On Hilbert Satz 90 for K_3 for quadratic extensions

by Markus Rost

Regensburg, September 1988

This is a T_EXed version (Sept. 1996) of the original preprint.

I. Preliminaries

Notation: $K_n F = K_n^M F$ (for convenience)

1) For a variety X/F denote by $A^p(X, K_n)$ the homology of

$$\bigoplus_{v \in X^{(p-1)}} K_{n-p+1}K(v) \xrightarrow{d} \bigoplus_{v \in X^{(p)}} K_{n-p}K(v) \xrightarrow{d} \bigoplus_{v \in X^{(p+1)}} K_{n-p-1}K(v)$$

2) For X projective, the norm homomorphism in Milnor K-theory induces a map

$$N: A_0(X, K_n) \longrightarrow K_n F, \qquad N = \sum_{v \in X_{(0)}} N_{K(v)/F},$$

where $A_0(X, K_n)$ denotes the cokernel of

$$\bigoplus_{v \in X_{(1)}} K_{n+1}K(v) \xrightarrow{d} \bigoplus_{v \in X_{(0)}} K_nK(v).$$

3) Given a fibration $\pi: X \to Y$, one has a filtration of the complex 1) by codimension in Y which induces a spectral sequence

$$E_1^{p,q} = \bigoplus_{v \in Y_{(p)}} A^q(\pi^{-1}(v), K_{n-p}) \Longrightarrow A^{p+q}(X, K_n).$$

4) For a quadratic form $\varphi: F^k \to F$ (which may singular) I denote by $X_{\varphi} \subset \mathbb{P}^{k-1}$ the corresponding quadric. Moreover I put

$$D_n(\varphi) = N(A_0(X_{\varphi}, K_n)) \subset K_n F$$

If φ is singular, then $D_n(\varphi) = K_n F$. One has

$$D_0(\varphi) = \begin{cases} K_0 F & \text{if } \varphi \text{ is isotropic} \\ 2K_0 F & \text{if } \varphi \text{ is non-isotropic.} \end{cases}$$

If φ represents 1, then $D_1(\varphi)$ is the subgroup of F^* generated by all nonzero $\varphi(x)$.

II. The results

Theorem A

Let $X = X_{\varphi}$ with $\varphi = \ll a, b \gg - \langle c \rangle$. Then there are natural isomorphisms $A^{2}(X; K_{2}) = D_{0}(\ll a, b \gg) \oplus K_{0}F/D_{0}(\ll a, b, c \gg)$ $A^{2}(X, K_{3}) = D_{1}(\ll a, b \gg) \oplus K_{1}F/D_{1}(\ll a, b, c \gg)$

compatible with multiplication.

Consequences:

Theorem B Let $Y = X_{\varphi}$ with $\varphi = \langle 1, -a, -b \rangle$. Then, for $n \leq 2$, $N : A^1(Y, K_{n+1}) \longrightarrow K_n F$ is injective.

Theorem C

- a) Nrd: $K_2D \rightarrow K_2F$ is injective for quaternion algebras D
- b) $K_3L \xrightarrow{1-\sigma} K_3L \xrightarrow{N} K_3F$ is exact $(L = F(\sqrt{a}); \operatorname{Gal}(L/F) = (\sigma))$
- c) $K_3F/2 \longrightarrow H^3(F)$ is bijective.

Proof of Thm B \Rightarrow Thm C

a) One has a commutative diagram

Since r is surjective and N is injective one has Ker Nrd = 0.

- b) This follows from Theorem B as shown in my first preprint on Hilbert 90 for K_3 .
- c) This follows from b) by Merkuriev's arguments.

III. The basic result

Let $f \in \mathcal{O}_{\mathbb{A}^N}$ be a polynomial and let ψ be a Pfister form over F. We are concerned with the following subcomplex of the usual Milnor complex for \mathbb{A}^N :

$$\bigoplus_{v \in (\mathbb{A}^N)^{(p-2)}} D_2(\psi \otimes \ll f(v) \gg) \xrightarrow{d} \bigoplus_{v \in (\mathbb{A}^N)^{(p-1)}} D_1(\psi \otimes \ll f(v) \gg) \\
\xrightarrow{d} \bigoplus_{v \in (\mathbb{A}^N)^{(p)}} D_0(\psi \otimes \ll f(v) \gg) \longrightarrow 0.$$

