On Hilbert Satz 90 for $\boldsymbol{K}_{\mathbf{3}}$ for quadratic extensions

by Markus Rost
Regensburg, September 1988
This is a $\mathrm{T}_{\mathrm{E}} \mathrm{Xed}$ version (Sept. 1996) of the original preprint.

I. Preliminaries

Notation: $K_{n} F=K_{n}^{M} F \quad$ (for convenience)

1) For a variety X / F denote by $A^{p}\left(X, K_{n}\right)$ the homology of

$$
\bigoplus_{v \in X^{(p-1)}} K_{n-p+1} K(v) \xrightarrow{d} \underset{v \in X^{(p)}}{ } K_{n-p} K(v) \xrightarrow{d} \bigoplus_{v \in X^{(p+1)}} K_{n-p-1} K(v) .
$$

2) For X projective, the norm homomorphism in Milnor K-theory induces a map

$$
N: A_{0}\left(X, K_{n}\right) \longrightarrow K_{n} F, \quad N=\sum_{v \in X_{(0)}} N_{K(v) / F},
$$

where $A_{0}\left(X, K_{n}\right)$ denotes the cokernel of

$$
\bigoplus_{v \in X_{(1)}} K_{n+1} K(v) \xrightarrow{d} \bigoplus_{v \in X_{(0)}} K_{n} K(v) .
$$

3) Given a fibration $\pi: X \rightarrow Y$, one has a filtration of the complex 1) by codimension in Y which induces a spectral sequence

$$
E_{1}^{p, q}=\bigoplus_{v \in Y_{(p)}} A^{q}\left(\pi^{-1}(v), K_{n-p}\right) \Longrightarrow A^{p+q}\left(X, K_{n}\right)
$$

4) For a quadratic form $\varphi: F^{k} \rightarrow F$ (which may singular) I denote by $X_{\varphi} \subset \mathbb{P}^{k-1}$ the corresponding quadric.
Moreover I put

$$
D_{n}(\varphi)=N\left(A_{0}\left(X_{\varphi}, K_{n}\right)\right) \subset K_{n} F
$$

If φ is singular, then $D_{n}(\varphi)=K_{n} F$.
One has

$$
D_{0}(\varphi)= \begin{cases}K_{0} F & \text { if } \varphi \text { is isotropic } \\ 2 K_{0} F & \text { if } \varphi \text { is non-isotropic. }\end{cases}
$$

If φ represents 1 , then $D_{1}(\varphi)$ is the subgroup of F^{*} generated by all nonzero $\varphi(x)$.

II. The results

Theorem A

Let $X=X_{\varphi}$ with $\varphi=\ll a, b \gg-\langle c\rangle$. Then there are natural isomorphisms

$$
\begin{aligned}
& A^{2}\left(X ; K_{2}\right)=D_{0}(\ll a, b \gg) \oplus K_{0} F / D_{0}(\ll a, b, c \gg) \\
& A^{2}\left(X, K_{3}\right)=D_{1}(\ll a, b \gg) \oplus K_{1} F / D_{1}(\ll a, b, c \gg)
\end{aligned}
$$

compatible with multiplication.

Consequences:

Theorem B

Let $Y=X_{\varphi}$ with $\varphi=<1,-a,-b>$. Then, for $n \leq 2$,

$$
N: A^{1}\left(Y, K_{n+1}\right) \longrightarrow K_{n} F \quad \text { is injective. }
$$

Theorem C

a) Nrd: $K_{2} D \rightarrow K_{2} F$ is injective for quaternion algebras D
b) $\quad K_{3} L \xrightarrow{1-\sigma} K_{3} L \xrightarrow{N} K_{3} F$ is exact $(L=F(\sqrt{a}) ; \operatorname{Gal}(L / F)=(\sigma))$
c) $\quad K_{3} F / 2 \longrightarrow H^{3}(F)$ is bijective.

Proof of Thm B \Rightarrow Thm C

a) One has a commutative diagram

Since r is surjective and N is injective one has Ker $\operatorname{Nrd}=0$.
b) This follows from Theorem B as shown in my first preprint on Hilbert 90 for K_{3}.
c) This follows from b) by Merkuriev's arguments.

