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Introduction

This text contains purely algebraic considerations in the mod 2 Lazard ring L.
We define operations

Sqk : L → L.

and prove a vanishing property for them (Theorem 2). We apply this to obtain the
canonical logarithm of the universal mod 2 Lazard formal group law. This approach
does not involve the usual game with binomial coefficients.

This text is preliminary in a manifold sense: We only define the logarithm, but do
not describe it in more detail. Missing are also the Landweber-Novikov operations.
The geometric analogies of the material are only mentioned partially in some side
remarks. No attempt has been made on the mod p-analogies.

1. Basic definitions

Let R be a F2-algebra. By a mod 2 formal group law we understand a power
series

F (x, y) ∈ R[[x, y]]
such that

F (x, 0) = F (0, x) = x,(1)

F
(
x, F (y, z)

)
= F

(
F (x, y), z

)
,(2)

F (y, x) = F (x, y),(3)

F (x, x) = 0.(4)

These equations are understood in the rings R[[x]], R[[x, y, z]], etc.

Date: March 10, 2000.

1



2 MARKUS ROST

It follows from (1) that

F (x, y) = x + y +
∑

i,j≥1

ai,jx
iyj

with ai,j ∈ R. Sometimes we write for simplicity

F (x, y) =
∑
i,j

ai,jx
iyj ,

thereby understanding i, j ≥ 0, i + j ≥ 1, a1,0 = a0,1 = 1, and ai,0 = a0,j = 0 for
i, j > 1.

Let
L̃ = F2[ui,j ]

be the polynomial ring in the variables ui,j , i, j ≥ 1 and let

I ⊂ L̃

be the smallest ideal such that

Funiv(x, y) = x + y +
∑

i,j≥1

ui,jx
iyj

becomes a mod 2 formal group law over the quotient

L = L̃/I.

The ring L is called the mod 2 Lazard ring and Funiv, considered as element
of L[[x, y]], is called the universal mod 2 formal group law.

For any mod 2 formal group law

F (x, y) = x + y +
∑

i,j≥1

ai,jx
iyj ∈ R[[x, y]]

there exist a unique ring homomorphism

ρF : L → R

with
ρF (ui,j) = ai,j .

All formal group laws considered in this text are mod 2 formal group laws. We
will call them simply “formal group laws” and L will be called “the Lazard ring”.

We consider L̃ as a Z-graded ring with

deg ui,j = 1− i− j.

For a Z-graded ring R we extend the grading to any power series ring R[[x1, . . . , xr]]
by associating the degree 1 to each of variables xi.

This way Funiv(x, y) ∈ L̃[[x, y]] is homogeneous of degree 1. Also, the equa-
tions (1)–(4) are homogeneous. It follows that the ideal I is a homogeneous ideal.
Therefore the Lazard ring carries a Z-grading

L =
⊕
k≤0

Lk

with
ui,j ∈ L1−i−j .



COMPUTATIONS IN THE MOD 2 LAZARD RING 3

Remark. The cobordism ring of a space X can be described as

N ∗(X) =
⊕
k∈Z

N k(X),

N k(X) = [X+, Sk ∧MO].

One has N k(X) = 0 for k > dim X. For nonempty X the groups N k(X) are
nonzero in non-positive degrees. The Lazard ring L is isomorphic to the unoriented
cobordism ring N ∗ = N ∗(point).

Once in a while we will refer to these facts for some explanations. We will
certainly not make use of them, because this text is supposed as a preparation to
establish the isomorphism L = N ∗.

The negative grading on L introduced above coincides with the natural grading
on N ∗. For k > 0 one has Lk = N k = 0 and for k ≥ 0 the group L−k = N−k is
the group of bordism classes of k-dimensional smooth compact manifolds.

2. A preliminary computation

Let F (x, y) be a (mod 2) formal group law over R. We consider the (continuous)
homomorphism over R[[t]]

τ : R[[t, x]] → R[[t, x]],

x 7→ F (t, x).

Note that τ is an involution:

τ2(x) = F
(
t, F (t, x)

)
= F

(
F (t, t), x

)
= F (0, x) = x.

Lemma 1. Let f ∈ R[[t, x]] with τ(f) = f . Then there exist a unique element
g ∈ R[[t, u]] such that

f(t, x) = g
(
t, xF (t, x)

)
.

Proof. Let u = xτ(x) = xF (t, x). Then

u = x2 + tα

for some α ∈ R[[t, x]]. Using standard arguments for power series rings, it follows
that

R[[t, x]] = R[[t, u]]⊕ xR[[t, u]].

