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You are looking at the text “F-magmas” [pdf].

Introduction

A (classical) magma is a multiplication in the simplest sense, a set M together
with a map pu: M x M — M.

In Bourbaki (Algebra) such a pair (M, ) is called a magma with p the compo-
sition law on M [2, Chapter I, §1, 1. Definition 1, p.1]. The term magma appears
also in Bourbaki (Groupes et algebres de Lie) [1, Chap. II, §2 Algebres de Lie libres,
p.17] and in Serre (Lie algebras and Lie groups) [5, Chap. IV. Free Lie Algebras,
1. Free magmas, Definition 1.1, p. 18].

If Mx is the free magma on a set X, the map
(*) XH(MXxMx)—)MX

given by inclusion and multiplication is bijective [5, Properties 2), p. 18]. A similar
fact holds for multi-magmas as described in [4], see [4, (1.3), p.6].

The decomposition Mx = X II M% is immediate from the explicit construction
of Mx in [5], but can be also directly deduced from the universality of X — Mx.
Namely one may define right away on X I1 M% the structure of a magma (that is,
a multiplication) and the universality of My gives a map Mx — X Il M% yielding
the inverse of (x).

The starting point of this text was to formalize this argument. We ended up
with a very simple generalization of magmas, F-magmas. Here F' is an endofunc-
tor on a category C and an F-magma is an object M together with a morphism
un: F(M) — M.

The basic idea to construct the free F-magma on an object X of C is to take
the limit of a straightforward iteration, see Summary (4.4). The rest of the paper
arose from that.

If C has colimits and F' preserves filtered colimits there are universal F-magmas
and the free F-magma on an object. Further, the bijectivity of (%) generalizes to
the F-decomposition (4.2).

Interestingly, in the case of classical magmas the construction of free magmas is
different from that in [5]. The result is the same of course, but the constructions
yield different filtrations. See Example (5.2) and also Example (5.3).

The dual notion of an F-comagma appears naturally when constructing univer-
sal F-magmas. I haven’t looked much into F-comagmas themselves and further
possible interplays with F-magmas.

There is an apparent formal similarity of convolution-stable morphisms between
comagmas and magmas (see §2 and Proposition (3.3)) to twisting morphisms for dif-
ferential graded associative (co)algebras [3, Chapter 2, Twisting Morphisms, p. 37].
Again, I haven’t looked into this further.


https://www.math.uni-bielefeld.de/~rost/assoc2.html#magmas
https://www.math.uni-bielefeld.de/~rost/data/magmas.pdf
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General provisions

The general framework is a category C and an endofunctor F': C — C of C.
Beginning in §3 we assume that colimits (aka direct limits) of the form
L = Lim X},
k— o0

exist in C and that F' preserves such limits:
F(L) = Lim F(X%)
k—o0

From §4 on we assume that C has coproducts X ITY and an initial object 0 (that
is, Hom¢ (0, X) consists of single element). The latter is not really necessary, see
Remark (4.3).

The basic example is the category Sets of sets and F(Z) = Z2. Here X I1Y is
disjoint union and 0 = 0.

Another example is the category of R-modules for some ring R and F(Z) = Z%2.
Here XIIY = X @Y is the direct sum and 0 is, well, 0.

§1. Magmas

(1.1) Definition.
An F-magma is a pair (M, ) consisting of an object M of C and a C-morphism
w: F(M)— M
An F-comagma is a pair (A, §) consisting of an object A of C and a C-morphism
§: A— F(A)

(1.2) Examples. In Sets let F(Z) = Z2. Then an F-magma is a magma in the
classical sense, consisting of a set M and a map M? — M, see [5, p. 18].

In Sets let
F(z)=]] 2"
n>2
Then an F-magma is a multi-magma in the sense of [4].
Let R be a ring and let F(V) = V®?2 in the category of R-modules. Then an F-
magma is an R-algebra (non-unital, non-associative, non-commutative).! Similarly,
an F-comagma is an R-coalgebra.

In the following (until §4) the functor F is fixed and we call an F-magma simply
a magma. Similarly for comagmas.

A magma is mostly written in the form M = (M,uf,) = (M, uy) and p;
is called the F-multiplication of M. Similarly for comagmas, which appear as
A= (A,6%) = (A,54) with 6% called the F-diagonal of A.