III. The basic result

Let $f \in \mathcal{O}_{\mathbb{A}^{N}}$ be a polynomial and let ψ be a Pfister form over F. We are concerned with the following subcomplex of the usual Milnor complex for \mathbb{A}^{N} :

$$
\begin{aligned}
\bigoplus_{v \in\left(\mathbb{A}^{N}\right)^{(p-2)}} D_{2}(\psi \otimes \ll f(v) \gg) & \xrightarrow{d} \bigoplus_{v \in\left(\mathbb{A}^{N}\right)^{(p-1)}} D_{1}(\psi \otimes \ll f(v) \gg) \\
& \xrightarrow{d} \bigoplus_{v \in\left(\mathbb{A}^{N}\right)^{(p)}} D_{0}(\psi \otimes \ll f(v) \gg) \longrightarrow 0 .
\end{aligned}
$$

The homology groups of this complex are denoted by

$$
A^{p-1}\left(\mathbb{A}^{N}, D_{p}(\psi \otimes \ll f \gg)\right) \quad \text { and } \quad A^{p}\left(\mathbb{A}^{N}, D_{p}(\psi \otimes \ll f \gg)\right) .
$$

Theorem D

Let $\varphi=<1,-a,-b, a b c>$. Then

$$
N: A_{0}\left(X_{\varphi}, K_{1}\right) \longrightarrow K_{1} F
$$

is injective. Its image is $D_{1}\left(\ll a, b \ggg(\sqrt{c}) \cap K_{1} F \subset K_{1} F(\sqrt{c})\right.$.
The injectivity of N is proved in [Merkuriev, Suslin; On the norm homomorphism in degree 3]. There is a proof without using Quillen- K-Theory similar to Merkuriev's proof of $A_{0}\left(Y, K_{1}\right) \hookrightarrow K_{1} F$ or a conic Y. I will consider this elsewhere.

The main technical result in the proof of Hilbert Satz 90 for K_{3} is the following:

Theorem E:

i) For any quadratic from φ over F :

$$
A^{N}\left(\mathbb{A}^{N}, D_{n}(\varphi)\right)=0
$$

ii) Let $a, b \in F^{*}, \varphi=<1>, d \in F$; Then for $n=0,1$:

$$
A^{1}\left(\mathbb{A}^{1}, D_{n+1}(\ll a, b \hat{\varphi}-a b d \gg)=\frac{D_{n}\left(\ll a, b \ggg_{K}\right) \cap K_{n} F}{D_{n}(\ll a, b \gg)}\right.
$$

where $K=F(\sqrt{d})$ and $\hat{\varphi} \in \mathcal{O}_{\mathbb{A}^{1}}$ is the polynomial corresponding to φ. (so $\hat{\varphi}(t)=t^{2}$)
iii) $\quad A^{0}\left(\mathbb{A}^{1}, D_{1}(\ll a, b \hat{\varphi}-a b d \gg)=D_{1}(\ll a \gg)+N_{K / F}\left(D_{1}\left(\ll a, b \ggg_{K}\right)\right)\right.$
iv) Let $\psi=\ll a \gg$ and $c \in F^{*}$. Then
$A^{1}\left(\mathbb{A}^{2} ; D_{2}(\ll a, b \hat{\psi}+c \gg)\right)=0$,
where $\hat{\psi} \in \mathcal{O}_{\mathbb{A}^{2}}$ is the polynomial corresponding to ψ.
We need the following (well known?) lemma:

Lemma

a) $\quad D_{1}(\ll a \gg F(\sqrt{e})) \cap K_{1} F=D_{1}(\ll a \gg)+D_{1}(\ll a e \gg)$
b) Let ψ be a Pfister form; then

$$
D_{1}(\psi) \cap D_{1}(\ll e \gg)=2 K_{1} F+N_{F(\sqrt{e})}\left(D_{1}\left(\psi_{F(\sqrt{e})}\right)\right) .
$$

Proof of a)