The homology groups of this complex are denoted by

$$A^{p-1}(\mathbb{A}^N, D_p(\psi \otimes \ll f \gg))$$
 and $A^p(\mathbb{A}^N, D_p(\psi \otimes \ll f \gg)).$

Theorem D

Let $\varphi = \langle 1, -a, -b, abc \rangle$. Then

$$N: A_0(X_{\varphi}, K_1) \longrightarrow K_1F$$

is injective. Its image is $D_1(\ll a, b \gg_{F(\sqrt{c})}) \cap K_1F \subset K_1F(\sqrt{c}).$

The injectivity of N is proved in [Merkuriev, Suslin; On the norm homomorphism in degree 3]. There is a proof without using Quillen-K-Theory similar to Merkuriev's proof of $A_0(Y, K_1) \hookrightarrow K_1 F$ or a conic Y. I will consider this elsewhere.

The main technical result in the proof of Hilbert Satz 90 for K_3 is the following:

Theorem E:

i) For any quadratic from φ over F:

$$A^N(\mathbb{A}^N, D_n(\varphi)) = 0$$

ii) Let $a, b \in F^*$, $\varphi = \langle 1 \rangle$, $d \in F$; Then for n = 0, 1:

$$A^{1}(\mathbb{A}^{1}, D_{n+1}(\ll a, b\hat{\varphi} - abd \gg) = \frac{D_{n}(\ll a, b \gg_{K}) \cap K_{n}F}{D_{n}(\ll a, b \gg)}$$

where $K = F(\sqrt{d})$ and $\hat{\varphi} \in \mathcal{O}_{\mathbb{A}^1}$ is the polynomial corresponding to φ . (so $\hat{\varphi}(t) = t^2$)

iii)
$$A^0(\mathbb{A}^1, D_1(\ll a, b\hat{\varphi} - abd \gg) = D_1(\ll a \gg) + N_{K/F}(D_1(\ll a, b \gg_K))$$

iv) Let $\psi = \ll a \gg$ and $c \in F^*$. Then $A^1(\mathbb{A}^2; D_2(\ll a, b\hat{\psi} + c \gg)) = 0$, where $\hat{\psi} \in \mathcal{O}_{\mathbb{A}^2}$ is the polynomial corresponding to ψ .

We need the following (well known?) lemma:

Lemma

- a) $D_1(\ll a \gg_{F(\sqrt{e})}) \cap K_1 F = D_1(\ll a \gg) + D_1(\ll a e \gg)$
- b) Let ψ be a Pfister form; then

$$D_1(\psi) \cap D_1(\ll e \gg) = 2K_1F + N_{F(\sqrt{e})}(D_1(\psi_{F(\sqrt{e})})).$$

Proof of a)

Let $u \in F(\sqrt{a}, \sqrt{e})^*$ such that $N_{F(\sqrt{a},\sqrt{e})(F(\sqrt{e})}(u) \in F^*$. Multiplying u by an element from $F(\sqrt{a})^*$ we may assume $u = \alpha + \beta\sqrt{a} + \gamma\sqrt{e}$; $\alpha, \beta, \gamma \in F$. One must have $\alpha \cdot \gamma = 0$

Proof of b)

Any element of $D_1(\psi)$ is in $D_1(\ll a \gg)$ for some a such that $\psi_{F(\sqrt{a})} \sim 0$. Hence we may assume $\psi = \ll a \gg$. But

$$N(F(\sqrt{a})^*) \cap N(F(\sqrt{e})^*) = (F^*)^2 \cdot N(F(\sqrt{a}, \sqrt{e})^*);$$

To see this suppose $u \in F(\sqrt{a})^*$, $v \in F(\sqrt{e})^*$ such that N(u) = N(v). One checks easily

$$N(u) = N(v) = (tr(u) + tr(v))^{-2}N(u+v)$$
 qed.

Proof of i)

By the norm principle we may assume that φ is isotropic. Then

$$A^{N}(\mathbb{A}^{N}, D_{n}(\varphi)) = A^{N}(\mathbb{A}^{N}, K_{n}) = 0.$$

Proof of ii)

Put $\Omega = A^1(\mathbb{A}^1, D_{n+1}(\ll a, b\hat{\varphi} - abd \gg)$. In view of i) we find that Ω is the cokernel of

$$(*) \qquad \qquad \frac{D_{n+1}(\ll a, b\hat{\varphi}(\eta) - abd\gg)}{D_{n+1}(\ll a \gg_{K(\eta)})} \xrightarrow{d} \bigoplus_{v \in \mathbb{A}^{1(1)}} \frac{D_n(\ll a, b\hat{\varphi}(v) - abd\gg)}{D_n(\ll a \gg_{K(v)})}$$

where η is the generic point of \mathbb{A}^1 .

