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I. Preliminaries

Notation: KnF = KM
n F (for convenience)

1) For a variety X/F denote by Ap(X,Kn) the homology of

⊕
v∈X(p−1)

Kn−p+1K(v)
d−→

⊕
v∈X(p)

Kn−pK(v)
d−→

⊕
v∈X(p+1)

Kn−p−1K(v).

2) For X projective, the norm homomorphism in Milnor K-theory induces a map

N : A0(X,Kn)−→KnF, N =
∑

v∈X(0)

NK(v)/F ,

where A0(X,Kn) denotes the cokernel of

⊕
v∈X(1)

Kn+1K(v)
d−→

⊕
v∈X(0)

KnK(v).

3) Given a fibration π : X→Y , one has a filtration of the complex 1) by codimension
in Y which induces a spectral sequence

Ep,q
1 =

⊕
v∈Y(p)

Aq(π−1(v), Kn−p) =⇒ Ap+q(X,Kn).

4) For a quadratic form ϕ : F k→F (which may singular) I denote by Xϕ ⊂ IPk−1 the
corresponding quadric.
Moreover I put

Dn(ϕ) = N(A0(Xϕ, Kn)) ⊂ KnF

If ϕ is singular, then Dn(ϕ) = KnF .
One has

D0(ϕ) =
{
K0F if ϕ is isotropic
2K0F if ϕ is non-isotropic.

If ϕ represents 1, then D1(ϕ) is the subgroup of F ∗ generated by all nonzero ϕ(x).
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II. The results

Theorem A
Let X = Xϕ with ϕ =�a, b�−<c>. Then there are natural isomorphisms

A2(X;K2) = D0(�a, b�) ⊕ K0F/D0(�a, b, c�)

A2(X,K3) = D1(�a, b�) ⊕ K1F/D1(�a, b, c�)

compatible with multiplication.

Consequences:

Theorem B
Let Y = Xϕ with ϕ = <1,−a,−b>. Then, for n ≤ 2,

N : A1(Y,Kn+1)−→KnF is injective.

Theorem C

a) Nrd : K2D→K2F is injective for quaternion algebras D

b) K3L
1−σ−→K3L

N−→K3F is exact (L = F (
√
a); Gal (L/F ) = (σ))

c) K3F/2−→H3(F ) is bijective.

Proof of Thm B ⇒ Thm C

a) One has a commutative diagram�
N

� r���
Nrd

K2F

K2DH1(Y ;K3)A1(Y ;KQ
3 )A1(Y,K3)

Since r is surjective and N is injective one has Ker Nrd = 0.

b) This follows from Theorem B as shown in my first preprint on
Hilbert 90 for K3.

c) This follows from b) by Merkuriev’s arguments.
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III. The basic result

Let f ∈ OAN be a polynomial and let ψ be a Pfister form over F . We are concerned with
the following subcomplex of the usual Milnor complex for AN :⊕

v∈(AN )(p−2)

D2(ψ ⊗�f(v)�)
d−→

⊕
v∈(AN )(p−1)

D1(ψ ⊗�f(v)�)

d−→⊕
v∈(AN )(p)D0(ψ ⊗�f(v)�)−→ 0.

The homology groups of this complex are denoted by

Ap−1(AN , Dp(ψ ⊗�f�)) and Ap(AN , Dp(ψ ⊗�f�)).

Theorem D
Let ϕ = <1,−a,−b, abc>. Then

N : A0(Xϕ, K1)−→K1F

is injective. Its image is D1(�a, b�F (
√
c)) ∩K1F ⊂ K1F (

√
c).

The injectivity of N is proved in [Merkuriev, Suslin; On the norm homomorphism in
degree 3]. There is a proof without using Quillen-K-Theory similar to Merkuriev’s proof
of A0(Y,K1) ↪→ K1F or a conic Y . I will consider this elsewhere.

The main technical result in the proof of Hilbert Satz 90 for K3 is the following:

Theorem E:

i) For any quadratic from ϕ over F :

AN(AN , Dn(ϕ)) = 0

ii) Let a, b ∈ F ∗, ϕ = <1>, d ∈ F ; Then for n = 0, 1:

A1(A1, Dn+1(�a, bϕ̂− abd�) = Dn(�a,b�K)∩KnF
Dn(�a,b�)

where K = F (
√
d) and ϕ̂ ∈ OA1 is the polynomial corresponding to ϕ.