Let $u \in F(\sqrt{a}, \sqrt{e})^{*}$ such that $N_{F(\sqrt{a}, \sqrt{e})(F(\sqrt{e})}(u) \in F^{*}$. Multiplying u by an element from $F(\sqrt{a})^{*}$ we may assume $u=\alpha+\beta \sqrt{a}+\gamma \sqrt{e} ; \alpha, \beta, \gamma \in F$. One must have $\alpha \cdot \gamma=0 \ldots$

Proof of b)

Any element of $D_{1}(\psi)$ is in $D_{1}(\ll a \gg)$ for some a such that $\psi_{F(\sqrt{a})} \sim 0$. Hence we may assume $\psi=\ll a \gg$. But

$$
N\left(F(\sqrt{a})^{*}\right) \cap N\left(F(\sqrt{e})^{*}\right)=\left(F^{*}\right)^{2} \cdot N\left(F(\sqrt{a}, \sqrt{e})^{*}\right) ;
$$

To see this suppose $u \in F(\sqrt{a})^{*}, v \in F(\sqrt{e})^{*}$ such that $N(u)=N(v)$. One checks easily

$$
N(u)=N(v)=(\operatorname{tr}(u)+\operatorname{tr}(v))^{-2} N(u+v)
$$

qed.

Proof of i)

By the norm principle we may assume that φ is isotropic. Then

$$
A^{N}\left(\mathbb{A}^{N}, D_{n}(\varphi)\right)=A^{N}\left(\mathbb{A}^{N}, K_{n}\right)=0 .
$$

Proof of ii)

Put $\Omega=A^{1}\left(\mathbb{A}^{1}, D_{n+1}(\ll a, b \hat{\varphi}-a b d \gg)\right.$. In view of $\left.i\right)$ we find that Ω is the cokernel of

$$
\begin{equation*}
\frac{D_{n+1}(<a, b \hat{\varphi}(\eta)-a b d \gg)}{D_{n+1}(\ll a \gg K(\eta))} \xrightarrow{d} \bigoplus_{v \in \mathbb{A}^{1} 1^{(1)}} \frac{D_{n}(\ll a, b \hat{\varphi}(v)-a b d \gg)}{D_{n}(\ll a \gg K(v))} \tag{*}
\end{equation*}
$$

where η is the generic point of \mathbb{A}^{1}.

Let $W=\left\{x_{1}^{2}-a x_{2}^{2}-b x_{3}^{2}+a b d=0\right\} \subset \mathbb{A}^{3}$. Then $W=\bar{W} \backslash Y$, where

$$
\bar{W}=X_{<1,-a,-b, a b d>}, Y=X_{<1,-a,-b>} .
$$

We have an exact sequence

$$
A^{1}\left(Y ; K_{n+1}\right) \longrightarrow A^{2}\left(\bar{W}, K_{n+2}\right) \longrightarrow A^{2}\left(W, K_{n+2}\right) \longrightarrow 0 .
$$

By Theorem D and the computation $A^{1}\left(Y, K_{n+1}\right)=D_{n}(\ll a, b \gg)$ it suffices to show $\Omega=A^{2}\left(W, K_{n+2}\right)$.
Consider the projection $\pi: W \rightarrow \mathbb{A}^{1},\left(x_{1}, x_{2}, x_{3}\right) \rightarrow x_{3}$. The corresponding spectral sequences yield exact sequences

$$
\begin{equation*}
A^{1}\left(\pi^{-1}(\eta), K_{n+2}\right) \xrightarrow{d} \bigoplus_{v \in \mathbb{A}^{1(1)}} A^{1}\left(\pi^{-1}(v), K_{n+1}\right) \longrightarrow A^{2}\left(W, K_{n+2}\right) \longrightarrow 0 . \tag{**}
\end{equation*}
$$

The fibers $\pi^{-1}(v)$ are affine conics given by $x_{1}^{2}-a x_{2}^{2}-(b \hat{\varphi}(v)-a b d)=0$. Hence $\pi^{-1}(v)=X_{<1,-a,-(b \hat{\varphi}(v)-a b d)>} \backslash\{\operatorname{Spec} L\}$ and

$$
A^{1}\left(\pi^{-1}(v), K_{n+1}\right)=A^{1}\left(X_{<1,-a,-(b \hat{\varphi}(v)-a b d)>}, K_{n+1}\right) / i_{*} K_{n} L .
$$

Taking norms gives a map from $(* *)$ to $(*)$ which yields the desired isomorphism $A^{2}\left(W, K_{n+2}\right)=\Omega$.