Let $W = \{x_1^2 - ax_2^2 - bx_3^2 + abd = 0\} \subset \mathbb{A}^3$. Then $W = \overline{W} \setminus Y$, where $\overline{W} = X_{<1,-a,-b,abd>}, Y = X_{<1,-a,-b>}$.

We have an exact sequence

$$A^1(Y; K_{n+1}) \longrightarrow A^2(\overline{W}, K_{n+2}) \longrightarrow A^2(W, K_{n+2}) \longrightarrow 0.$$

By Theorem D and the computation $A^1(Y, K_{n+1}) = D_n(\ll a, b\gg)$ it suffices to show $\Omega = A^2(W, K_{n+2}).$

Consider the projection $\pi : W \to \mathbb{A}^1$, $(x_1, x_2, x_3) \to x_3$. The corresponding spectral sequences yield exact sequences

$$(**) \qquad A^{1}(\pi^{-1}(\eta), K_{n+2}) \xrightarrow{d} \bigoplus_{v \in \mathbb{A}^{1^{(1)}}} A^{1}(\pi^{-1}(v), K_{n+1}) \longrightarrow A^{2}(W, K_{n+2}) \longrightarrow 0.$$

The fibers $\pi^{-1}(v)$ are affine conics given by $x_1^2 - ax_2^2 - (b\hat{\varphi}(v) - abd) = 0$. Hence $\pi^{-1}(v) = X_{\langle 1, -a, -(b\hat{\varphi}(v) - abd) \rangle} \setminus \{\text{Spec}L\}$ and

$$A^{1}(\pi^{-1}(v), K_{n+1}) = A^{1}(X_{<1, -a, -(b\hat{\varphi}(v) - abd)>}, K_{n+1})/i_{*}K_{n}L.$$

Taking norms gives a map from (**) to (*) which yields the desired isomorphism $A^2(W, K_{n+2}) = \Omega$.

Proof of iii)

We have $A^0(\mathbb{A}^1, D_1(\ll a, b\hat{\varphi} - abd \gg)) =$ $D_1(\ll a, bt^2 - abd \gg) \cap K_1F$ $(\text{in } K_1F(t))$ = ${f \in F^* \mid {a, bt^2 - abd, f} = 0 \text{ in } K_3F(t)/2}$ = $\{f \in F^* \mid \{a, b, f\} = 0 \text{ in } K_3 F/2, \{a, f\} = 0 \text{ in } K_2 F(\sqrt{ad})/2\}$ = $= D_1(\ll a, b\gg) \cap D_1(\ll a \gg_{F(\sqrt{ad})})$ $= D_1(\ll a, b \gg) \cap (D_1(\ll a \gg) + D_1(\ll d \gg))$ by the Lemma a) $= D_1(\ll a \gg) + (D_1(\ll a, b \gg) \cap D_1(\ll d \gg))$ $= D_1(\ll a \gg) + N_{K/F}(D_1(\ll a, b \gg_K))$ by the Lemma b). qed.

Proof of iv)

Consider the projection $\pi : \mathbb{A}^2 \to \mathbb{A}^1$, $(x, y) \to y$ where x, y are coordinates such that $\hat{\psi} = x^2 - ay^2$. π induces the following exact sequence (where $d = y^2 - abc \in F[y] = \mathcal{O}_{\mathbb{A}^1}$)

$$\begin{split} A^{0}(\mathbb{A}^{1}_{F(y)}; D_{2}(\ll a, b\hat{\varphi} - abd \gg)) & \stackrel{d'}{\longrightarrow} \bigoplus_{v \in \mathbb{A}^{1^{(1)}}} A^{0}(\mathbb{A}^{1}_{K(v)}, D_{1}(\ll a, b\hat{\varphi} - abd(v) \gg)) \stackrel{i_{*}}{\longrightarrow} \\ & A^{1}(\mathbb{A}^{2}, D_{2}(\ll a, b\hat{\psi} + c \gg)) \xrightarrow{\pi^{*}} \\ & A^{1}(\mathbb{A}^{1}_{F(y)}, D_{2}(\ll a, b\hat{\varphi} - abd \gg)) \stackrel{d''}{\longrightarrow} \bigoplus_{v \in \mathbb{A}^{1^{(1)}}} A^{1}(\mathbb{A}^{1}_{K(v)}; D_{1}(\ll a, b\hat{\varphi} - abd \gg)). \end{split}$$

We show that d' is surjective and that d'' is injective.