A homomorphism of magmas is a C-morphism f such that the diagram

M— 4N

Fo) Y9 povy

”

IThe prefix “non-" stands for “not required”.
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is commutative. We denote by
Homp(M,N) = {f € Home(M,N) | fun = unF(f) }
the set of magma homomorphisms M — N.
If f € Homp(M, N) is invertible in C, then f~! € Homg (N, M).
If M is a magma, then F(M) is a magma with
pron = F(par)

Obviously pp € Homp (F(M), M).

Similarly, if (A,d4) is a comagma, so is (F(A),F(d4)). (We don’t elaborate
much on comagma homomorphisms, as there is no real need for this.)

A magma M is called stable if pps is an isomorphism. For a stable magma M
the magma F'(M) is stable as well.

A magma M is called universal if for any magma N the set Homp (M, N) has
exactly one element. In other words, M is an initial object in the category of
magmas.

A key fact is that universal magmas are stable:

(1.3) Lemma. If M is a universal magma, then pps is an isomorphism.

Proof: Let s: M — F(M) be the unique magma homomorphism. Then uprs =
idps by uniqueness. Moreover

spv = pronF(s) = F(um)F(s) = F(pms) = F(idy) =idpary O

(It was this computation which started this paper.)

§2. Convolutions
Let A be a comagma and let M be a magma.
(2.1) Definition. The self-map
cp: Home(A, M) — Home (A, M)
cr(f) = pmF(f)oa

is called convolution.
A C-morphism f: A — M is called c-stable (convolution-stable) if cg(f) = f.
We denote by
Sp(A, M) ={f € Home(A, M) | cp(f) = f}

the set of c-stable C-morphisms A — M.

(2.2) Example. Let F(V) = V®? in the category of R-modules. Then cp(f) =
f*f is the convolution square of an R-module homomorphism from an R-coalgebra
to an R-algebra (see for instance [3, 1.6 Convolution, p. 32]).

We use the notations (k,h > 0)
s Home (F¥(A), F**1(M)) — Home (F(4), F" (M)
u(f) = nenany f = F"(uar) f
§: Home(F*1(A), F*(M)) — Home (F*(A), F"(M))
5(f) = foprcay = FF*(04)
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These maps and

F: Home(F*(A), F*"(M)) — Home (F*1(A), M (M)
[ F(f)
commute whenever the composites are defined. More precisely, on

Home (F*(A), F"(M))

one has
o = op (k,h > 1)
ukF = Fpu (k>0,h>
§F = F§ (k>1,h>0

For instance,
(WE)(f) = penon F(f) = F(ppe-10n) F(f) = F(upr-1on) f) = (Fr)(f)
Note that F', uF', §F and the convolution
c=pdF =ouF

are defined on Home (F*(A), F*(M)) for k,h > 0.
In particular, the diagram

yields 4 commutative square diagrams (one for each corner) and 2 commutative
triangles. On the c-stable subsets (defined by pdF = id) these induce bijections

Sp(A, M) +——=—— Sp(F(A), M)

Sp(A,F(M)) +=— Sp(F(A), F(M))

§3. Limits
For a comagma A let

L(F,A) = Lim (F*¥(A), F*(5,4))

k—o0

and let
jr: FF(A) — L(F, A
k. (-) k( ) k> 0)
Jk = Jer1 F7(04a)

be the corresponding morphisms. In particular, jo is a morphism A — L(F, A).
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Thus a sequence of C-morphisms
op: FF(A) - N
with
ek = o1 F"(54)
defines a C-morphism
¢ = Lim ¢i: L(F,A) - N
k—o0

and any C-morphism ¢: L(F, A) — N is of this form by taking ¢ = @ji.
We consider L(F, A) as magma with

prcr.ay: F(L(F, A)) = Lim (FEF(A), FF(04)) = L(F, A)
the colimit of the sequence
i1 FFTH(A) — L(F, A)
so that

prrAF (k) = Jrtt
This means that fi7,(p 4y is induced by the identity maps on FFHL(A):

