On Galois Cohomology, Norm Functions and Cycles

Markus Rost

Bielefeld, September 2006

Galois Cohomology

p a prime
F a field, char $F \neq p$
\bar{F} a separable closure of F
$G_{F}=\operatorname{Gal}(\bar{F} / F)$ the absolute Galois group

$$
\begin{gathered}
H^{n}(F, \mathbf{Z} / p)=H^{n}\left(G_{F}, \mathbf{Z} / p\right) \\
H^{n}(F, \mathbf{Z} / p)=\underset{L / F}{\lim } H^{n}(\operatorname{Gal}(L / F), \mathbf{Z} / p)
\end{gathered}
$$

(Limit over the finite Galois field extensions L of F)
$F^{\times}=F \backslash\{0\}$ the multiplicative group of F
F contains a primitive p-th root ζ_{p} of unity $\mu_{p} \subset F^{\times}$the subgroup generated by ζ_{p}

$$
H^{n}\left(F, \mu_{p}^{\otimes m}\right)=H^{n}(F, \mathbf{Z} / p) \otimes \mu_{p}^{\otimes m}
$$

Computation of $H^{1}\left(F, \mu_{p}\right)$:

$$
H^{1}\left(F, \mu_{p}\right)=\operatorname{Hom}\left(G_{F}, \mu_{p}\right)
$$

Hilbert Satz 90, Kummer theory:

$$
\begin{gathered}
F^{\times} /\left(F^{\times}\right)^{p} \xrightarrow{\simeq} H^{1}\left(F, \mu_{p}\right) \\
a \rightarrow(a)=[F(\sqrt[p]{a}) / F]
\end{gathered}
$$

Bloch-Kato conjecture:

For any field F with char $F \neq p$, the Galois cohomology ring

$$
\bigoplus_{n \geq 0} H^{n}\left(F, \mu_{p}^{\otimes n}\right)
$$

is generated by $H^{1}\left(F, \mu_{p}\right)$

The basic relation in $H^{2}\left(F, \mu_{p}^{\otimes 2}\right)$:

$$
(a) \cup(1-a)=0 \quad(a \in F \backslash\{0,1\})
$$

Proof: $E=F(\alpha), \alpha^{p}=a$

$$
\begin{aligned}
(a) \cup(1-a) & =(a) \cup\left(N_{E / F}(1-\alpha)\right) \\
& =N_{E / F}\left((a)_{E} \cup(1-\alpha)\right) \\
& =N_{E / F}\left(\left(\alpha^{p}\right) \cup(1-\alpha)\right)=0
\end{aligned}
$$

Milnor's K-ring of a field F :

$$
\begin{aligned}
& K_{*}^{\mathrm{M}} F=K_{0} F \oplus K_{1} F \oplus K_{2} F \oplus \cdots \\
&=T_{\mathbf{Z}}\left(F^{\times}\right) /\langle a \otimes(1-a), a \in F \backslash\{0,1\}\rangle \\
& K_{0} F=\mathbf{Z} \quad \quad \text { (integers) } \\
& K_{1} F=F^{\times} \quad \text { (multiplicative group) }
\end{aligned}
$$

Bloch-Kato conjecture:

The ring homomorphism

$$
\begin{gathered}
K_{*}^{\mathrm{M}} F / p \longrightarrow \bigoplus_{n \geq 0} H^{n}\left(F, \mu_{p}^{\otimes n}\right) \\
a_{1} \otimes \cdots \otimes a_{n} \rightarrow\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right)
\end{gathered}
$$

is bijective

The elements

$$
\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right) \in H^{n}\left(F, \mu_{p}^{\otimes n}\right)
$$

with $a_{1}, \ldots, a_{n} \in F^{\times}$are called symbols

Bloch-Kato conjecture $(\bmod p$, weight $n)$: $H^{n}\left(F, \mu_{p}^{\otimes n}\right)$ is additively generated by symbols

Proofs:
$n=1 \quad$ classical, Hilbert's Satz 90
$p=2, n=2$ Merkurjev (1982)
$n=2 \quad$ Merkurjev/Suslin (1982)
$p=2, n=3$ Merkurjev/Suslin, Rost (1986)
$p=2 \quad$ Voevodsky (1996-2002)
$\forall p, n ? ? ? \quad$ Voevodsky/Rost (1997-2007 ?)

$H^{2}\left(F, \mu_{p}\right)$ and the Brauer group

$\operatorname{Br}(F)=$ group of similarity classes of central simple algebras over F
$\operatorname{Br}(F)=$ set of isomorphism classes of skew fields with center F (finite F-dimension)

Cyclic algebras: $\zeta_{p} \in F, a, b \in F^{\times}$

$$
A(a, b)=\left\langle X, Y \mid X^{p}=a, Y^{p}=b, Y X=\zeta_{p} X Y\right\rangle
$$

There is a natural isomorphism

$$
H^{2}\left(F, \mu_{p}\right) \xrightarrow{\simeq} p \operatorname{Br}(F)
$$

${ }_{p} \operatorname{Br}(F)=p$-torsion subgroup of $\operatorname{Br}(F)$
If $\mu_{p} \subset F$, symbols correspond to cyclic algebras:

$$
\begin{gathered}
H^{2}\left(F, \mu_{p}^{\otimes 2}\right) \xrightarrow{\simeq} p \operatorname{Br}(F) \\
\quad(a) \cup(b) \rightarrow[A(a, b)]
\end{gathered}
$$

The H^{3}-invariant for semisimple algebraic groups G
(Rost, Serre; 1993)
$H^{1}(F, G)=$ isomorphism classes of principal homogeneous G-spaces over F

The H^{3}-invariant is a collection of maps

$$
\Theta: H^{1}(F, G) \longrightarrow H^{3}\left(F, Q_{G} \otimes \mu_{N(G)}^{\otimes 2}\right)
$$

functorial in F and G
$Q_{G}=$ Weyl invariant quadratic forms on the root lattice
$Q_{G}=\mathbf{Z}$ for simple G

Example: $G=G_{2}$ (char $F \neq 2$):
$H^{1}\left(F, G_{2}\right)=$ isomorphism classes of octonion algebras over F
The nontoral subgroup

$$
(\mathbf{Z} / 2)^{3} \xrightarrow{j} G_{2}
$$

yields

$$
\begin{aligned}
& H^{1}(F, \mathbf{Z} / 2)^{3} \xrightarrow{j} H^{1}\left(F, G_{2}\right) \xrightarrow{\ominus} H^{3}(F, \mathbf{Z} / 2) \\
& ((a),(b),(c)) \rightarrow[O(a, b, c)] \rightarrow(a) \cup(b) \cup(c)
\end{aligned}
$$

Example: $G=F_{4}\left(\operatorname{char} F \neq 3, \mu_{3} \subset F\right)$:
$H^{1}\left(F, F_{4}\right)=$ isomorphism classes of exceptional Jordan algebras over F
The nontoral subgroup

$$
(\mathbf{Z} / 3)^{3} \xrightarrow{j} F_{4}
$$

yields

$$
\begin{aligned}
& H^{1}\left(F, \mu_{3}\right)^{3} \xrightarrow{j} H^{1}\left(F, F_{4}\right) \xrightarrow{\ominus} H^{3}(F, \mathbf{Z} / 3) \\
& ((a),(b),(c)) \rightarrow[J(a, b, c)] \rightarrow(a) \cup(b) \cup(c)
\end{aligned}
$$

Multiplicative Norm Functions

Given a symbol

$$
u=\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right) \in H^{n}\left(F, \mu_{p}^{\otimes n}\right)
$$

Need some sort of multiplicative function Φ in p^{n} variables generalizing the classical examples:

Example: $n=2: \Phi$ is the reduced norm form

$$
\Phi=\operatorname{Nrd}: A\left(a_{1}, a_{2}\right) \rightarrow F
$$

of the cyclic algebra corresponding to u
Example: $n=3, p=2$: Φ is the norm form of the octonion algebra $O\left(a_{1}, a_{2}, a_{3}\right)$

Example: $n=3, p=3$: Φ is the norm form of the exceptional Jordan algebra $J\left(a_{1}, a_{2}, a_{3}\right)$

Example: $p=2$: Φ is the Pfister quadratic form $\Phi=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$

Recall from (complex) cobordism:
$s_{d}(X) \in \mathbf{Z}$ is Milnor's characteristic number
If $d=\operatorname{dim} X=p^{m}-1$, then $s_{d}(X) \in p \mathbf{Z}$
Using algebraic cobordism and degree formulas one shows:

Theorem: If $u \neq 0$, there exists a rational function

$$
\Phi: A \longrightarrow \mathbf{A}^{1}
$$

on some variety A such that:

- $(u)_{F(A)} \cup(\Phi)=0$ in $H^{n+1}\left(F(A), \mu_{p}^{\otimes(n+1)}\right)$
- $\operatorname{dim} A=p^{n}$
- For any smooth compactification X of the generic fiber of Φ one has

$$
\frac{s_{d}(X)}{p} \neq 0 \quad \bmod p
$$

(A, Φ) is unique "up to extensions of degree prime to $p^{\prime \prime}$ (at least for $n=2$ or $p=2$)

Multiplicativity of Φ : Ideally this means

$$
\Phi(\mu(x, y))=\Phi(x) \Phi(y)
$$

for some (bilinear, rational?) map

$$
\mu: A \times A \longrightarrow A
$$

Look for a correspondence

$$
\mu: A \times A \stackrel{f}{\leftrightarrows} W \xrightarrow{g} A
$$

with $(\operatorname{deg} f, p)=1$

This involves:

- Existence of generic splitting varieties of symbols (Voevodsky, see next pages)
- Algebraic cobordism (Morel/Levine)
- Parameterization of the "subfields" of the "algebra A with norm Φ "-motivated by chain lemma for exceptional Jordan algebras (Serre, Petersson/Racine 1995)

Construction of certain Cycles

$u=\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right) \in H^{n}\left(F, \mu_{p}^{\otimes n}\right)$ a symbol
X a splitting variety of $u: u_{F(X)}=0$
Using Bloch-Kato conjecture in weight $n-1$, get an element

$$
\eta_{u} \in \mathrm{CH}^{b}\left(X^{2}\right) \quad b=\frac{p^{n-1}-1}{p-1}
$$

in the Chow group of b-codimensional cycles
Example: $n=2$: $X=$ Severi-Brauer variety of cyclic algebra $A\left(a_{1}, a_{2}\right)$
$\left(\eta_{u}\right)^{p-1}=\operatorname{Diagonal}(X)+$ decomp. elements

Example: $p=2: X=$ Quadric with quadratic form $\left\langle\left\langle a_{1}, \ldots, a_{n-1}\right\rangle\right\rangle \perp\left\langle-a_{n}\right\rangle$
$\eta_{u}=$ "Rost projector" + decomp. elements
$H_{\mathcal{M}}^{r, s}$: motivic cohomology (Suslin, Voevodsky) $\mathcal{X}=$ simplicial scheme : $X \leftleftarrows X^{2} \leftleftarrows X^{3} \ldots$
$\beta=$ Bockstein
Q_{i} Steenrod/Milnor operations (Voevodsky)
The map j is an isomorphism assuming the Bloch-Kato conjecture in weight $n-1$

Construction of η_{u} :

$u \in \operatorname{ker}\left[H^{n}\left(F, \mu_{p}^{\otimes(n-1)}\right) \longrightarrow H^{n}\left(F(X), \mu_{p}^{\otimes(n-1)}\right)\right]$

$$
\begin{aligned}
& \simeq \\
& H_{\mathcal{M}}^{n, n-1}(\mathcal{X}, \mathbf{Z} / p) \\
& \| \beta \circ Q_{1} \circ \cdots \circ Q_{n-2} \\
& H_{\mathcal{M}}^{2 b+1, b}(\mathcal{X}, \mathbf{Z}) \\
& \mid \text { proj }
\end{aligned}
$$

Homology of $\left[\mathrm{CH}^{b}(X) \rightarrow \mathrm{CH}^{b}\left(X^{2}\right) \rightarrow \mathrm{CH}^{b}\left(X^{3}\right)\right.$]

Problem: Find some variety X such that:
(1) $(u)_{F(X)}=0$ in $H^{n}\left(F(X), \mu_{p}^{\otimes n}\right)$
(2) $d=\operatorname{dim} X=p^{n-1}-1$
(3) The integer

$$
c(X)=\left(\pi_{1}\right) *\left(\eta_{u}^{p-1}\right) \in \mathrm{CH}^{0}(X)=\mathbf{Z}
$$

is nonzero $\bmod p$

Then X would be a generic splitting variety (up to extensions of degree prime to p)

Theorem: There exists X with (1), (2) and

$$
\frac{s_{d}(X)}{p} \neq 0 \quad \bmod p
$$

Voevodsky announced essentially that

$$
c(X)=\frac{s_{d}(X)}{p} \bmod p
$$