Note that τ(u) = u, so every element of the subring R[[t, u]] is τ -invariant. Write f
as

f(t, x) = g(t, u) + xh(t, u).

Then τ(f) = f implies

F (t, x)h(t, u) = xh(t, u).

However

F (t, x)− x = t + xt
∑

i,j≥1

ai,jx
i−1tj−1

is not a zero divisor. Thus h = 0. �
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3. Operations defined by power series

Let
F (x, y) =

∑
i,j

ai,jx
iyj

be a (mod 2) formal group law over R and let

q(x) =
∑
i≥0

cix
i+1 ∈ R[[x]]

be a power series with c0 invertible in R. Then

R[[x]] → R[[x]],

x 7→ q(x)

defines an automorphism of R[[x]] over R. In particular there exist the inverse
power series

q−1(x) ∈ R[[x]]

with
q
(
q−1(x)

)
= q−1

(
q(x)

)
= x.

We put
Fq(x, y) = q

(
F

(
q−1(x), q−1(y)

))
∈ R[[x, y]].

This is a formal group law, obtained from the formal group law F by means of the
coordinate change x 7→ q(x). Therefore there exist a ring homomorphism

θq = ρFq : L → R

such that

(5) q
(
F (x, y)

)
=

∑
i,j

θq(ui,j)q(x)iq(y)j .

We extend θq to the continuous homomorphism

θ̄q : L[[x1, . . . , xr]] → R[[x1, . . . , xr]],

xi 7→ q(xi).

Then
θ̄q

(
Funiv(xk, xl)

)
= q

(
F (xk, xl)

)
.

by (5).
This means for instance that the following diagram is commutative:

(6)

L[[z]]
θ̄q−−→ R[[z]]

α

y α

y
L[[x, y]]

θ̄q−−→ R[[x, y]].

Here the maps α are the identity on L resp. R and map z to F (x, y). The homo-
morphisms θ̄q are understood as above: they extend θq : L → R by u 7→ q(u) for
u = x, y, z.
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Remark. These considerations are the formal group analogies of a construction in
(unoriented) cobordism theory, see [1]. Given the power series q(x), one may define
for topological spaces X a natural transformation

Θq : N ∗(X) → N ∗(X)⊗L R.

Here the tensor product is understood via the isomorphism L → N ∗, given by the
canonical formal group law in N ∗(P∞ × P∞) = N ∗[[x, y]], and via ρF : L → R,
given by the formal group law F .

The homomorphisms θ̄q : L[[x1, . . . , xr]] → R[[x1, . . . , xr]] are the formal analo-
gies of the operations Θq for X = P∞ × · · · ×P∞.

The commutative diagram (6) corresponds to the functoriality of Θq with respect
to the map P∞×P∞ → P∞, the sum map for the Eilenberg-MacLane space P∞ =
H(Z/2, 1).

The operations considered in the next section are the formal analogies of the
Steenrod squares in cobordism theory.

4. Steenrod squares

Now let
R = L[[t]][t−1]

be the ring of Laurent series over L, let

F (x, y) = Funiv(x, y) =
∑
i,j

ui,jx
iyj ∈ R[[x, y]]

be the universal formal group law considered as formal group law over R (so that
ρF : L → R is the inclusion), and let

q(x) =
xF (x, t)

t
∈ L[[t, x]][t−1] ⊂ R[[x]].

Then

q(x) = x +
x2

t
+ x2

∑
i,j≥1

ui,jx
i−1tj−1,

and x → q(x) defines an invertible endomorphism of R[[x]] over R. Thus we
may apply the construction of the previous section and get a ring homomorphism
θq : L → R. We write Sq = θq. Thus Sq is the ring homomorphism

Sq: L → L[[t]][t−1]

such that

(7) q
(∑

i,j

ui,jx
iyj

)
=

∑
i,j

Sq(ui,j)q(x)iq(y)j .

Note that q is homogeneous of degree 1, and therefore Sq is homogeneous of
degree 0 (with respect to the Z-gradings given by the grading on L and by deg x =
deg t = 1). We write

Sq =
∑
k∈Z

t−k Sqk

with additive homomorphisms
Sqk : L → L.

Then Sqk is homogeneous of degree k, that is

Sqk(Ln) ⊂ Ln+k.
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The maps Sqk are called Steenrod squares. In the following we establish the prop-
erties to be expected from operations with this name.

The Cartan formula

Sqk(αβ) =
∑

h+l=k

Sqh(α) Sql(β)

follows from the multiplicativity of the total Steenrod square Sq.
Since L is concentrated in non-positive degrees, it follows that

Sqk(α) = 0 for α ∈ Ln, k > −n.

The next theorem sharpens this a priori vanishing property.

Theorem 2. Let α ∈ Ln. Then

Sqn(α) = α2,(8)

Sqk(α) = 0 for k > n.(9)

Proof. By (7) we have

F (x, y)F
(
F (x, y), t

)
t

=
∑
i,j

Sq(ui,j)
(

xF (x, t)
t

)i (
yF (y, t)

t

)j

,

or

F (x, y)F
(
F (x, y), t

)
=

∑
i,j

Sq(ui,j)
ti+j−1

(
xF (x, t)

)i(
yF (y, t)

)j
.

The left hand side is an element of L[[t, x, y]] and is invariant under the involutions
given by

τx : t 7→ t, x 7→ F (t, x), y 7→ y,

τy : t 7→ t, x 7→ x, y 7→ F (t, y).

Indeed, we have

τx

(
F (x, y)F

(
F (x, y), t

))
= F

(
F (t, x), y

)
F

(
F

(
F (t, x), y), t

))
= F

(
F (x, y), t

)
F (x, y).

Similarly for τy.
The involutions τx, τy commute, so we may apply Lemma 1 to them successively

and find that

(10) F (x, y)F
(
F (x, y), t

)
=

∑
i,j

Qi,j(t)ui
xuj

y

with ux = xF (t, x), uy = yF (t, y), and Qi,j ∈ L[[t]]. Comparing coefficients we get

Sq(ui,j)
ti+j−1

= Qi,j(t).

This proves (9) for α = ui,j .
Moreover, setting t = 0 in (10), we get

F (x, y)2 =
∑
i,j

Qi,j(0)x2iy2j .

Hence Qi,j(0) = u2
i,j . This proves (8) for α = ui,j .

Since L is generated by the ui,j , the claims follow from the Cartan formula. �
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Remark. The vanishing properties

(11) Sqk(α) = 0 for α ∈ Ln, −n ≥ k > n.

have the following geometric analogue:

Proposition 3. Let M be a compact n-manifold. The pair
(
P(TM),L(TM)

)
consisting of the projective tangent bundle of M and its tautological line bundle is
bordant.

Proof. By the strict blow up of a manifold Y in a submanifold Z we understand
the manifold X → Y obtained from Y by “cutting along Z”, that is by replacing Z
by the sphere bundle S(N) of the normal bundle of Z in Y . If Y has no boundary,
then X is a manifold with boundary S(N). The usual (real) blow up of Y in Z
is the quotient of the strict blow up by the involution v 7→ −v on S(N). See [6,
p. 56–57] for details.

Now let X → M×M be the strict blow up in the diagonal. The switch involution
on M ×M lifts to an involution σ on X. This involution is fixed point free. The
double cover X → X/σ has as boundary the double cover S(TM) → P(TM). The
latter is the sphere bundle of the line bundle L(TM) which therefore extends to a
line bundle on X/σ. �

One may represent the pair
(
P(TM),L(TM)

)
by a map f : P(TM) → P∞.

Then the proposition means that f is bordant.
Since dimP(TM) = 2n− 1, we may represent the pair by a map f : P(TM) →

P2n−1. The bordism group of Pr injects into the bordism group of P∞. Therefore
the map f will be bordant also as map to P2n−1. Thus we get a relation

0 = [f ] ∈ N 0
(
P2n−1

)
=

2n−1⊕
i=0

N i.

The 2n relations of (11) are the formal analogies of the vanishing of the 2n com-
ponents of [f ].

All the Wu-relations among Stiefel-Whitney numbers are encoded in these re-
lations. For instance the 0-th component of [f ] is just wn(−TM)[M ] ∈ F2. The
formal analogue of this is Sqn(α) = 0 for α ∈ L−n.

These relations appear in some form in the approaches to the cobordism ring by
Quillen [7], [1] and Buonchristiano and Hacon [2], [3], [4], [5].

5. A contracting property of Sq0

For our power series

q(x) =
xF (x, t)

t

we consider now the associated homomorphisms θ̄q (see section 3), which we denote
by Sq as well. Thus we have ring homomorphisms

Sq: L[[x1, . . . , xr]] → L[[t]][t−1][[x1, . . . , xr]]

extending Sq on L and with Sq(xi) = q(xi).
Note that if we restrict to the polynomial rings, we get homomorphisms

Sq: L[x1, . . . , xr] → L[[t, x1, . . . , xr]][t−1].
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Again we write
Sq =

∑
k∈Z

t−k Sqk

with additive homomorphisms

Sqk : L[[x1, . . . , xr]] → L[[x1, . . . , xr]]

of degree k.

Remark. These operations are the formal versions the Steenrod squaring operations
on N ∗(P∞ × · · · ×P∞).

Let
I = 〈x1, . . . , xr〉L[[x1, . . . , xr]] ⊂ L[[x1, . . . , xr]]

be the ideal generated by the xi.
We write

L[[x1, . . . , xr]] =
⊕
k∈Z

Uk

with Uk the homogeneous component of degree k.

Proposition 4. One has

Sqk(In+k ∩ U l) ⊂ I2n+l−k ∩ Uk+l.

We will need and prove this only in the following special case:

Proposition 5. For n ≥ 0 one has

Sq0(In+1 ∩ U1) ⊂ I2n+1 ∩ U1.

Proof. Since Sq0 is homogeneous of degree 0, it suffices to show: Let n ≥ 0, a−n ∈
L−n, let further p = (p1, . . . , pr) be a multi-index with

∑
ps = n + 1, and let

α = a−nxp. Then
Sq0(α) ∈ I2n+1.

We have

Sq(α) = Sq(a−n)
∏
s

(xsF (xs, t)
t

)ps

=
∑

k≤−n

t−k Sqk(a−n)t−(n+1)
∏
s

(
xsF (xs, t)

)ps
.

Here we have used Theorem 2 to get the upper bound for the index k.
Multiplying both sides by t we get

(12) t Sq(α) =
∑
h≥0

th Sq−n−h(a−n)
∏
s

(
xsF (xs, t)

)ps

with h = −k − n.
On the other hand we have

(13) t Sq(α) = Sq1(α) + t Sq0(α) + t2 Sq−1(α) + · · · .

Since
F (x, t) = x + t + xtP (x, t)

for some P ∈ L[[t, x]], we have∏
s

F (xs, t)ps ∈ In+1 + tIn + t2L[[t, x1, . . . , xr]].
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Therefore, by (12),

t Sq(α) ∈ I2n+2 + tI2n+1 + t2L[[t, x1, . . . , xr]]

and (13) yields
Sq1(α) + t Sq0(α) ∈ I2n+2 + tI2n+1.

This proves the claim. �

6. The logarithm

We apply this to the case r = 1 and write z = x1. So let I = zL[[z]] and

L[[z]] =
⊕
k∈Z

Uk.

Then
U1 = zF2 ⊕ z2L−1 ⊕ z3L−2 ⊕ · · · .

Proposition 6.

Sq0(z)− z ∈ I2 ∩ U1,(14)

and for m ≥ 0 one has

(Sq0)m(I2 ∩ U1) ⊂ I2m+1.(15)

Proof. We have

Sq(z) =
zF (z, t)

t
=

z2

t
+ z +

∑
i,j≥1

ui,jz
i+1tj−1

and therefore
Sq0(z) = z + z2

∑
i≥0

ui+1,1z
i.

This proves (14). Claim (15) follows from Proposition 5. �

Corollary 7. For any `0 ∈ U1, the series of elements

`m = (Sq0)m(`0) ∈ U1

is convergent in the I-adic topology on U1. The limit

`∞ = lim
m→∞

`m

depends alone on the class of `0 in U1/(I2 ∩ U1).

Since U1/(I2 ∩ U1) = F2, there is only one nontrivial such limit. It is obtained
for `0(z) = z and given by

` = lim
m→∞

(Sq0)m(z).

It is called the canonical logarithm of the universal formal group law. In the fol-
lowing we show that ` is indeed a logarithm.

Obviously we have

(16) Sq0(`) = `.
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The commutative diagram (6) yields the commutative diagram

(17)

L[[z]]
Sq0

−−→ R[[z]]

α

y α

y
L[[x, y]]

Sq0

−−→ R[[x, y]].
with α(z) = F (x, y). Let βx : L[[x]] → L[[x, y]], βy : L[[y]] → L[[x, y]] be the
inclusions. Further let

I = 〈x, y〉L[[x, y]].

Lemma 8. Let ` ∈ L[[z]] with deg ` = 1 and let `′ = Sq0(`).
Let further n ≥ 0 and suppose that

α(`) = βx(`) + βy(`) mod In+1.

Then
α(`′) = βx(`′) + βy(`′) mod I2n+1.

Proof. This follows from Proposition 5 and the fact that α, βx, βy are compatible
with Sq0. �

Corollary 9. `
(
F (`−1(x), `−1(y)

)
= x + y.

This clear from the Lemma and (16).

Remark. For the moment we have completely omitted a further description of the
logarithm. It is desirable to give the formal analogy of the description of the
coefficients of the logarithm in [8].
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