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You are looking at the text “F -magmas” [pdf].

Introduction

A (classical) magma is a multiplication in the simplest sense, a set M together
with a map µ : M ×M →M .

In Bourbaki (Algebra) such a pair (M,µ) is called a magma with µ the compo-
sition law on M [2, Chapter I, §1, 1. Definition 1, p. 1]. The term magma appears
also in Bourbaki (Groupes et algèbres de Lie) [1, Chap. II, §2 Algèbres de Lie libres,
p. 17] and in Serre (Lie algebras and Lie groups) [5, Chap. IV. Free Lie Algebras,
1. Free magmas, Definition 1.1, p. 18].

If MX is the free magma on a set X, the map

(∗) X q (MX ×MX)→MX

given by inclusion and multiplication is bijective [5, Properties 2), p. 18]. A similar
fact holds for multi-magmas as described in [4], see [4, (1.3), p. 6].

The decomposition MX = X qM2
X is immediate from the explicit construction

of MX in [5], but can be also directly deduced from the universality of X → MX .
Namely one may define right away on X qM2

X the structure of a magma (that is,
a multiplication) and the universality of MX gives a map MX → X qM2

X yielding
the inverse of (∗).

The starting point of this text was to formalize this argument. We ended up
with a very simple generalization of magmas, F -magmas. Here F is an endofunc-
tor on a category C and an F -magma is an object M together with a morphism
µM : F (M)→M .

The basic idea to construct the free F -magma on an object X of C is to take
the limit of a straightforward iteration, see Summary (4.4). The rest of the paper
arose from that.

If C has colimits and F preserves filtered colimits there are universal F -magmas
and the free F -magma on an object. Further, the bijectivity of (∗) generalizes to
the F -decomposition (4.2).

Interestingly, in the case of classical magmas the construction of free magmas is
different from that in [5]. The result is the same of course, but the constructions
yield different filtrations. See Example (5.2) and also Example (5.3).

The dual notion of an F -comagma appears naturally when constructing univer-
sal F -magmas. I haven’t looked much into F -comagmas themselves and further
possible interplays with F -magmas.

There is an apparent formal similarity of convolution-stable morphisms between
comagmas and magmas (see §2 and Proposition (3.3)) to twisting morphisms for dif-
ferential graded associative (co)algebras [3, Chapter 2, Twisting Morphisms, p. 37].
Again, I haven’t looked into this further.

https://www.math.uni-bielefeld.de/~rost/assoc2.html#magmas
https://www.math.uni-bielefeld.de/~rost/data/magmas.pdf


F -MAGMAS 3

General provisions

The general framework is a category C and an endofunctor F : C → C of C.
Beginning in §3 we assume that colimits (aka direct limits) of the form

L = Lim
k→∞

Xk

exist in C and that F preserves such limits:

F (L) = Lim
k→∞

F (Xk)

From §4 on we assume that C has coproducts XqY and an initial object 0 (that
is, HomC(0, X) consists of single element). The latter is not really necessary, see
Remark (4.3).

The basic example is the category Sets of sets and F (Z) = Z2. Here X q Y is
disjoint union and 0 = ∅.

Another example is the category of R-modules for some ring R and F (Z) = Z⊗2.
Here X q Y = X ⊕ Y is the direct sum and 0 is, well, 0.

§1. Magmas

(1.1) Definition.
An F -magma is a pair (M,µ) consisting of an object M of C and a C-morphism

µ : F (M)→M

An F -comagma is a pair (A, δ) consisting of an object A of C and a C-morphism

δ : A→ F (A)

(1.2) Examples. In Sets let F (Z) = Z2. Then an F -magma is a magma in the
classical sense, consisting of a set M and a map M2 →M , see [5, p. 18].

In Sets let

F (Z) =
∐
n≥2

Zn

Then an F -magma is a multi-magma in the sense of [4].
Let R be a ring and let F (V ) = V ⊗2 in the category of R-modules. Then an F -

magma is an R-algebra (non-unital, non-associative, non-commutative).1 Similarly,
an F -comagma is an R-coalgebra.

In the following (until §4) the functor F is fixed and we call an F -magma simply
a magma. Similarly for comagmas.

A magma is mostly written in the form M = (M,µFM ) = (M,µM ) and µFM
is called the F -multiplication of M . Similarly for comagmas, which appear as
A = (A, δFA) = (A, δA) with δFA called the F -diagonal of A.

A homomorphism of magmas is a C-morphism f such that the diagram

M N

F (M) F (N)

f

F (f)

µM µN

1The prefix “non-” stands for “not required”.
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is commutative. We denote by

HomF (M,N) = { f ∈ HomC(M,N) | fµM = µNF (f) }

the set of magma homomorphisms M → N .
If f ∈ HomF (M,N) is invertible in C, then f−1 ∈ HomF (N,M).
If M is a magma, then F (M) is a magma with

µF (M) = F (µM )

Obviously µM ∈ HomF (F (M),M).
Similarly, if (A, δA) is a comagma, so is (F (A), F (δA)). (We don’t elaborate

much on comagma homomorphisms, as there is no real need for this.)
A magma M is called stable if µM is an isomorphism. For a stable magma M

the magma F (M) is stable as well.
A magma M is called universal if for any magma N the set HomF (M,N) has

exactly one element. In other words, M is an initial object in the category of
magmas.

A key fact is that universal magmas are stable:

(1.3) Lemma. If M is a universal magma, then µM is an isomorphism.

Proof : Let s : M → F (M) be the unique magma homomorphism. Then µMs =
idM by uniqueness. Moreover

sµM = µF (M)F (s) = F (µM )F (s) = F (µMs) = F (idM ) = idF (M) �

(It was this computation which started this paper.)

§2. Convolutions

Let A be a comagma and let M be a magma.

(2.1) Definition. The self-map

cF : HomC(A,M)→ HomC(A,M)

cF (f) = µMF (f)δA

is called convolution.
A C-morphism f : A → M is called c-stable (convolution-stable) if cF (f) = f .

We denote by

SF (A,M) = { f ∈ HomC(A,M) | cF (f) = f }
the set of c-stable C-morphisms A→M .

(2.2) Example. Let F (V ) = V ⊗2 in the category of R-modules. Then cF (f) =
f ∗f is the convolution square of an R-module homomorphism from an R-coalgebra
to an R-algebra (see for instance [3, 1.6 Convolution, p. 32]).

We use the notations (k, h ≥ 0)

µ : HomC(F
k(A), Fh+1(M))→ HomC(F

k(A), Fh(M))

µ(f) = µFh(M)f = Fh(µM )f

δ : HomC(F
k+1(A), Fh(M))→ HomC(F

k(A), Fh(M))

δ(f) = fδFk(A) = fF k(δA)
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These maps and

F : HomC(F
k(A), Fh(M))→ HomC(F

k+1(A), Fh+1(M))

f 7→ F (f)

commute whenever the composites are defined. More precisely, on

HomC(F
k(A), Fh(M))

one has

µδ = δµ (k, h ≥ 1)

µF = Fµ (k ≥ 0, h ≥ 1)

δF = Fδ (k ≥ 1, h ≥ 0)

For instance,

(µF )(f) = µFh(M)F (f) = F (µFh−1(M))F (f) = F (µFh−1(M)f) = (Fµ)(f)

Note that F , µF , δF and the convolution

c = µδF = δµF

are defined on HomC(F
k(A), Fh(M)) for k, h ≥ 0.

In particular, the diagram

HomC(A,M) HomC(F (A),M)

HomC(A,F (M)) HomC(F (A), F (M))

µF

Fc
δF

δ

δF

µF

µ

δ

µ

yields 4 commutative square diagrams (one for each corner) and 2 commutative
triangles. On the c-stable subsets (defined by µδF = id) these induce bijections

SF (A,M) SF (F (A),M)

SF (A,F (M)) SF (F (A), F (M))

'

F '

'

'

§3. Limits

For a comagma A let

L(F,A) = Lim
k→∞

(F k(A), F k(δA))

and let

jk : F k(A)→ L(F,A)

jk = jk+1F
k(δA)

(k ≥ 0)

be the corresponding morphisms. In particular, j0 is a morphism A→ L(F,A).
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Thus a sequence of C-morphisms

ϕk : F k(A)→ N

with

ϕk = ϕk+1F
k(δA)

defines a C-morphism

ϕ = Lim
k→∞

ϕk : L(F,A)→ N

and any C-morphism ϕ : L(F,A)→ N is of this form by taking ϕk = ϕjk.
We consider L(F,A) as magma with

µL(F,A) : F (L(F,A)) = Lim
k→∞

(F k+1(A), F k+1(δA))→ L(F,A)

the colimit of the sequence

jk+1 : F k+1(A)→ L(F,A)

so that

µL(F,A)F (jk) = jk+1

This means that µL(F,A) is induced by the identity maps on F k+1(A):

L(F,A) : A F (A) F 2(A) · · ·

F (L(F,A)) : F (A) F 2(A) F 3(A) · · ·

δA F (δA)

µL(F,A)
id

F (δA)

id

F 2(δA)

(3.1) Lemma. The magma L(F,A) is stable.

Proof : The inverse s of µL(F,A) is the colimit of the sequence

sjk = F (jk−1) : F k(A)→ F (L(F,A)) (k ≥ 1)

as can be seen from the commutative diagram

L F (L) L F (L)

F k(A) F k+1(A) F k+1(A) F k+1(A)

s µL s

Fk(δA)

jk
F (jk−1)

F (jk) jk+1 F (jk)

with L = L(F,A). �

On the other hand, if (M,µM ) is stable, then

(M,µM ) = L(F, (M,µ−1M ))

since all F k(µ−1M ) are isomorphisms.
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(3.2) Remark. If F = idC is the identity functor, then a comagma is just an
endomorphism δ ∈ EndC(A). In this case L(F,A) is the standard construction to
invert δ. For example, in the category of abelian groups consider L = L(id, (Z, δ))
with δ the multiplication by 2. Then

L = Lim
−→

(Z
2−→ Z

2−→ · · · ) = Z[ 12 ]

jk(x) = 1
2k
x

µL(x) = 1
2x

(3.3) Proposition. For any magma M , the map

HomC(L(F,A),M)→ HomC(A,M)

ϕ 7→ ϕj0

induces a bijection of subsets

HomF (L(F,A),M)→ SF (A,M)

Proof : For a C-morphism ϕ : L(F,A)→M the corresponding sequence

ϕk = ϕjk : F k(A)→M

satisfies

ϕk = ϕk+1F
k(δA)(3.4)

If ϕ is a magma homomorphism, the commutative diagrams

ϕk+1 : F k+1(A) L(F,A) M

F (ϕk) : F k+1(A) F (L(F,A)) F (M)

jk+1 ϕ

F (jk)

id

F (ϕ)

µL(F,A) µM

yield

(3.5) ϕk+1 = µMF (ϕk)

Together with (3.4) this implies

ϕk = µMF (ϕk)F k(δA) = cF (ϕk)

so that ϕk ∈ SF (F k(A),M).
In particular ϕj0 = ϕ0 ∈ SF (A,M). On the other hand, (3.5) shows that

ϕ = Lim
−→

ϕk is determined by ϕ0. (One has ϕk = (µF )k(ϕ0) in the notation

of §2.) �

It follows that L(F,A) is universal if and only if SF (A,N) consists of a single
element.

(3.6) Example. A constant functor is a functor with constant value on objects
and sending a morphism to the identity.

Let F (Z) = Y be a constant functor. Then an F -magma is a pair (M,Y →M)
and (Y, idY ) is universal.

In this case L(F,A) = (Y, idY ) for any A. Indeed, F k(A) = Y , F k(δA) = idY
for k ≥ 1. Moreover, SF (A,N) consists of µNδA.
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An initial object 0 of C is a comagma with δ0 the unique morphism 0→ F (0).

(3.7) Corollary. Let 0 be an initial object of C. Then L(F, 0) is a universal
F -magma.

Proof : The unique element of HomC(0,M) is clearly c-stable and therefore the only
element of SF (0,M). The claim follows from Proposition (3.3). �

§4. