COMPUTATIONS IN THE MOD 2 LAZARD RING

MARKUS ROST

preliminary version

CONTENTS

Introduction		1
1.	Basic definitions	1
2.	A preliminary computation	3
3.	Operations defined by power series	4
4.	Steenrod squares	5
5.	A contracting property of Sq^0	7
6.	The logarithm	9
References		10

INTRODUCTION

This text contains purely algebraic considerations in the mod 2 Lazard ring L. We define operations

 $\operatorname{Sq}^k \colon L \to L.$

and prove a vanishing property for them (Theorem 2). We apply this to obtain the canonical logarithm of the universal mod 2 Lazard formal group law. This approach does not involve the usual game with binomial coefficients.

This text is preliminary in a manifold sense: We only define the logarithm, but do not describe it in more detail. Missing are also the Landweber-Novikov operations. The geometric analogies of the material are only mentioned partially in some side remarks. No attempt has been made on the mod *p*-analogies.

1. Basic definitions

Let R be a \mathbf{F}_2 -algebra. By a mod 2 formal group law we understand a power series

$$F(x,y) \in R[[x,y]]$$

such that

F(x,0) = F(0,x) = x, F(x,F(y,z)) = F(F(x,y),z), F(y,x) = F(x,y),(1)

(2)
$$F(x, F(y, z)) = F(F(x, y), z)$$

$$F(y,x) = F(x,y)$$

$$F(x,x) = 0.$$

These equations are understood in the rings R[[x]], R[[x, y, z]], etc.

Date: March 10, 2000.

It follows from (1) that

$$F(x,y) = x + y + \sum_{i,j \ge 1} a_{i,j} x^i y^j$$

with $a_{i,j} \in R$. Sometimes we write for simplicity

$$F(x,y) = \sum_{i,j} a_{i,j} x^i y^j,$$

thereby understanding $i, j \ge 0, i + j \ge 1, a_{1,0} = a_{0,1} = 1$, and $a_{i,0} = a_{0,j} = 0$ for i, j > 1.

Let

$$\widetilde{L} = \mathbf{F}_2[u_{i,j}]$$

be the polynomial ring in the variables $u_{i,j}$, $i, j \ge 1$ and let

$$I \subset \widetilde{L}$$

be the smallest ideal such that

$$F_{\text{univ}}(x,y) = x + y + \sum_{i,j \ge 1} u_{i,j} x^i y^j$$

becomes a mod 2 formal group law over the quotient

$$L = \widetilde{L}/I.$$

The ring L is called the mod 2 Lazard ring and F_{univ} , considered as element of L[[x, y]], is called the universal mod 2 formal group law.

For any mod 2 formal group law

$$F(x,y) = x + y + \sum_{i,j \ge 1} a_{i,j} x^i y^j \in R[[x,y]]$$

there exist a unique ring homomorphism

$$\rho_F \colon L \to R$$

with

$$\rho_F(u_{i,j}) = a_{i,j}.$$

All formal group laws considered in this text are mod 2 formal group laws. We will call them simply "formal group laws" and L will be called "the Lazard ring".

We consider \tilde{L} as a **Z**-graded ring with

$$\deg u_{i,j} = 1 - i - j.$$

For a **Z**-graded ring R we extend the grading to any power series ring $R[[x_1, \ldots, x_r]]$ by associating the degree 1 to each of variables x_i .

This way $F_{\text{univ}}(x, y) \in L[[x, y]]$ is homogeneous of degree 1. Also, the equations (1)–(4) are homogeneous. It follows that the ideal I is a homogeneous ideal. Therefore the Lazard ring carries a \mathbb{Z} -grading

$$L = \bigoplus_{k \le 0} L^k$$

with

$$u_{i,j} \in L^{1-i-j}.$$

 $\mathbf{2}$

Remark. The cobordism ring of a space X can be described as

$$\mathcal{N}^*(X) = \bigoplus_{k \in \mathbf{Z}} \mathcal{N}^k(X),$$
$$\mathcal{N}^k(X) = [X_+, S^k \land \mathrm{MO}].$$

One has $\mathcal{N}^k(X) = 0$ for $k > \dim X$. For nonempty X the groups $\mathcal{N}^k(X)$ are nonzero in non-positive degrees. The Lazard ring L is isomorphic to the unoriented cobordism ring $\mathcal{N}^* = \mathcal{N}^*$ (point).

Once in a while we will refer to these facts for some explanations. We will certainly not make use of them, because this text is supposed as a preparation to establish the isomorphism $L = \mathcal{N}^*$.

The negative grading on L introduced above coincides with the natural grading on \mathcal{N}^* . For k > 0 one has $L^k = \mathcal{N}^k = 0$ and for $k \ge 0$ the group $L^{-k} = \mathcal{N}^{-k}$ is the group of bordism classes of k-dimensional smooth compact manifolds.

2. A PRELIMINARY COMPUTATION

Let F(x, y) be a (mod 2) formal group law over R. We consider the (continuous) homomorphism over R[[t]]

$$\begin{split} \tau \colon R[[t,x]] &\to R[[t,x]], \\ x &\mapsto F(t,x). \end{split}$$

Note that τ is an involution:

$$\tau^{2}(x) = F(t, F(t, x)) = F(F(t, t), x) = F(0, x) = x.$$

Lemma 1. Let $f \in R[[t, x]]$ with $\tau(f) = f$. Then there exist a unique element $g \in R[[t, u]]$ such that

$$f(t,x) = g(t, xF(t,x)).$$

Proof. Let $u = x\tau(x) = xF(t, x)$. Then

 $u = x^2 + t\alpha$

for some $\alpha \in R[[t, x]]$. Using standard arguments for power series rings, it follows that

$$R[[t, x]] = R[[t, u]] \oplus xR[[t, u]].$$

Note that $\tau(u) = u$, so every element of the subring R[[t, u]] is τ -invariant. Write f as

$$f(t, x) = g(t, u) + xh(t, u).$$

Then $\tau(f) = f$ implies

$$F(t, x)h(t, u) = xh(t, u).$$

However

$$F(t,x) - x = t + xt \sum_{i,j \ge 1} a_{i,j} x^{i-1} t^{j-1}$$

is not a zero divisor. Thus h = 0.

3. Operations defined by power series

Let

$$F(x,y) = \sum_{i,j} a_{i,j} x^i y^j$$

be a (mod 2) formal group law over R and let

$$q(x) = \sum_{i \ge 0} c_i x^{i+1} \in R[[x]]$$

be a power series with c_0 invertible in R. Then

$$R[[x]] \to R[[x]],$$
$$x \mapsto q(x)$$

defines an automorphism of R[[x]] over R. In particular there exist the inverse power series

$$q^{-1}(x) \in R[[x]]$$

with

$$q(q^{-1}(x)) = q^{-1}(q(x)) = x.$$

We put

$$F_q(x,y) = q\left(F\left(q^{-1}(x), q^{-1}(y)\right)\right) \in R[[x,y]]$$

This is a formal group law, obtained from the formal group law F by means of the coordinate change $x \mapsto q(x)$. Therefore there exist a ring homomorphism

$$\theta_q = \rho_{F_q} \colon L \to R$$

such that

(5)
$$q(F(x,y)) = \sum_{i,j} \theta_q(u_{i,j}) q(x)^i q(y)^j.$$

We extend θ_q to the continuous homomorphism

$$\bar{\theta}_q \colon L[[x_1, \dots, x_r]] \to R[[x_1, \dots, x_r]],$$
$$x_i \mapsto q(x_i).$$

Then

$$\bar{\theta}_q (F_{\text{univ}}(x_k, x_l)) = q (F(x_k, x_l))$$

by (5).

This means for instance that the following diagram is commutative:

(6)
$$L[[z]] \xrightarrow{\theta_q} R[[z]]$$
$$\alpha \downarrow \qquad \alpha \downarrow$$
$$L[[x, y]] \xrightarrow{\overline{\theta}_q} R[[x, y]]$$

Here the maps α are the identity on L resp. R and map z to F(x, y). The homomorphisms $\overline{\theta}_q$ are understood as above: they extend $\theta_q \colon L \to R$ by $u \mapsto q(u)$ for u = x, y, z.

Remark. These considerations are the formal group analogies of a construction in (unoriented) cobordism theory, see [1]. Given the power series q(x), one may define for topological spaces X a natural transformation

$$\Theta_q \colon \mathcal{N}^*(X) \to \mathcal{N}^*(X) \otimes_L R$$

Here the tensor product is understood via the isomorphism $L \to \mathcal{N}^*$, given by the canonical formal group law in $\mathcal{N}^*(\mathbf{P}^\infty \times \mathbf{P}^\infty) = \mathcal{N}^*[[x,y]]$, and via $\rho_F \colon L \to R$, given by the formal group law F.

The homomorphisms $\bar{\theta}_q: L[[x_1, \ldots, x_r]] \to R[[x_1, \ldots, x_r]]$ are the formal analogies of the operations Θ_q for $X = \mathbf{P}^{\infty} \times \cdots \times \mathbf{P}^{\infty}$.

The commutative diagram (6) corresponds to the functoriality of Θ_q with respect to the map $\mathbf{P}^{\infty} \times \mathbf{P}^{\infty} \to \mathbf{P}^{\infty}$, the sum map for the Eilenberg-MacLane space $\mathbf{P}^{\infty} = H(\mathbf{Z}/2, 1)$.

The operations considered in the next section are the formal analogies of the Steenrod squares in cobordism theory.

4. Steenrod squares

Now let

$$R = L[[t]][t^{-1}]$$

be the ring of Laurent series over L, let

$$F(x,y) = F_{\text{univ}}(x,y) = \sum_{i,j} u_{i,j} x^i y^j \in R[[x,y]]$$

be the universal formal group law considered as formal group law over R (so that $\rho_F \colon L \to R$ is the inclusion), and let

$$q(x) = \frac{xF(x,t)}{t} \in L[[t,x]][t^{-1}] \subset R[[x]].$$

Then

$$q(x) = x + \frac{x^2}{t} + x^2 \sum_{i,j \ge 1} u_{i,j} x^{i-1} t^{j-1},$$

and $x \to q(x)$ defines an invertible endomorphism of R[[x]] over R. Thus we may apply the construction of the previous section and get a ring homomorphism $\theta_q \colon L \to R$. We write $\operatorname{Sq} = \theta_q$. Thus Sq is the ring homomorphism

Sq:
$$L \to L[[t]][t^{-1}]$$

such that

(7)
$$q\left(\sum_{i,j} u_{i,j} x^i y^j\right) = \sum_{i,j} \operatorname{Sq}(u_{i,j}) q(x)^i q(y)^j.$$

Note that q is homogeneous of degree 1, and therefore Sq is homogeneous of degree 0 (with respect to the **Z**-gradings given by the grading on L and by deg x =deg t = 1). We write

$$\operatorname{Sq} = \sum_{k \in \mathbf{Z}} t^{-k} \operatorname{Sq}^{k}$$

with additive homomorphisms

$$\operatorname{Sq}^k \colon L \to L.$$

Then Sq^k is homogeneous of degree k, that is

$$\operatorname{Sq}^k(L^n) \subset L^{n+k}$$

The maps Sq^k are called *Steenrod squares*. In the following we establish the properties to be expected from operations with this name.

The Cartan formula

$$\operatorname{Sq}^{k}(\alpha\beta) = \sum_{h+l=k} \operatorname{Sq}^{h}(\alpha) \operatorname{Sq}^{l}(\beta)$$

follows from the multiplicativity of the total Steenrod square Sq.

Since L is concentrated in non-positive degrees, it follows that

$$\operatorname{Sq}^k(\alpha) = 0 \text{ for } \alpha \in L^n, \, k > -n.$$

The next theorem sharpens this a priori vanishing property.

Theorem 2. Let $\alpha \in L^n$. Then

(8)
$$\operatorname{Sq}^n(\alpha) = \alpha^2,$$

(9)
$$\operatorname{Sq}^k(\alpha) = 0 \quad \text{for } k > n.$$

Proof. By (7) we have

$$\frac{F(x,y)F(F(x,y),t)}{t} = \sum_{i,j} \operatorname{Sq}(u_{i,j}) \left(\frac{xF(x,t)}{t}\right)^i \left(\frac{yF(y,t)}{t}\right)^j,$$

or

$$F(x,y)F\big(F(x,y),t\big) = \sum_{i,j} \frac{\operatorname{Sq}(u_{i,j})}{t^{i+j-1}} \big(xF(x,t)\big)^i \big(yF(y,t)\big)^j$$

The left hand side is an element of L[[t, x, y]] and is invariant under the involutions given by

$$\begin{aligned} \tau_x \colon & t \mapsto t, \quad x \mapsto F(t,x), \quad y \mapsto y, \\ \tau_y \colon & t \mapsto t, \quad x \mapsto x, \qquad y \mapsto F(t,y). \end{aligned}$$

Indeed, we have

$$\tau_x \big(F(x,y) F\big(F(x,y),t \big) \big) = F\big(F(t,x),y \big) F\big(F\big(F(t,x),y),t \big) \big)$$
$$= F\big(F(x,y),t \big) F(x,y).$$

Similarly for τ_y .