Proof of iii)

We have

$$
\begin{array}{lll}
& A^{0}\left(\mathbb{A}^{1}, D_{1}(\ll a, b \hat{\varphi}-a b d \gg)\right)= & \\
= & D_{1}\left(\ll a, b t^{2}-a b d \gg\right) \cap K_{1} F & \\
= & \left\{f \in F^{*} \mid\left\{a, b t^{2}-a b d, f\right\}=0 \text { in } K_{3} F(t) / 2\right\} & \\
= & \left\{f \in F^{*} \mid\{a, b, f\}=0 \text { in } K_{3} F / 2,\{a, f\}=0 \text { in } K_{2} F(\sqrt{a d}) / 2\right\} & \\
= & D_{1}(\ll a, b \gg) \cap D_{1}(\ll a \gg F(\sqrt{a d}) & \\
= & D_{1}(\ll a, b \gg) \cap\left(D_{1}(\ll a \gg)+D_{1}(\ll d \gg)\right) & \\
= & D_{1}(\ll a \gg)+\left(D_{1}(\ll a, b \gg) \cap D_{1}(\ll d \gg)\right. & \text { by the Lemma a) } \\
= & D_{1}(\ll a \gg)+N_{K / F}\left(D_{1}(\ll a, b \gg K)\right) & \\
& & \text { by the Lemma b). }
\end{array}
$$

Proof of iv)

Consider the projection $\pi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{1},(x, y) \rightarrow y$ where x, y are coordinates such that $\hat{\psi}=x^{2}-a y^{2} . \pi$ induces the following exact sequence (where $d=y^{2}-a b c \in F[y]=\mathcal{O}_{\mathbb{A}^{1}}$)

$$
\begin{gathered}
A^{0}\left(\mathbb{A}_{F(y)}^{1} ; D_{2}(\ll a, b \hat{\varphi}-a b d \gg)\right) \xrightarrow{d^{\prime}} \bigoplus_{v \in \mathbb{A}^{1(1)}} A^{0}\left(\mathbb{A}_{K(v)}^{1}, D_{1}(\ll a, b \hat{\varphi}-a b d(v) \gg)\right) \xrightarrow{i_{*}} \\
A^{1}\left(\mathbb{A}^{2}, D_{2}(\ll a, b \hat{\psi}+c \gg)\right) \xrightarrow{\pi^{*}} \\
A^{1}\left(\mathbb{A}_{F(y)}^{1}, D_{2}(\ll a, b \hat{\varphi}-a b d \gg)\right) \xrightarrow{d^{\prime \prime}} \bigoplus_{v \in \mathbb{A}^{1(1)}} A^{1}\left(\mathbb{A}_{K(v)}^{1} ; D_{1}(\ll a, b \hat{\varphi}-a b d \gg)\right) .
\end{gathered}
$$

We show that d^{\prime} is surjective and that $d^{\prime \prime}$ is injective.

Surjectivity of \boldsymbol{d}^{\prime}

Consider the following diagram

$$
\begin{aligned}
& \begin{array}{c}
K_{2} L(y) \longrightarrow 0 \\
\downarrow_{N_{L / F}} \bigoplus_{v \in \mathbb{A}^{(1)}} K_{1} L \otimes_{F} K(v) \longrightarrow \downarrow^{N_{L / F}}
\end{array} \\
& A^{0}\left(\mathbb{A}_{F(y)}^{1}, D_{2}(\ll a, b \hat{\varphi}-a b d \gg) \xrightarrow{d^{\prime}} \bigoplus_{v \in \mathbb{A}^{1} \mathbf{1}^{(1)}} A^{0}\left(\mathbb{A}_{K(v)}^{1}, D_{1}(\ll a, b \hat{\varphi}-a b d(v) \gg)\right.\right. \\
& D_{2}\left(\ll a, b \ggg_{F(Z)}\right) \xrightarrow[p_{*}]{d_{v \in \mathbb{A}^{1^{(1)}}}} \bigoplus_{W \in Z^{(1)}} D_{1}\left(\ll a, b \ggg_{K(w)}\right) \longrightarrow 0
\end{aligned}
$$

The top row is the surjective tame symbol for \mathbb{A}_{L}^{1}.
Clearly $D_{n}(\ll a \gg) \subset A^{0}\left(\mathbb{A}^{1}, D_{n}(\ll a, b \hat{\varphi}-a b d(v) \gg)\right.$ hence $N_{L / F}$ is well defined.

To describe the bottom row let

$$
\bar{Z}=\left\{x^{2}-y^{2}+a b c z^{2}=0\right\} \subset \mathbb{P}^{2}
$$

and

$$
Z=\bar{Z} \backslash\{z=0\} .
$$

Clearly $\bar{Z} \simeq \mathbb{P}^{1}$ and $Z \simeq \mathbb{A}^{1} \backslash\{$ rational point $\}$. By i) the bottom row is exact.
The maps p_{*} are induced by the double cover $p: Z \rightarrow \mathbb{A}^{1},[x, y, 1] \rightarrow[y, 1]$. It has $y^{2}=a b c$ as branching point and one has $K\left(p^{-1}(v)\right)=K(v)(\sqrt{d(v)})$ for $v \in \mathbb{A}^{1}$. Note that (with $v=p(w)) p_{*}\left(D_{n}\left(\ll a, b \ggg_{K(w)}\right)\right) \subset A^{0}\left(\mathbb{A}_{K(v)}^{1}, D_{n}(\ll a, b \hat{\varphi}-a b d(v) \gg)\right.$ because $D_{n}(\ll a, b \gg) \subseteq A^{0}\left(\mathbb{A}^{1}, D_{n}(\ll a, b \hat{\varphi}-a b d \gg)\right.$ if d is a square. By iii) we know that $p_{*} \oplus N_{L / F}$ is surjective on the right side (degree 1). Consequently d^{\prime} is surjective.

Injectivity of $\boldsymbol{d}^{\prime \prime}$

One has the following diagram

Here the columns are exact and given by ii). The bottom row is exact, because $D_{1}\left(\ll a, b \gg{ }_{F(y)}\right) \cap K_{1} F=D_{1}(\ll a, b \gg)$ and by i). The middle row is exact, because Ker $d=D_{1}\left(\ll a, b \ggg_{F(y)(\sqrt{d})}\right) \cap K_{1} F$ and $F(y)(\sqrt{d})=F(y)\left(\sqrt{y^{2}-a b c}\right)$ is rational over F. Now an easy diagram chase does the job.

IV. Proof of Thm A

Proposition 1

Let $Z=X_{\ll a, b \gg}$. Then

$$
A^{1}\left(Z, K_{2}\right)=D_{1}(\ll a, b \gg) \oplus K_{1} F .
$$

Proof

Let $X=X_{<1,-a,-b>}$. Then the spectral sequences for $Y \times Z \rightarrow Z, Y \times Z \rightarrow Y$ yield exact sequences

$$
\begin{gathered}
0 \rightarrow A^{1}\left(Z, A^{0}\left(Y, K_{2}\right)\right) \rightarrow A^{1}\left(Z \times Y, K_{2}\right) \rightarrow A^{0}\left(Z, A^{1}\left(Y, K_{2}\right)\right) \xrightarrow{d_{2}} \ldots \\
0 \rightarrow A^{1}\left(Y, A^{1}\left(Z, K_{2}\right)\right) \rightarrow A^{1}\left(Y \times Z, K_{2}\right) \rightarrow A^{0}\left(Y, A^{1}\left(Z, K_{2}\right)\right) \longrightarrow 0 .
\end{gathered}
$$

