ one has $x^{p}=0$; namely, for $a \in \mathcal{O}_{X}$ one has $(a \otimes 1-1 \otimes a)^{p}=a^{p} \otimes 1-1 \otimes a^{p}=0$ since a^{p} is in $\mathcal{O}_{X^{(p)}}$. Hence $\operatorname{gr}(h) \circ \alpha$ factors trough a ring homomorphism

$$
\beta: B\left(I / I^{2}\right) \rightarrow \operatorname{gr}_{J}\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X^{(p)}}} \mathcal{O}_{X}\right)
$$

It is not difficult to see by local considerations that β is an isomorphism. Composing β with the inverse of $B(h): B\left(I / I^{2}\right) \rightarrow B\left(J / J^{2}\right)$ we obtain an isomorphism

$$
\beta: B\left(J / J^{2}\right) \rightarrow \operatorname{gr}_{J}\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X^{(p)}}} \mathcal{O}_{X}\right)
$$

of \mathcal{O}_{X}-modules.
Let M be a \mathcal{O}_{X}-module. Then

$$
F^{*}\left(F_{*}(M)\right)=M \otimes_{\mathcal{O}_{X}(p)} \mathcal{O}_{X}=M \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X} \otimes_{\mathcal{O}_{X}(p)} \mathcal{O}_{X}
$$

The J-filtration induces a filtration on $F^{*}\left(F_{*}(M)\right)$ with associated graded module

$$
M \otimes_{\mathcal{O}_{X}} \operatorname{gr}_{J}\left(\mathcal{O}_{X} \otimes_{\mathcal{O}_{X^{(p)}}} \mathcal{O}_{X}\right)
$$

Let E be a finitely generated field over k. We denote by $E^{p} \subset E$ the image of the p-th power homomorphism $E \rightarrow E$ and by

$$
\bar{E}=k E^{p} \subset E
$$

the subfield generated by E^{p} and k. If E is generated as a field over k by x_{1}, \ldots, x_{N}, then the same is true over \bar{E}. Since $x_{i}^{p} \in \bar{E}$, it follows that E is finite over \bar{E}.

Let

$$
E^{(p)}=E^{p} \otimes_{k^{p}} k
$$

We consider the maps

$$
E^{p} \xrightarrow{f} E^{(p)} \xrightarrow{F} E
$$

with $f(a)=a \otimes 1$ and $F(a \otimes b)=a b$. Thus $F \circ f$ is the natural inclusion. Let \mathfrak{m} be the kernel of F.

One has $\mathfrak{m}^{p}=0$. Indeed, let $x \in E^{(p)}$. Then x^{p} is in the field

$$
E^{p} \otimes_{k^{p}} k^{p}=E^{p}
$$

If $F(x)=0$, then $F\left(x^{p}\right)=0$ and therefore $x^{p}=0$.
The ideal \mathfrak{m} is the unique maximal ideal of $E^{(p)}$. Its residue class field is

$$
\bar{E}=F\left(E^{(p)}\right)=k E^{p} \subset E
$$

We denote by $\ell(E / k)$ the length of the ring $E^{(p)}$.
Lemma 3. The extension E / \bar{E} is finite.
The ring $E^{(p)}$ has finite length.
Let $[E: \bar{E}]=\operatorname{dim}_{\bar{E}} E$, let ℓ be the length of $E^{(p)}$, and let d be the transcendence degree of E / k. Then

$$
[E: \bar{E}]=\ell p^{d}
$$

Proof. Let $k \subset F \subset E$ be an intermediate field with F / k separable and E / F finite. For instance, if x_{1}, \ldots, x_{d} is a transcendence basis of E / k, one may take $F=k\left(x_{1}, \ldots, x_{d}\right)$. Consider the diagram

Since F / k is separable, $F^{(p)}$ is a field and r_{F} is an isomorphism. Hence

$$
\operatorname{dim}_{F^{(p)}} E^{(p)}=\operatorname{length}\left(E^{(p)}\right)[\bar{E}: \bar{F}]
$$