Surjectivity of d'

Consider the following diagram

$$K_{2}L(y) \xrightarrow{d} \bigoplus_{v \in \mathbb{A}^{(1)}} K_{1}L \otimes_{F} K(v) \longrightarrow 0$$

$$\downarrow^{N_{L/F}} \qquad \qquad \downarrow^{N_{L/F}}$$

$$A^{0}(\mathbb{A}^{1}_{F(y)}, D_{2}(\ll a, b\hat{\varphi} - abd \gg) \xrightarrow{d'} \bigoplus_{v \in \mathbb{A}^{1^{(1)}}} A^{0}(\mathbb{A}^{1}_{K(v)}, D_{1}(\ll a, b\hat{\varphi} - abd(v) \gg)$$

$$\uparrow^{p_{*}} \qquad \qquad \uparrow^{p_{*}}$$

$$D_{2}(\ll a, b \gg_{F(Z)}) \xrightarrow{d} \bigoplus_{W \in Z^{(1)}} D_{1}(\ll a, b \gg_{K(w)}) \longrightarrow 0$$

The top row is the surjective tame symbol for \mathbb{A}^1_L . Clearly $D_n(\ll a \gg) \subset A^0(\mathbb{A}^1, D_n(\ll a, b\hat{\varphi} - abd(v) \gg)$ hence $N_{L/F}$ is well defined.

To describe the bottom row let

$$\bar{Z}=\{x^2-y^2+abcz^2=0\}\subset {\rm I\!P}^2$$

and

$$Z = \bar{Z} \setminus \{z = 0\}.$$

Clearly $\overline{Z} \simeq \mathbb{P}^1$ and $Z \simeq \mathbb{A}^1 \setminus \{\text{rational point}\}$. By i) the bottom row is exact. The maps p_* are induced by the double cover $p: Z \to \mathbb{A}^1, [x, y, 1] \to [y, 1]$. It has $y^2 = abc$ as branching point and one has $K(p^{-1}(v)) = K(v)(\sqrt{d(v)})$ for $v \in \mathbb{A}^1$. Note that (with v = p(w)) $p_*(D_n(\ll a, b \gg_{K(w)})) \subset A^0(\mathbb{A}^1_{K(v)}, D_n(\ll a, b \hat{\varphi} - abd(v) \gg)$ because

 $D_n(\ll a, b\gg) \subseteq A^0(\mathbb{A}^1, D_n(\ll a, b\hat{\varphi} - abd\gg))$ if d is a square. By iii) we know that $p_* \oplus N_{L/F}$ is surjective on the right side (degree 1). Consequently d' is surjective.

Injectivity of d''

One has the following diagram

Here the columns are exact and given by ii). The bottom row is exact, because $D_1(\ll a, b \gg_{F(y)}) \cap K_1F = D_1(\ll a, b \gg)$ and by i). The middle row is exact, because $\operatorname{Ker} d = D_1(\ll a, b \gg_{F(y)}(\sqrt{d})) \cap K_1F$ and $F(y)(\sqrt{d}) = F(y)(\sqrt{y^2 - abc})$ is rational over F. Now an easy diagram chase does the job.

IV. Proof of Thm A

Proposition 1

Let $Z = X_{\ll a,b\gg}$. Then

$$A^1(Z, K_2) = D_1(\ll a, b \gg) \oplus K_1 F.$$

Proof

Let $X = X_{\langle 1,-a,-b \rangle}$. Then the spectral sequences for $Y \times Z \to Z$, $Y \times Z \to Y$ yield exact sequences

$$0 \to A^{1}(Z, A^{0}(Y, K_{2})) \to A^{1}(Z \times Y, K_{2}) \to A^{0}(Z, A^{1}(Y, K_{2})) \xrightarrow{d_{2}} \dots$$
$$\parallel$$
$$0 \to A^{1}(Y, A^{1}(Z, K_{2})) \to A^{1}(Y \times Z, K_{2}) \to A^{0}(Y, A^{1}(Z, K_{2})) \longrightarrow 0.$$

Because Y is trivial over Z and Z is trivial over Y we find

$$A^{1}(Z, A^{0}(Y, K_{2})) = A^{1}(Z, K_{2})$$

$$A^{0}(Z, A^{1}(Y, K_{2})) = A^{0}(Z, K_{1}) = K_{1}F$$

$$A^{1}(Y, A^{0}(Z, K_{2})) = A^{1}(Y, K_{2}) = D_{1}(\ll a, b \gg)$$

$$A^{0}(Y, A^{1}(Z, K_{2})) = A^{=}(Y, K_{1}F \oplus K_{1}F) = K_{1}F \oplus K_{1}F.$$

The result follows immediately (consider e.g. the situation one degree lower and use multiplicativity) qed.

Let $U = X \setminus Z$, where X is as in Theorem A and $Z \subset X$ is considered as hyperplane section. There is an exact sequence

$$A^1(Z, K_2) \xrightarrow{i_*} A^2(X, K_3) \longrightarrow A^2(U, K_3).$$

One finds that the kernel of i_* is the image of

$$D_1(\ll a, b, c \gg) \longrightarrow D_1(\ll a, b \gg) \oplus K_1 F$$
$$U \longrightarrow (2u, -u)$$

I omit the proof here. Clearly the hard point in the proof of Theorem A is the surjectivity of i_* . I show $A^2(U, K_3) = 0$.

Compactification of U

Let $\overline{U} \subset \mathbb{A}^2 \times \mathbb{P}^2$ be the variety defined by

$$0 = x_1^2 - ax_2^2 - x_3^2[(y_1^2 - ay_2^2)b + c], \ [x_1, x_2, x_3] \in \mathbb{IP}^2, \ (y_1, y_2) \in \mathbb{A}^2,$$

and let $V = \overline{U} \cap \{x_3 = 0\} \subset \mathbb{A}^2 \times_F \mathbb{P}^1$. Note that $U = \overline{U} \setminus V$ and $V = \mathbb{A}^2 \times_F \operatorname{Spec} L$. We have an exact sequence

$$A^2(\overline{U}, K_3) \longrightarrow A^2(U, K_3) \longrightarrow A^2(V, K_2).$$

Because $A^2(V, K_2) = 0$ it suffices to show:

 $A^2(\bar{U}, K_3) = 0$ Let $\pi: \overline{U} \to \mathbb{A}^2$ be induced by the projection $\mathbb{A}^2 \times \mathbb{P}^2 \to \mathbb{A}^2$. π induces a spectral sequence

$$E_1^{p,q} = \bigoplus_{v \in \mathbb{A}^{2^{(p)}}} A^q(\pi^{-1}(v), K_{3-p}) \Rightarrow A^{p+q}(\bar{U}, K_3)$$

It suffices to show $E_2^{p,q} = 0$ for p + q = 2. Note that the fiber over v is the projective conic $Y_{<1,-a,-f(v)>}$ where $f = (y_1^2 - ay_2^2)b + c \in \mathcal{O}_{\mathbb{A}^2}$. It is singular over $v \in W = \{y_1^2 - ay_2^2 + b^{-1}c = 0\} \subset \mathbb{A}^2$.

Proof of $E_2^{2,0} = 0$

We have for $n \leq 2$:

$$A^{0}(\pi^{-1}(v), K_{n}) = \begin{cases} K_{n}(K(v)) & \text{if } v \notin W \\ K_{n}(L \otimes_{F} K(v)) & \text{if } v \in W \end{cases}$$

Consider the diagram

Here r is induced by restriction and r' is induced by identifying $L \otimes_F K(v)$ with the algebraic closure of K(v) in the function field of $\pi^{-1}(v)$ for $v \in W$.

The top row is exact, and so is the bottom row, because

 $W \times \operatorname{Spec} L \simeq \mathbb{P}^1 \times \operatorname{Spec} L \setminus \{2 \text{ L-rational points}\}.$ Since $r \oplus r''$ is surjective we find $E_2^{2,0} = 0$.

Proof of $E_2^{1,1} = 0$. We have the following diagram with exact columns:

The homology of the top row is $E_2^{1,1}$. But the bottom row is exact by Theorem E iv) (page 3).