Because Y is trivial over Z and Z is trivial over Y we find

$$
\begin{aligned}
& A^{1}\left(Z, A^{0}\left(Y, K_{2}\right)\right)=A^{1}\left(Z, K_{2}\right) \\
& A^{0}\left(Z, A^{1}\left(Y, K_{2}\right)\right)=A^{0}\left(Z, K_{1}\right)=K_{1} F \\
& A^{1}\left(Y, A^{0}\left(Z, K_{2}\right)\right)=A^{1}\left(Y, K_{2}\right)=D_{1}(\ll a, b \gg) \\
& A^{0}\left(Y, A^{1}\left(Z, K_{2}\right)\right)=A^{=}\left(Y, K_{1} F \oplus K_{1} F\right)=K_{1} F \oplus K_{1} F .
\end{aligned}
$$

The result follows immediately (consider e.g. the situation one degree lower and use multiplicativity)
qed.

Let $U=X \backslash Z$, where X is as in Theorem A and $Z \subset X$ is considered as hyperplane section. There is an exact sequence

$$
A^{1}\left(Z, K_{2}\right) \xrightarrow{i_{*}} A^{2}\left(X, K_{3}\right) \longrightarrow A^{2}\left(U, K_{3}\right) .
$$

One finds that the kernel of i_{*} is the image of

$$
\begin{aligned}
D_{1}(\ll a, b, c \gg) & \longrightarrow D_{1}(\ll a, b \gg) \oplus K_{1} F \\
U & \longrightarrow(2 u,-u)
\end{aligned}
$$

I omit the proof here. Clearly the hard point in the proof of Theorem A is the surjectivity of i_{*}. I show $A^{2}\left(U, K_{3}\right)=0$.

Compactification of \boldsymbol{U}

Let $\bar{U} \subset \mathbb{A}^{2} \times \mathbb{P}^{2}$ be the variety defined by

$$
0=x_{1}^{2}-a x_{2}^{2}-x_{3}^{2}\left[\left(y_{1}^{2}-a y_{2}^{2}\right) b+c\right],\left[x_{1}, x_{2}, x_{3}\right] \in \mathbb{P}^{2},\left(y_{1}, y_{2}\right) \in \mathbb{A}^{2}
$$

and let $V=\bar{U} \cap\left\{x_{3}=0\right\} \subset \mathbb{A}^{2} \times_{F} \mathbb{P}^{1}$. Note that $U=\bar{U} \backslash V$ and $V=\mathbb{A}^{2} \times_{F}$ Spec L. We have an exact sequence

$$
A^{2}\left(\bar{U}, K_{3}\right) \longrightarrow A^{2}\left(U, K_{3}\right) \longrightarrow A^{2}\left(V, K_{2}\right) .
$$

Because $A^{2}\left(V, K_{2}\right)=0$ it suffices to show:
$A^{2}\left(\bar{U}, K_{3}\right)=0$
Let $\pi: \bar{U} \rightarrow \mathbb{A}^{2}$ be induced by the projection $\mathbb{A}^{2} \times \mathbb{P}^{2} \rightarrow \mathbb{A}^{2} . \pi$ induces a spectral sequence

$$
E_{1}^{p, q}=\bigoplus_{v \in \mathbb{A}^{2(p)}} A^{q}\left(\pi^{-1}(v), K_{3-p}\right) \Rightarrow A^{p+q}\left(\bar{U}, K_{3}\right) .
$$

It suffices to show $E_{2}^{p, q}=0$ for $p+q=2$. Note that the fiber over v is the projective conic $Y_{<1,-a,-f(v)>}$ where $f=\left(y_{1}^{2}-a y_{2}^{2}\right) b+c \in \mathcal{O}_{\mathbb{A}^{2}}$. It is singular over $v \in W=\left\{y_{1}^{2}-a y_{2}^{2}+b^{-1} c=0\right\} \subset \mathbb{A}^{2}$.

Proof of $\boldsymbol{E}_{2}^{2,0}=\mathbf{0}$
We have for $n \leq 2$:

$$
A^{0}\left(\pi^{-1}(v), K_{n}\right)= \begin{cases}K_{n}(K(v)) & \text { if } v \notin W \\ K_{n}\left(L \otimes_{F} K(v)\right) & \text { if } v \in W\end{cases}
$$

Consider the diagram

$$
\begin{aligned}
& \bigoplus_{v \in \mathbb{A}^{2(1)}} K_{2} K(v) \longrightarrow \bigoplus_{v \in \mathbb{A}^{2(2)}} K_{1} K(v) \longrightarrow 0 \\
& \downarrow^{r} \quad \downarrow^{r} \\
& \bigoplus_{v \in \mathbb{A}^{2^{(1)}}} A^{0}\left(\pi^{-1}(v), K_{2}\right) \xrightarrow{d_{1}^{2,0}} \bigoplus_{v \in \mathbb{A}^{2^{(2)}}} A^{0}\left(\pi^{-1}(v), K_{1}\right) \longrightarrow E_{2}^{2,0} \longrightarrow 0 \\
& \begin{array}{c}
\uparrow_{r^{\prime}} \\
\bigoplus_{v \in W^{(0)}} K_{2}\left(L \otimes_{F} K(v)\right) \xrightarrow{d} \bigoplus_{v \in W^{\prime \prime}} \bigoplus_{1}\left(L \otimes_{F} K(v)\right) \longrightarrow 0
\end{array}
\end{aligned}
$$

Here r is induced by restriction and r^{\prime} is induced by identifying $L \otimes_{F} K(v)$ with the algebraic closure of $K(v)$ in the function field of $\pi^{-1}(v)$ for $v \in W$.
The top row is exact, and so is the bottom row, because $W \times \operatorname{Spec} L \simeq \mathbb{P}^{1} \times \operatorname{Spec} L \backslash\{2$ L-rational points $\}$.

Since $r \oplus r^{\prime \prime}$ is surjective we find $E_{2}^{2,0}=0$.

Proof of $\boldsymbol{E}_{2}^{\mathbf{1 , 1}}=\mathbf{0}$.
We have the following diagram with exact columns:

The homology of the top row is $E_{2}^{1,1}$. But the bottom row is exact by Theorem E iv) (page 3).

V. Proof of Thm A \Longrightarrow Thm B

Let $A^{1}\left(Y, K_{n}\right)^{\sim}=\operatorname{Ker} N \subset A^{1}\left(Y, K_{n}\right)$.
Specialization arguments (which will be considered elsewhere) show that it suffices to show that

$$
\begin{equation*}
r_{F(X) / F}: A^{1}\left(Y, K_{3}\right)^{\sim} \longrightarrow A^{1}\left(Y_{F(X)}, K_{3}\right)^{\sim} \tag{*}
\end{equation*}
$$

is surjective (where X is as in Thm A). To prove this I consider the following groups and maps (to be described below) ($n=2,3$)

Here ε denotes the isomorphism from Theorem A and N is induced by the norm map. Below I define $\alpha, \beta, \delta, \gamma$ and I show that $\alpha, \beta, \gamma, \delta$ are injective (in fact they are isomorphisms with the exception $\alpha=0$) and that $N=\gamma \varepsilon \delta \gamma$. Clearly this implies ($*$), because $N \circ \alpha=0$.

Definition and injectivity of α

For $n=2$ we know already $A^{1}\left(Y, K_{n}\right)^{\sim}=0$. For $n=3$ consider the commutative diagram

Here d^{\prime} is the differential $E_{1}^{0,1} \rightarrow E_{1}^{1,1}$ from the spectral sequence

$$
E_{1}^{p, q}=\bigoplus_{v \in X^{(p)}} A^{1}\left(Y_{K(v)}, K_{3-p}\right) \Rightarrow A^{p, q}\left(X \times Y, K_{3}\right) .
$$

The columns are exact by definition or by the knowledge for the K_{2}-case. Hence

$$
A^{1}\left(Y_{F(X)}, K_{3}\right)^{\sim} \subset \operatorname{Ker} d^{\prime}=A^{0}\left(X, A^{1}\left(Y, K_{3}\right)\right)
$$

We define α to be the induced map. It is injective because $K_{2} F \hookrightarrow K_{2} F(X)$.