L(F, A): A pay E L g2y
HL(F,A)T / /
FIL(F,A):  F(A) —200, p2ogy 200, gy

(3.1) Lemma. The magma L(F, A) is stable.
Proof: The inverse s of puir(r 4) is the colimit of the sequence
sjk = F(jr-1): F*(A) = F(L(F,4))  (k>1)

as can be seen from the commutative diagram

Jk F(r-1) F(jk)[ Jk+1 W\F(jk)
k
Fr(A) 0y PRL(A) == FH1(4) == F}*1(4)

with L = L(F, A).
On the other hand, if (M, ups) is stable, then

(Ma /LJVI) = L(Fv (Ma :U'JT;))

since all F*(u;;') are isomorphisms.
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(3.2) Remark. If F = id¢ is the identity functor, then a comagma is just an
endomorphism ¢ € End¢(A). In this case L(F, A) is the standard construction to
invert . For example, in the category of abelian groups consider L = L(id, (%, 9))
with 0 the multiplication by 2. Then

= Li 73 )y=7[k
L_@(ZHZA ) = Z[5]
pr(z) = 3z

(3.3) Proposition. For any magma M, the map

Home (L(F, A), M) — Home (A, M)

@ = ¢jo

induces a bijection of subsets

Homp(L(F,A), M) — Sp(A, M)
Proof: For a C-morphism ¢: L(F, A) — M the corresponding sequence

or = pjp: FFA) = M

satisfies

(3.4) ok = Qry1FF(64)

If ¢ is a magma homomorphism, the commutative diagrams

orer:  FMPLA) L pmA) —F M

}d WL&L(F,A) ]LM

Flpr):  FM1(A) 29 p(r(F, 4) 7 F(ar)
yield
(3.5) Vr1 = paF(or)

Together with (3.4) this implies
ok = i F (1) F*(04) = cp(pr)
so that ¢y, € Sp(FF(A), M).
In particular wjo = @o € Sp(A,M). On the other hand, (3.5) shows that
¢ = Limy, is determined by ¢g. (One has ¢r = (uF)*(¢o) in the notation
—
of §2.) O

It follows that L(F, A) is universal if and only if Sp(A4, N) consists of a single
element.

(3.6) Example. A constant functor is a functor with constant value on objects
and sending a morphism to the identity.

Let F(Z) =Y be a constant functor. Then an F-magma is a pair (M,Y — M)
and (Y,idy ) is universal.

In this case L(F, A) = (Y,idy) for any A. Indeed, F*(A) =Y, F¥(§4) = idy
for k > 1. Moreover, Sp(A, N) consists of unda.
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An initial object 0 of C is a comagma with dy the unique morphism 0 — F(0).

(3.7) Corollary. Let 0 be an initial object of C. Then L(F,0) is a universal
F-magma.

Proof: The unique element of Home (0, M) is clearly c-stable and therefore the only
element of Sp(0, M). The claim follows from Proposition (3.3). O
§4. Free magmas

Given the endofunctor F' and an object X of C, define the endofunctor Fx of C
by

Fx(M)= XTI F(M)
Fx(f) =idx ILF(f)

In other words, F'x is the coproduct of the constant functor with value X and F'.
Or, if ®x is the endofunctor

ox(V)=X1IY
Ox(f) =idx I f
then Fx is the composite
Fx =®xoF
It follows that Fx commutes with colimits kLim since F' and ®x do.

— 00
An Fx-magma M consists of an F-magma M and a C-morphism Ap;: X — M:
par = ars i) : X LF(M) — M

In the following definition we assume the existence of an initial object 0, but see
Remark (4.3).

(4.1) Definition. The free F-magma on X is the universal Fx-magma
M(F,X) = L(Fx,0)
Hence (abbreviating Mx = M (F, X))
(Mx, gy Anix)
is universal among triples
(M,p: F(M) - M,\: X - M)
Since universal magmas are stable (Lemma (1.3)) it follows that

(AMX 7/—L§IX)

(4.2) XTOF(Myx) ——— My
is an isomorphism. We call (4.2) the F-decomposition of the free F-magma on X.
(4.3) Remark. One has

L(Fx,0) = L(Fx,F}(0))  (h>0)

The Fx-comagma
Fx(0)=XII0=X

can be defined without reference to 0 as follows.
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One considers X as Fx-comagma with
ox: X > Fx(X) =X F(X)

the inclusion of the first term.
For an Fx-magma M and a C-morphism f: X — M one finds

cry (f) = g Fx (f)ox = Au

as can be seen by following the commutative diagram

be cry () M
Sx e | = O udy)
XUFX) — 22U o x11r(r)
=idx IIF(f)