(so ϕ̂(t) = t2)

iii) A0(A1, D1(�a, bϕ̂− abd�) = D1(�a�) +NK/F (D1(�a, b�K))
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iv) Let ψ =�a� and c ∈ F ∗. Then

A1(A2;D2(�a, bψ̂ + c�)) = 0,

where ψ̂ ∈ OA2 is the polynomial corresponding to ψ.

We need the following (well known?) lemma:

Lemma

a) D1(�a�F (
√
e)) ∩K1F = D1(�a�) +D1(�ae�)

b) Let ψ be a Pfister form; then

D1(ψ) ∩D1(�e�) = 2K1F +NF (
√
e)(D1(ψF (

√
e))).

Proof of a)
Let u ∈ F (

√
a,
√
e)∗ such that NF (

√
a,
√
e)(F (

√
e)(u) ∈ F ∗. Multiplying u by an element from

F (
√
a)∗ we may assume u = α + β

√
a+ γ

√
e; α, β, γ ∈ F . One must have α · γ = 0. . . .

Proof of b)
Any element of D1(ψ) is in D1(�a�) for some a such that ψF (

√
a) ∼ 0. Hence we may

assume ψ =�a�. But

N(F (
√
a)∗) ∩N(F (

√
e)∗) = (F ∗)2 ·N(F (

√
a,
√
e)∗);

To see this suppose u ∈ F (
√
a)∗, v ∈ F (

√
e)∗ such that N(u) = N(v). One checks easily

N(u) = N(v) = (tr(u) + tr(v))−2N(u+ v) qed.

Proof of i)
By the norm principle we may assume that ϕ is isotropic. Then

AN(AN , Dn(ϕ)) = AN(AN , Kn) = 0.

Proof of ii)
Put Ω = A1(A1, Dn+1(�a, bϕ̂− abd�). In view of i) we find that Ω is the cokernel of

(∗) Dn+1(�a,bϕ̂(η)−abd�)
Dn+1(�a�K(η))

d−→
⊕

v∈A1(1)

Dn(�a,bϕ̂(v)−abd�)
Dn(�a�K(v))

where η is the generic point of A1.
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Let W = {x2
1 − ax2

2 − bx2
3 + abd = 0} ⊂ A3. Then W = W̄\Y , where

W̄ = X<1,−a,−b,abd>, Y = X<1,−a,−b>.

We have an exact sequence

A1(Y ;Kn+1)−→A2(W̄ ,Kn+2)−→A2(W,Kn+2)−→ 0.

By Theorem D and the computation A1(Y,Kn+1) = Dn(�a, b�) it suffices to show
Ω = A2(W,Kn+2).
Consider the projection π : W →A1, (x1, x2, x3)→x3. The corresponding spectral se-
quences yield exact sequences

(∗∗) A1(π−1(η), Kn+2)
d−→

⊕
v∈A1(1)

A1(π−1(v), Kn+1)−→A2(W,Kn+2)−→ 0.

The fibers π−1(v) are affine conics given by x2
1 − ax2

2 − (bϕ̂(v) − abd) = 0. Hence
π−1(v) = X<1,−a,−(bϕ̂(v)−abd)> \ {SpecL} and

A1(π−1(v), Kn+1) = A1(X<1,−a,−(bϕ̂(v)−abd)>, Kn+1)/i∗KnL.

Taking norms gives a map from (∗∗) to (∗) which yields the desired isomorphism
A2(W,Kn+2) = Ω.

Proof of iii)
We have

A0(A1, D1(�a, bϕ̂− abd�)) =

= D1(�a, bt2 − abd�) ∩K1F (in K1F (t))

= {f ∈ F ∗ | {a, bt2 − abd, f} = 0 in K3F (t)/2}

= {f ∈ F ∗ | {a, b, f} = 0 in K3F/2, {a, f} = 0 in K2F (
√
ad)/2}

= D1(�a, b�) ∩D1(�a�F (
√
ad))

= D1(�a, b�) ∩ (D1(�a�) +D1(�d�)) by the Lemma a)

= D1(�a�) + (D1(�a, b�) ∩D1(�d�)

= D1(�a�) +NK/F (D1(�a, b�K)) by the Lemma b).

qed.
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Proof of iv)
Consider the projection π : A2→A1, (x, y)→ y where x, y are coordinates such that
ψ̂ = x2 − ay2. π induces the following exact sequence (where d = y2 − abc ∈ F [y] = OA1)

A0(A1
F (y);D2(�a, bϕ̂− abd�))

d′−→
⊕

v∈A1(1)

A0(A1
K(v), D1(�a, bϕ̂− abd(v)�))

i∗−→

A1(A2, D2(�a, bψ̂ + c�))
π∗−→

A1(A1
F (y), D2(�a, bϕ̂− abd�))

d′′−→
⊕

v∈A1(1)

A1(A1
K(v);D1(�a, bϕ̂− abd�)).

We show that d′ is surjective and that d′′ is injective.

Surjectivity of d′

Consider the following diagram� d��
NL/F

�
NL/F

	
d′



p∗

�
p∗

�
d


0

⊕
W∈Z(1)

D1(�a, b�K(w))D2(�a, b�F (Z))

⊕
v∈A1(1)

A0(A1
K(v), D1(�a, bϕ̂− abd(v)�)A0(A1

F (y), D2(�a, bϕ̂− abd�)

0
⊕
v∈A(1)

K1L⊗F K(v)K2L(y)

The top row is the surjective tame symbol for A1
L.

Clearly Dn(�a�) ⊂ A0(A1, Dn(�a, bϕ̂− abd(v)�) hence NL/F is well defined.

To describe the bottom row let

Z̄ = {x2 − y2 + abcz2 = 0} ⊂ IP2

and
Z = Z̄\{z = 0}.

Clearly Z̄ ' IP1 and Z ' A1\{rational point}. By i) the bottom row is exact.
The maps p∗ are induced by the double cover p : Z→A1, [x, y, 1]→[y, 1]. It has y2 = abc

as branching point and one has K(p−1(v)) = K(v)(
√
d(v)) for v ∈ A1. Note that (with

v = p(w)) p∗(Dn(�a, b�K(w))) ⊂ A0(A1
K(v), Dn(�a, bϕ̂− abd(v)�) because

Dn(�a, b�) ⊆ A0(A1, Dn(�a, bϕ̂−abd�) if d is a square. By iii) we know that p∗⊕NL/F

is surjective on the right side (degree 1). Consequently d′ is surjective.
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Injectivity of d′′

One has the following diagram�������
d′′

��
d

��
d

�
||

⊕
v∈A1(1)

D1(�a, b�K(v)) −→ 0D1(�a, b�F (y))D1(�a, b�)

⊕
v∈A1(1)

(D1(�a, b�
K(v)(
√
d(v))

) ∩K1K(v))D1(�a, b�F (y)(
√
d)) ∩K1F (y)D1(�a, b�)

⊕
v∈A1(1)

A1(A1
K(v), D1(�a, bϕ̂− abd�))A1(A1

F (y), D2(�a, bϕ̂− abd�))

00

Here the columns are exact and given by ii). The bottom row is exact, because
D1(�a, b�F (y)) ∩ K1F = D1(�a, b�) and by i). The middle row is exact, because

Ker d = D1(�a, b�F (y)(
√
d)) ∩K1F and F (y)(

√
d) = F (y)(

√
y2 − abc) is rational over F .

Now an easy diagram chase does the job.
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IV. Proof of Thm A

Proposition 1
Let Z = X�a,b�. Then

A1(Z,K2) = D1(�a, b�)⊕K1F.

Proof
Let X = X<1,−a,−b>. Then the spectral sequences for Y ×Z→Z, Y ×Z→Y yield exact
sequences���� d2�� !"

0.A0(Y,A1(Z,K2))A1(Y × Z,K2)A1(Y,A1(Z,K2))0

. . .A0(Z,A1(Y,K2))A1(Z × Y,K2)A1(Z,A0(Y,K2))0

Because Y is trivial over Z and Z is trivial over Y we find

A1(Z,A0(Y,K2)) = A1(Z,K2)

A0(Z,A1(Y,K2)) = A0(Z,K1) = K1F

A1(Y,A0(Z,K2)) = A1(Y,K2) = D1(�a, b�)

A0(Y,A1(Z,K2)) = A=(Y,K1F ⊕K1F ) = K1F ⊕K1F.

The result follows immediately (consider e.g. the situation one degree lower and use mul-
tiplicativity) qed.

Let U = X\Z, where X is as in Theorem A and Z ⊂ X is considered as hyperplane
section. There is an exact sequence

A1(Z,K2)
i∗−→A2(X,K3)−→A2(U,K3).

One finds that the kernel of i∗ is the image of

D1(�a, b, c�) −→D1(�a, b�)⊕K1F

U −→ (2u,−u)

I omit the proof here. Clearly the hard point in the proof of Theorem A is the surjectivity
of i∗. I show A2(U,K3) = 0.

Compactification of U
Let Ū ⊂ A2 × IP2 be the variety defined by

0 = x2
1 − ax2

2 − x2
3[(y2

1 − ay2
2)b+ c] , [x1, x2, x3] ∈ IP2 , (y1, y2) ∈ A2,

8



and let V = Ū ∩{x3 = 0} ⊂ A2×F IP1. Note that U = Ū \ V and V = A2×F SpecL. We
have an exact sequence

A2(Ū ,K3)−→A2(U,K3)−→A2(V,K2).

Because A2(V,K2) = 0 it suffices to show:

A2(Ū ,K3) = 0
Let π : Ū→A2 be induced by the projection A2× IP2→A2. π induces a spectral sequence

Ep,q
1 =

⊕
v∈A2(p)

Aq(π−1(v), K3−p)⇒ Ap+q(Ū ,K3).

It suffices to show Ep,q
2 = 0 for p + q = 2. Note that the fiber over v is the projective

conic Y<1,−a,−f(v)> where f = (y2
1 − ay2

2)b+ c ∈ OA2 . It is singular over
v ∈ W = {y2

1 − ay2
2 + b−1c = 0} ⊂ A2.

Proof of E2,0
2 = 0

We have for n ≤ 2:

A0(π−1(v), Kn) =

{
Kn(K(v)) if v 6∈ W
Kn(L⊗F K(v)) if v ∈ W

Consider the diagram # d$%
d2,0

1

&'(
d

)*
r

+
r

,
r′

-
r′′

0
⊕

v∈W (1)

K1(L⊗F K(v))
⊕

v∈W (0)

K2(L⊗F K(v))

0E2,0
2

⊕
v∈A2(2)

A0(π−1(v), K1)
⊕

v∈A2(1)

A0(π−1(v), K2)

0
⊕

v∈A2(2)

K1K(v)
⊕

v∈A2(1)

K2K(v)

Here r is induced by restriction and r′ is induced by identifying L ⊗F K(v) with the
algebraic closure of K(v) in the function field of π−1(v) for v ∈ W .
The top row is exact, and so is the bottom row, because
W × SpecL ' IP1 × SpecL\{2 L-rational points}.

Since r ⊕ r′′ is surjective we find E2,0
2 = 0.
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Proof of E1,1
2 = 0.

We have the following diagram with exact columns:./012
d

3
d

4
N

5
N

6
N

789
000

⊕
v∈A2(2)

D0(�a, f(v)�)
⊕

v∈A2(1)

D1(�a, f(v)�)
⊕

v∈A2(0)

D2(�a, f(v)�)

⊕
v∈A2(2)

A1(π−1(v), K1)
⊕

v∈A2(1)

A1(π−1(v), K2)
⊕

v∈A2(0)

A1(π−1(v), K3)

00

The homology of the top row is E1,1
2 . But the bottom row is exact by Theorem E iv)

(page 3). �
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V. Proof of Thm A =⇒ Thm B

Let A1(Y,Kn)∼ = KerN ⊂ A1(Y,Kn).