The involutions τ_x, τ_y commute, so we may apply Lemma 1 to them successively and find that

(10)
$$F(x,y)F(F(x,y),t) = \sum_{i,j} Q_{i,j}(t)u_x^i u_y^j$$

with $u_x = xF(t, x)$, $u_y = yF(t, y)$, and $Q_{i,j} \in L[[t]]$. Comparing coefficients we get

$$\frac{\operatorname{Sq}(u_{i,j})}{t^{i+j-1}} = Q_{i,j}(t).$$

This proves (9) for $\alpha = u_{i,j}$.

Moreover, setting t = 0 in (10), we get

$$F(x,y)^{2} = \sum_{i,j} Q_{i,j}(0) x^{2i} y^{2j}.$$

Hence $Q_{i,j}(0) = u_{i,j}^2$. This proves (8) for $\alpha = u_{i,j}$. Since *L* is generated by the $u_{i,j}$, the claims follow from the Cartan formula. \Box

Remark. The vanishing properties

(11)
$$\operatorname{Sq}^{k}(\alpha) = 0 \text{ for } \alpha \in L^{n}, \ -n \ge k > n.$$

have the following geometric analogue:

Proposition 3. Let M be a compact n-manifold. The pair $(\mathbf{P}(TM), \mathbf{L}(TM))$ consisting of the projective tangent bundle of M and its tautological line bundle is bordant.

Proof. By the strict blow up of a manifold Y in a submanifold Z we understand the manifold $X \to Y$ obtained from Y by "cutting along Z", that is by replacing Z by the sphere bundle $\mathbf{S}(N)$ of the normal bundle of Z in Y. If Y has no boundary, then X is a manifold with boundary $\mathbf{S}(N)$. The usual (real) blow up of Y in Z is the quotient of the strict blow up by the involution $v \mapsto -v$ on $\mathbf{S}(N)$. See [6, p. 56–57] for details.

Now let $X \to M \times M$ be the strict blow up in the diagonal. The switch involution on $M \times M$ lifts to an involution σ on X. This involution is fixed point free. The double cover $X \to X/\sigma$ has as boundary the double cover $\mathbf{S}(TM) \to \mathbf{P}(TM)$. The latter is the sphere bundle of the line bundle $\mathbf{L}(TM)$ which therefore extends to a line bundle on X/σ .

One may represent the pair $(\mathbf{P}(TM), \mathbf{L}(TM))$ by a map $f: \mathbf{P}(TM) \to \mathbf{P}^{\infty}$. Then the proposition means that f is bordant.

Since dim $\mathbf{P}(TM) = 2n - 1$, we may represent the pair by a map $f: \mathbf{P}(TM) \to \mathbf{P}^{2n-1}$. The bordism group of \mathbf{P}^r injects into the bordism group of \mathbf{P}^{∞} . Therefore the map f will be bordant also as map to \mathbf{P}^{2n-1} . Thus we get a relation

$$0 = [f] \in \mathcal{N}^0 \left(\mathbf{P}^{2n-1} \right) = \bigoplus_{i=0}^{2n-1} \mathcal{N}^i.$$

The 2n relations of (11) are the formal analogies of the vanishing of the 2n components of [f].

All the Wu-relations among Stiefel-Whitney numbers are encoded in these relations. For instance the 0-th component of [f] is just $w_n(-TM)[M] \in \mathbf{F}_2$. The formal analogue of this is $\operatorname{Sq}^n(\alpha) = 0$ for $\alpha \in L^{-n}$.

These relations appear in some form in the approaches to the cobordism ring by Quillen [7], [1] and Buonchristiano and Hacon [2], [3], [4], [5].