Definition of $\boldsymbol{\beta}$

Just projection. π is induced by the spectral sequence $E_{2}^{p, q}=A^{p}\left(X, A^{q}\left(Y, K_{n}\right)\right)$ $\Rightarrow A^{p+q}\left(X \times Y, K_{n}\right)$.

Injectivity of $\boldsymbol{\beta}$

The spectral sequences for $X \times Y \rightarrow X$ and $Y \times X \rightarrow Y$ yield exact sequences
$0 \longrightarrow A^{1}\left(X, A^{0}\left(Y, K_{n}\right)\right) \xrightarrow{i} A^{1}\left(X \times Y, K_{n}\right) \xrightarrow{\pi} A^{0}\left(X, A^{1}\left(Y, K_{n}\right)\right) \xrightarrow{d^{0,1}} \ldots$
$0 \longrightarrow A^{1}\left(Y, A^{0}\left(X, K_{n}\right)\right) \xrightarrow{\tilde{i}} A^{1}\left(Y \times X, K_{n}\right) \xrightarrow{\tilde{\pi}} A^{0}\left(Y, A^{1}\left(X, K_{n}\right)\right) \longrightarrow 0$
Because X is trivial over Y we have
i) $\quad A^{1}\left(Y, A^{0}\left(X, K_{n}\right)\right)=A^{1}\left(Y, K_{n}\right)$
ii) $\quad A^{0}\left(Y, A^{1}\left(X, K_{n}\right)\right)=A^{0}\left(Y, K_{n-1}\right) \otimes \operatorname{Pic}(X)$.

We have to show $\operatorname{Im} \pi=\operatorname{Im} \pi \circ \tilde{i}$ by i).
But

$$
\frac{\operatorname{Im} \pi}{\operatorname{Im} \pi \circ i}=\frac{\operatorname{Im} \tilde{\pi}}{\operatorname{Im} \tilde{\pi} \circ i}=0 ;
$$

here the last equation follows from the obvious factorization of the isomorphism in ii) via $A^{1}\left(X, A^{0}\left(Y, K_{n}\right)\right)$.

Definition and injectivity of δ

Consider

$$
A^{1}\left(X \times Y, K_{n}\right) \xrightarrow{\pi} A^{0}\left(X, A^{1}\left(Y, K_{n}\right)\right) \xrightarrow{d_{2}^{0,1}} A^{2}\left(X, A^{0}\left(Y, K_{n}\right)\right) \xrightarrow{i} A^{2}\left(X \times Y, K_{n}\right)
$$

Here $\pi, d_{2}^{0,1}$ and i are from the spectral sequence for $X \times Y \rightarrow X, \tilde{\pi}$ is from the spectral sequence for $X \times Y \rightarrow Y$ and r is induced by multiplication with $A^{0}\left(Y, K_{0}\right)=C H^{0}(Y)$. Clearly $d_{2}^{0,1} \circ \pi=0$ and $i \circ d_{2}^{0,1}=0$. Moreover, r is bijective for $n \leq 3$, because $K_{m} K=A^{0}\left(Y_{K}, K_{m}\right)$ for $m \leq 2$.

Now put $\delta=r^{-1} \circ d_{2}^{0,1}$. δ is injective because there are no more differentials starting from or landing in $E_{2}^{0,1}$.

Definition and injectivity of $\boldsymbol{\gamma}$

$\gamma\left(U \bmod D_{n-2}(\ll a, b, c \gg)\right)=U \cdot\{c\} \bmod D_{n-1}(\ll a, b \gg)$. By quadratic from theory γ is well defined and injective $(n \leq 3)$.

Proof of $N=\gamma \varepsilon \delta \beta$

We know already that $\gamma \varepsilon \delta \beta$ is injective. If $n=2$ we know that N is bijective; because the target group is 0 or $\mathbb{Z} / 2$ both maps must coincide.
For $n=3$ use multiplication with K_{1} and the injectivity of $\gamma \varepsilon \delta \beta$.
Q.E.D.