Hence Sp, (X, M) = {A\y} and L(Fx,X) is a universal Fx-magma.
Therefore one may generally define the free F-magma on X as

M(F,X)=L(Fx,X)
(4.4) Summary. The free F-magma on X is the limit of terms
M =X
M, = X 11 F(X)
M; = X 11 F(M,)
My = X 11 F(Ms)

with the transitions given by the identity on X and the F-transform of the preceding
transition morphism.

§5. Examples
(5.1) Example. If F' = idc¢ is the identity functor, then

k
FR) =] X=X x{1,....k}
h=1
and the free F-magma Mx = M(id¢, X) on X is
My =XxN=XIXIOXII---
with Ay, = idx x {1} the inclusion of the first term and upr,, = idx x {+1} the
shift to the right.
For a triple (M, pu: M — M, X\: X — M) the corresponding morphism ¢: Mx —
M is given by
Pl X x {k} = p* 1A
The F-decomposition (4.2) is the isomorphism
XII(X xN) = X xN
induced from the bijection

Ny, 5% N
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(5.2) Example. We consider the case of classical magmas. So let C = Sets and
F(Z) = Z? (this stands of course for F(Z) = Z x Z, F(f) = f x f).
Then the free magma M (F, X) on X is the limit of
M, =X
My = X 11 X?
My = X 11 (X 11 X?)?
= XTI X?II(X x X?) I (X? x X)II (X% x X?)
My = XTI (X1 (X ITX?)%)?2

This limit is actually a union with M1 \ My consisting of the parenthesized
expressions with maximal depth of nested paren pairs equal to k (here X2 = (X x X)
counts for 1 pair).

In contrast, in [5, p.18] (also in [2, Chapter I, §7.1, p.81], [1, p.17]) the free
magma on X (denoted as My) is defined as follows:

X, =X
X, = H X, xX, (n>2)
ptg=n
My =[] Xa
n=1

This description corresponds to the filtration by length with first terms
X=X
Xy =X?
X3 = (X x X)) II(X? x X)
Xy=(X x (X x X)) (X x (X? x X))
I (X% x X?)
IT((X x X?) x X)II((X?x X) x X)
The filtration by length is more natural and convenient for classical magmas.
However for general F' there is no notion similar to length.
The F-decomposition (4.2) is
Mx = XTI M%
as noted in [5, Properties 2), p. 18] and in [2, p.81], [1, p. 17].
(5.3) Example. Similar remarks apply to multi-magmas (see (1.2)). Here the
F-decomposition (4.2) is
My = X 11 ]_[ ME
n>2
In [4] it is called arity-decomposition ([4, (1.3), p.6]) and an indispensable tool for
inductive definitions and proofs.
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(5.4) Example. More generally, let P be a set of ordered finite nonempty sets
and consider in Sets the endofunctor
F(z)y=1[ 2"
Iep

This set up includes Examples (5.1) (for C = Sets), (5.2), (5.3).

The general construction of M (F, X) (Definition (4.1)) establishes the existence
of free F-magmas right away without much ado about the details of F'.

One way to construct the free F-magma My directly is to consider parenthetical
expressions with nested “I-paren pairs” looking like this

(- 04|1|)1

Alternatively, Mx can be identified with the set of isomorphism classes of finite
rooted planar trees with labels as follows: Each leaf (a vertex of valency 1, excluding
the root) is marked with an element of X. Further, for each inner node (a vertex
with valency > 2) the ordered set of incoming edges (coming from a leaf) is identified
with some I € P (so the valency of the node is |I| + 1).

If |I| =1 for some I € P, then the subsets of Mx of a given number of leaves
(the length in the preceding examples) are not finite already for | X| = 1 since any
number of nodes of valency 2 is possible.

In the particular case

F(z)=Z
(the case P = {{x}}) the element
(x,k) e Mx =X xN
(see Example (5.1)) is represented in terms of parenthetical expressions by

with k — 1 paren pairs and in terms of trees by

LTeoe—>—o > o o——>—+TOOL

with k& — 1 inner nodes.
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