For our power series

$$q(x) = \frac{xF(x,t)}{t}$$

we consider now the associated homomorphisms $\bar{\theta}_q$ (see section 3), which we denote by Sq as well. Thus we have ring homomorphisms

Sq:
$$L[[x_1, ..., x_r]] \to L[[t]][t^{-1}][[x_1, ..., x_r]]$$

extending Sq on L and with $Sq(x_i) = q(x_i)$.

Note that if we restrict to the polynomial rings, we get homomorphisms

Sq:
$$L[x_1, ..., x_r] \to L[[t, x_1, ..., x_r]][t^{-1}]$$

Again we write

$$\operatorname{Sq} = \sum_{k \in \mathbf{Z}} t^{-k} \operatorname{Sq}^k$$

with additive homomorphisms

$$\operatorname{Sq}^k \colon L[[x_1, \dots, x_r]] \to L[[x_1, \dots, x_r]]$$

of degree k.

Remark. These operations are the formal versions the Steenrod squaring operations on $\mathcal{N}^*(\mathbf{P}^{\infty} \times \cdots \times \mathbf{P}^{\infty})$.

Let

$$I = \langle x_1, \dots, x_r \rangle L[[x_1, \dots, x_r]] \subset L[[x_1, \dots, x_r]]$$

be the ideal generated by the x_i .

We write

$$L[[x_1,\ldots,x_r]] = \bigoplus_{k \in \mathbf{Z}} U^k$$

with U^k the homogeneous component of degree k.

Proposition 4. One has

$$\operatorname{Sq}^{k}(I^{n+k} \cap U^{l}) \subset I^{2n+l-k} \cap U^{k+l}$$

We will need and prove this only in the following special case:

Proposition 5. For $n \ge 0$ one has

$$\operatorname{Sq}^0(I^{n+1}\cap U^1)\subset I^{2n+1}\cap U^1.$$

Proof. Since Sq⁰ is homogeneous of degree 0, it suffices to show: Let $n \ge 0$, $a_{-n} \in L^{-n}$, let further $p = (p_1, \ldots, p_r)$ be a multi-index with $\sum p_s = n + 1$, and let $\alpha = a_{-n}x^p$. Then

$$\mathrm{Sq}^0(\alpha) \in I^{2n+1}.$$

We have

$$\begin{aligned} \operatorname{Sq}(\alpha) &= \operatorname{Sq}(a_{-n}) \prod_{s} \left(\frac{x_s F(x_s, t)}{t} \right)^{p_s} \\ &= \sum_{k \le -n} t^{-k} \operatorname{Sq}^k(a_{-n}) t^{-(n+1)} \prod_{s} \left(x_s F(x_s, t) \right)^{p_s}. \end{aligned}$$

Here we have used Theorem 2 to get the upper bound for the index k. Multiplying both sides by t we get

(12)
$$t\operatorname{Sq}(\alpha) = \sum_{h\geq 0} t^{h}\operatorname{Sq}^{-n-h}(a_{-n})\prod_{s} \left(x_{s}F(x_{s},t)\right)^{p_{s}}$$

with h = -k - n.

On the other hand we have

(13)
$$t\operatorname{Sq}(\alpha) = \operatorname{Sq}^{1}(\alpha) + t\operatorname{Sq}^{0}(\alpha) + t^{2}\operatorname{Sq}^{-1}(\alpha) + \cdots$$

Since

$$F(x,t) = x + t + xtP(x,t)$$

for some $P \in L[[t, x]]$, we have

$$\prod_{s} F(x_{s}, t)^{p_{s}} \in I^{n+1} + tI^{n} + t^{2}L[[t, x_{1}, \dots, x_{r}]]$$

Therefore, by (12),

$$t \operatorname{Sq}(\alpha) \in I^{2n+2} + tI^{2n+1} + t^2 L[[t, x_1, \dots, x_r]]$$

and (13) yields

$$\operatorname{Sq}^{1}(\alpha) + t \operatorname{Sq}^{0}(\alpha) \in I^{2n+2} + t I^{2n+1}$$

This proves the claim.

6. The logarithm

We apply this to the case r = 1 and write $z = x_1$. So let I = zL[[z]] and

$$L[[z]] = \bigoplus_{k \in \mathbf{Z}} U^k.$$

Then

$$U^1 = z\mathbf{F}_2 \oplus z^2 L^{-1} \oplus z^3 L^{-2} \oplus \cdots$$

Proposition 6.

(14) $\operatorname{Sq}^{0}(z) - z \in I^{2} \cap U^{1},$

and for $m \ge 0$ one has

(15)
$$(\operatorname{Sq}^{0})^{m}(I^{2} \cap U^{1}) \subset I^{2^{m}+1}$$

Proof. We have

$$Sq(z) = \frac{zF(z,t)}{t} = \frac{z^2}{t} + z + \sum_{i,j>1} u_{i,j} z^{i+1} t^{j-1}$$

and therefore

$$\operatorname{Sq}^{0}(z) = z + z^{2} \sum_{i \ge 0} u_{i+1,1} z^{i}.$$

This proves (14). Claim (15) follows from Proposition 5.

Corollary 7. For any $\ell_0 \in U^1$, the series of elements

$$\ell_m = (\mathrm{Sq}^0)^m (\ell_0) \in U^1$$

is convergent in the I-adic topology on U^1 . The limit

$$\ell_{\infty} = \lim_{m \to \infty} \ell_m$$

depends alone on the class of ℓ_0 in $U^1/(I^2 \cap U^1)$.

Since $U^1/(I^2 \cap U^1) = \mathbf{F}_2$, there is only one nontrivial such limit. It is obtained for $\ell_0(z) = z$ and given by

$$\ell = \lim_{m \to \infty} (\mathrm{Sq}^0)^m(z).$$

It is called the *canonical logarithm* of the universal formal group law. In the following we show that ℓ is indeed a logarithm.

Obviously we have

(16)
$$\operatorname{Sq}^{0}(\ell) = \ell.$$

9

The commutative diagram (6) yields the commutative diagram

(17)
$$L[[z]] \xrightarrow{\operatorname{Sq}^{0}} R[[z]]$$
$$\alpha \downarrow \qquad \alpha \downarrow$$
$$L[[x,y]] \xrightarrow{\operatorname{Sq}^{0}} R[[x,y]].$$

with $\alpha(z) = F(x, y)$. Let $\beta_x \colon L[[x]] \to L[[x, y]], \ \beta_y \colon L[[y]] \to L[[x, y]]$ be the inclusions. Further let

$$I = \langle x, y \rangle L[[x, y]].$$

Lemma 8. Let $\ell \in L[[z]]$ with deg $\ell = 1$ and let $\ell' = \operatorname{Sq}^{0}(\ell)$. Let further $n \geq 0$ and suppose that

$$\alpha(\ell) = \beta_x(\ell) + \beta_y(\ell) \mod I^{n+1}.$$

Then

$$\alpha(\ell') = \beta_x(\ell') + \beta_y(\ell') \mod I^{2n+1}.$$

Proof. This follows from Proposition 5 and the fact that α , β_x , β_y are compatible with Sq⁰.

Corollary 9. $\ell(F(\ell^{-1}(x), \ell^{-1}(y))) = x + y.$

This clear from the Lemma and (16).

Remark. For the moment we have completely omitted a further description of the logarithm. It is desirable to give the formal analogy of the description of the coefficients of the logarithm in [8].

References

- T. Bröcker and T. tom Dieck, *Kobordismentheorie*, Springer-Verlag, Berlin, 1970, Lecture Notes in Mathematics, Vol. 178.
- [2] S. Buoncristiano and D. Hacon, An elementary geometric proof of two theorems of Thom, Topology 20 (1981), no. 1, 97–99.
- [3] _____, The geometry of Chern numbers, Ann. of Math. (2) 118 (1983), no. 1, 1–7.
- [4] _____, A geometrical approach to characteristic numbers, Geometry today (Rome, 1984)
 (E. Arbarello, C. Procesi, and E. Strickland, eds.), Birkhäuser Boston, Boston, MA, 1985, pp. 21–38.
- [5] _____, On the formal groups approach to cobordism, Proc. Amer. Math. Soc. 97 (1986), no. 3, 559–564.
- [6] K. Jänich, On the classification of O(n)-manifolds, Math. Ann. **176** (1968), 53–76.
- [7] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971).
- [8] K. Shibata, A note on the formal group law of unoriented cobordism theory, Osaka J. Math. 10 (1973), 33-42.

School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

E-mail address: rost@mathematik.uni-regensburg.de *URL*: http://www.physik.uni-regensburg.de/~rom03516