On the other hand

$$
\operatorname{dim}_{F^{(p)}} E^{(p)}=\left[E^{p}: F^{p}\right]=[E: F]
$$

Since F / k is separable, one has

$$
[F: \bar{F}]=p^{d}
$$

(For instance, if $F=k\left(x_{1}, \ldots, x_{d}\right)$, then $\bar{F}=k\left(x_{1}^{p}, \ldots, x_{d}^{p}\right)$.) Finally

$$
[E: F][F: \bar{F}]=[E: \bar{E}][\bar{E}: \bar{F}]
$$

The claim is now immediate.
Lemma 4. Let X / k be of finite type. Then for $W^{*}, F_{*}: \mathrm{CH}_{r}(X) \rightarrow$ $\mathrm{CH}_{r}\left(X^{(p)}\right)$ one has

$$
F_{*}=p^{r} W^{*}
$$

on the cycle groups

$$
C_{r}(X)=\bigoplus_{x \in X_{(r)}} \mathbf{Z}
$$

See also [9, Proposition 2] for smooth schemes of finite type over a finite field.

Proof. Let $x \in X$ be a point with $\operatorname{dim} \overline{\{x\}}=r$ and let $y=F(x)$. Let further $O_{X, x}, \mathfrak{m}_{x}, \kappa_{x}=O_{X, x} / \mathfrak{m}_{x}$ be the local ring at x, its maximal ideal, and its residue class field, respectively. Then

$$
F_{*}([x])=\left[\kappa_{x}: \kappa_{y}\right][y]
$$

and

$$
W^{*}([x])=\operatorname{length}\left(O_{X^{(p)}, y} \otimes_{O_{X, x}} \kappa_{x}\right)[y]
$$

Since

$$
O_{X^{(p), y}} \otimes_{O_{X, x}} \kappa_{x}=\left(O_{X, x} \otimes_{k, \varphi} k\right) \otimes_{O_{X, x}} \kappa_{x}=\kappa_{x} \otimes_{k, \varphi} k=\kappa_{x}^{(p)}
$$

the claim follows from Lemma 3.
Better:
For a morphism $h: Z \rightarrow X$ there are the Cartesian diagrams

If h is a closed immersion, then $W^{*} \circ h_{*}=h_{*} \circ W^{*}$. If h is a open immersion, then $h^{*} \circ W^{*}=W^{*} \circ h^{*}$, see [3], [8]. Thus we may replace X by Spec κ_{x}. This case follows easily from Lemma 3 .

This can be generalized as follows:
Let S be a scheme over a field of characteristic p and let X be a scheme over S. The structure morphism of X is denoted by $\pi_{X}: X \rightarrow$ S. The relative Frobenius is described by the following commutative diagram

Lemma 5. Let S be smooth over k of dimension e and let X / S be of finite type. Then for $W^{*}, F_{*}: \mathrm{CH}_{r}(X) \rightarrow \mathrm{CH}_{r}\left((X / S)^{(p)}\right)$ one has

$$
\begin{array}{ll}
F_{*}=p^{r-e} W^{*} & \text { if } r \geq e \\
p^{e-r} F_{*}=W^{*} & \text { if } r \leq e
\end{array}
$$

on the cycle groups

$$
C_{r}(X)=\bigoplus_{x \in X_{(r)}} \mathbf{Z}
$$

Proof. No proof yet.

Let $\pi_{X}: X \rightarrow$ Spec k be a scheme of finite type over k. Let $K_{0}(X)$ denote the Grothendieck group of coherent \mathcal{O}_{X}-module sheaves on X. Let $K_{0}(X)_{(d)} \subset K_{0}(X)$ be the subgroup generated by sheaves M with $\operatorname{dim} \operatorname{supp} M \leq d$.