V. Proof of Thm A \implies Thm B

Let $A^1(Y, K_n)^{\sim} = \operatorname{Ker} N \subset A^1(Y, K_n).$

Specialization arguments (which will be considered elsewhere) show that it suffices to show that

$$(*) r_{F(X)/F} : A^1(Y, K_3)^{\sim} \longrightarrow A^1(Y_{F(X)}, K_3)^{\sim}$$

is surjective (where X is as in Thm A). To prove this I consider the following groups and maps (to be described below) (n = 2, 3)

Here ε denotes the isomorphism from Theorem A and N is induced by the norm map. Below I define $\alpha, \beta, \delta, \gamma$ and I show that $\alpha, \beta, \gamma, \delta$ are injective (in fact they are isomorphisms with the exception $\alpha = 0$) and that $N = \gamma \varepsilon \delta \gamma$. Clearly this implies (*), because $N \circ \alpha = 0$.

Definition and injectivity of α

For n = 2 we know already $A^1(Y, K_n)^{\sim} = 0$. For n = 3 consider the commutative diagram

Here d' is the differential $E_1^{0,1} \to E_1^{1,1}$ from the spectral sequence

$$E_1^{p,q} = \bigoplus_{v \in X^{(p)}} A^1(Y_{K(v)}, K_{3-p}) \Rightarrow A^{p,q}(X \times Y, K_3).$$

The columns are exact by definition or by the knowledge for the K_2 -case. Hence

$$A^{1}(Y_{F(X)}, K_{3})^{\sim} \subset \operatorname{Ker} d' = A^{0}(X, A^{1}(Y, K_{3})).$$

We define α to be the induced map. It is injective because $K_2F \hookrightarrow K_2F(X)$.

Definition of β

Just projection. π is induced by the spectral sequence $E_2^{p,q} = A^p(X, A^q(Y, K_n))$ $\Rightarrow A^{p+q}(X \times Y, K_n).$

Injectivity of β

The spectral sequences for $X \times Y \to X$ and $Y \times X \to Y$ yield exact sequences

$$0 \longrightarrow A^{1}(X, A^{0}(Y, K_{n})) \xrightarrow{i} A^{1}(X \times Y, K_{n}) \xrightarrow{\pi} A^{0}(X, A^{1}(Y, K_{n})) \xrightarrow{d_{2}^{0,1}} \dots$$
$$0 \longrightarrow A^{1}(Y, A^{0}(X, K_{n})) \xrightarrow{\tilde{i}} A^{1}(Y \times X, K_{n}) \xrightarrow{\tilde{\pi}} A^{0}(Y, A^{1}(X, K_{n})) \longrightarrow 0$$

Because X is trivial over Y we have

i)
$$A^{1}(Y, A^{0}(X, K_{n})) = A^{1}(Y, K_{n})$$

ii) $A^{0}(Y, A^{1}(X, K_{n})) = A^{0}(Y, K_{n-1}) \otimes \operatorname{Pic}(X).$

We have to show $\operatorname{Im} \pi = \operatorname{Im} \pi \circ \tilde{i}$ by i). But

$$\frac{\operatorname{Im}\pi}{\operatorname{Im}\pi\circ\tilde{i}} = \frac{\operatorname{Im}\tilde{\pi}}{\operatorname{Im}\tilde{\pi}\circ i} = 0;$$

here the last equation follows from the obvious factorization of the isomorphism in ii) via $A^1(X, A^0(Y, K_n))$.

Definition and injectivity of δ

Consider

Here $\pi, d_2^{0,1}$ and i are from the spectral sequence for $X \times Y \to X$, $\tilde{\pi}$ is from the spectral sequence for $X \times Y \to Y$ and r is induced by multiplication with $A^0(Y, K_0) = CH^0(Y)$. Clearly $d_2^{0,1} \circ \pi = 0$ and $i \circ d_2^{0,1} = 0$. Moreover, r is bijective for $n \leq 3$, because $K_m K = A^0(Y_K, K_m)$ for $m \leq 2$. Now put $\delta = r^{-1} \circ d_2^{0,1}$. δ is injective because there are no more differentials starting from or landing in $E_2^{0,1}$.

Definition and injectivity of γ

 $\gamma(U \mod D_{n-2}(\ll a, b, c\gg)) = U \cdot \{c\} \mod D_{n-1}(\ll a, b\gg)$. By quadratic from theory γ is well defined and injective $(n \leq 3)$.

Proof of $N = \gamma \varepsilon \delta \beta$

We know already that $\gamma \varepsilon \delta \beta$ is injective. If n = 2 we know that N is bijective; because the target group is 0 or $\mathbb{Z}/2$ both maps must coincide.

For n = 3 use multiplication with K_1 and the injectivity of $\gamma \varepsilon \delta \beta$. Q.E.D.