Specialization arguments (which will be considered elsewhere) show that it suffices to
show that

(∗) rF (X)/F : A1(Y,K3)∼−→A1(YF (X), K3)∼

is surjective (where X is as in Thm A). To prove this I consider the following groups and
maps (to be described below) (n = 2, 3):

α

;
N

<
β

=
δ

>?
ε

@
γ

Kn−2F/Dn−2(�a, b, c�)A2(XF (Y ), Kn))Ker (A2(X,Kn)

A0(X,A1(Y,Kn))
π(A1(X×Y,Kn))

Dn−1(�a,b�F (X))∩Kn−1F

Dn−1(�a,b�)
A0(X,A1(Y,Kn))

rF (X)/F (A1(Y,Kn))

A1(YF (X),Kn)∼

rF (X)/F (A1(Y,Kn)∼)

Here ε denotes the isomorphism from Theorem A and N is induced by the norm map.
Below I define α, β, δ, γ and I show that α, β, γ, δ are injective (in fact they are isomor-
phisms with the exception α = 0) and that N = γεδγ. Clearly this implies (∗), because
N ◦ α = 0.

Definition and injectivity of α
For n = 2 we know already A1(Y,Kn)∼ = 0. For n = 3 consider the commutative diagramABCDEFG

d′

H
N

I
N

J
N

KLM
d

⊕
v∈X(1)

K1K(v)K2F (X)K2F0

⊕
v∈X(1)

A1(YK(v), K2)A1(YF (X), K3)A1(Y,K3)

0A1(YF (X), K3)∼A1(Y,K3)∼

Here d′ is the differential E0,1
1 →E1,1

1 from the spectral sequence

Ep,q
1 =

⊕
v∈X(p)

A1(YK(v), K3−p)⇒ Ap,q(X × Y,K3).
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The columns are exact by definition or by the knowledge for the K2-case. Hence

A1(YF (X), K3)∼ ⊂ Ker d′ = A0(X,A1(Y,K3)).

We define α to be the induced map. It is injective because K2F ↪→ K2F (X).

Definition of β
Just projection. π is induced by the spectral sequence Ep,q

2 = Ap(X,Aq(Y,Kn))
⇒ Ap+q(X × Y,Kn).

Injectivity of β
The spectral sequences for X × Y →X and Y ×X→Y yield exact sequences

0−→ A1(X,A0(Y,Kn))
i−→A1(X × Y,Kn)

π−→A0(X,A1(Y,Kn))
d0,1

2−→ . . .

0−→ A1(Y,A0(X,Kn))
ĩ−→A1(Y ×X,Kn)

π̃−→A0(Y,A1(X,Kn))−→ 0

Because X is trivial over Y we have

i) A1(Y,A0(X,Kn)) = A1(Y,Kn)

ii) A0(Y,A1(X,Kn)) = A0(Y,Kn−1)⊗ Pic (X).

We have to show Im π = Im π ◦ ĩ by i).
But

Imπ
Imπ◦̃i = Im π̃

Im π̃◦i = 0;

here the last equation follows from the obvious factorization of the isomorphism in ii) via
A1(X,A0(Y,Kn)).

Definition and injectivity of δ
Consider N πO d0,1

2P iQ
π̃

R
r

S
rF (X)/F

∩

A2(XF (Y ), Kn)A2(X,Kn)

A0(Y,A2(X,Kn)

A2(X × Y,Kn)A2(X,A0(Y,Kn))A0(X,A1(Y,Kn))A1(X × Y,Kn)

Here π, d0,1
2 and i are from the spectral sequence for X × Y →X, π̃ is from the spectral

sequence for X × Y →Y and r is induced by multiplication with A0(Y,K0) = CH0(Y ).
Clearly d0,1

2 ◦ π = 0 and i ◦ d0,1
2 = 0. Moreover, r is bijective for n ≤ 3, because

KmK = A0(YK , Km) for m ≤ 2.

12



Now put δ = r−1 ◦ d0,1
2 . δ is injective because there are no more differentials starting from

or landing in E0,1
2 .

Definition and injectivity of γ
γ(U mod Dn−2(�a, b, c�)) = U · {c} mod Dn−1(�a, b�). By quadratic from theory γ
is well defined and injective (n ≤ 3).

Proof of N = γεδβ
We know already that γεδβ is injective. If n = 2 we know that N is bijective; because
the target group is 0 or ZZ/2 both maps must coincide.
For n = 3 use multiplication with K1 and the injectivity of γεδβ. Q.E.D.
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