Proposition 1.

$$
\left(\pi_{X}\right)_{*}\left(K_{0}(X)_{(d)}\right) \subset\left(\pi_{X^{\left(p^{d}\right)}}\right)_{*}\left(\mathrm{CH}_{0}\left(X^{\left(p^{d}\right)}\right)\right) \otimes \mathbf{Z}_{(p)}
$$

Proof. For $d \geq 0$ and a \mathcal{O}_{X}-module sheaf M on X let

$$
\Theta_{d}(M)=F_{*}(M)-p^{d} f^{*}(M)
$$

This is a sheaf on $X^{(p)}$. Note that

$$
\left(\pi_{X^{(p)}}\right)_{*}\left(\Theta_{d}(M)\right)=\left(1-p^{d}\right)\left(\pi_{X}\right)_{*}(M)
$$

This needs proof!!!
Clearly $\operatorname{dim} \operatorname{supp} \Theta_{d}(M) \leq \operatorname{dim} \operatorname{supp} M$. The two diagrams

$$
\begin{array}{cl}
\mathrm{CH}_{d}(X) & \longrightarrow K_{0}^{\prime}(X)_{(d)} / K_{0}^{\prime}(X)_{(d-1)} \\
F_{*}, f^{*} \\
F_{*}, f^{*} \\
\mathrm{CH}_{d}\left(X^{(p)}\right) & \longrightarrow 0 \\
K_{0}^{\prime}\left(X^{(p)}\right)_{(d)} / K_{0}^{\prime}\left(X^{(p)}\right)_{(d-1)} \longrightarrow 0
\end{array}
$$

for F_{*}, f^{*}, respectively commute and have exact rows. By Lemma 4 one has $\operatorname{dim} \operatorname{supp} \Theta_{d}(M) \leq d-1$ if $\operatorname{dim} \operatorname{supp} M \leq d$. Argue directly for sheaves!!!

Let us define for $d>0$

$$
\begin{gathered}
\theta_{d}: K_{0}(X)_{(d)} \rightarrow K_{0}\left(X^{(p)}\right)_{(d-1)} \otimes \mathbf{Z}_{(p)} \\
\theta_{d}([M])=\left(1-p^{d}\right)^{-1}\left[\Theta_{d}(M)\right]
\end{gathered}
$$

Then

$$
\left(\pi_{X}\right)_{*}=\left(\pi_{X^{(p)}}\right)_{*} \circ \theta_{d}: K_{0}(X)_{(d)} \rightarrow K_{0}(k) \otimes \mathbf{Z}_{(p)}=\mathbf{Z}_{(p)}
$$

Consider the map

$$
\bar{\theta}_{d}=\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{d}: K_{0}(X)_{(d)} \rightarrow K_{0}\left(X^{\left(p^{d}\right)}\right)_{(0)} \otimes \mathbf{Z}_{(p)}
$$

Hence

$$
\left(\pi_{X}\right)_{*}\left(K_{0}(X)_{(d)}\right) \subset\left(\pi_{X^{\left(p^{d}\right)}}\right)_{*}\left(K_{0}\left(X^{\left(p^{d}\right)}\right)_{(0)}\right)=\left(\pi_{X^{\left(p^{d}\right)}}\right)_{*}\left(\mathrm{CH}_{0}\left(X^{\left(p^{d}\right)}\right)\right)
$$

Simplify this! For perfect k look at $F^{\prime}=\left(W^{-1}\right) \circ F: X \rightarrow X$. Then F^{\prime} acts with eigenvalue p^{r} on $\mathrm{CH}_{r}(X) \ldots$

Corollary 1. If k is perfect of characteristic p, then

$$
\left(\pi_{X}\right)_{*}\left(K_{0}(X)\right) \subset\left(\pi_{X}\right)_{*}\left(\mathrm{CH}_{0}(X)\right) \otimes \mathbf{Z}_{(p)}
$$

In other words, the Euler characteristic of a \mathcal{O}_{X}-module sheaf on X is the degree of a p-integral zero cycle on X.

3. Exploiting Riemann-Roch

[6] [7]

4. Examples

Lemma 6. Suppose $\operatorname{dim} X=1$. Then

$$
\begin{aligned}
& F_{*}\left(\mathcal{O}_{X}-\Omega_{X / k}\right)=\mathcal{O}_{X^{(p)}}-\Omega_{X^{(p)} / k} \\
& F_{*}\left(\mathcal{O}_{X}+\Omega_{X / k}\right)=p\left(\mathcal{O}_{X^{(p)}}+\Omega_{X^{(p)} / k}\right)
\end{aligned}
$$

Moreover, if $p=2$, then

$$
2\left(F_{*}\left(\mathcal{O}_{X}\right)-2 \mathcal{O}_{X^{(2)}}\right)=\Omega_{X^{(2)} / k}-\mathcal{O}_{X^{(2)}}
$$

and

$$
F_{*}\left(F_{*}\left(\mathcal{O}_{X}\right)-2 \mathcal{O}_{X^{(2)}}\right)=F_{*}\left(\mathcal{O}_{X^{(2)}}\right)-2 \mathcal{O}_{X^{(4)}}
$$

and if p is odd, then

$$
F_{*}\left(\mathcal{O}_{X}\right)-p \mathcal{O}_{X^{(p)}}=\frac{p-1}{2}\left(\Omega_{X^{(p)} / k}-\mathcal{O}_{X^{(p)}}\right)
$$

Notation: bundles versus classes. Better notations!
Lemma 7. Suppose $\operatorname{dim} X=2$ and $p=2$. Then

$$
\begin{aligned}
& F_{*}\left(\mathcal{O}_{X}-\Omega_{X / k}^{2}\right)=2\left(\mathcal{O}_{X^{(2)}}-\Omega_{X^{(2)} / k}^{2}\right) \\
& \quad 4 F_{*}\left(\mathcal{O}_{X}\right)=\ldots
\end{aligned}
$$

Lemma 8. Suppose $\operatorname{dim} X=2$ and $p=3$. Then

$$
9 F_{*}\left(\mathcal{O}_{X}\right)=\ldots
$$

Lemma 9. Suppose $\operatorname{dim} X=2$ and $p>3$. Then

$$
p^{2} F_{*}\left(\mathcal{O}_{X}\right)=\ldots
$$

5. Further Remarks

$\left[X \rightarrow X^{(p)}\right] \in \Omega\left(X^{(p)}\right)$ new natural elements in bordism (= in any oriented cohomology theory).

Compress $[X]$: Over $\mathbf{Z}_{(p)},[X]$ is represented by sums $\left[Y \rightarrow X^{\left(p^{d}\right)}\right] . L$, $\operatorname{dim} Y=0, L=$ Lazard ring.

References

[1] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452, MR0131423 (24 \#A1274).
[2] A. Fröhlich, J.-P. Serre, and J. Tate, A different with an odd class, J. Reine Angew. Math. 209 (1962), 6-7, MR0139601 (25 \#3033).
[3] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
[4] N. M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39, 175-232, MR0291177 (45 \#271).
[5] _ , Twisted L-functions and monodromy, Annals of Mathematics Studies, vol. 150, Princeton University Press, Princeton, NJ, 2002, MR1875130 (2003i:11087).
[6] I. Panin, Oriented cohomology theories of algebraic varieties, K-Theory $\mathbf{3 0}$ (2003), no. 3, 265-314, Special issue in honor of Hyman Bass on his seventieth birthday. Part III, MR2064242 (2005f:14043).
[7] , Riemann-Roch theorems for oriented cohomology, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 261-333, MR2061857 (2005g:14025).
[8] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393 (electronic), MR1418952 (98a:14006).
[9] C. Soulé, Groupes de Chow et K-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), no. 3, 317-345, MR751733 (86k:14017).

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

E-mail address: rost@math.uni-bielefeld.de
URL: http://www.math.uni-bielefeld.de/~rost

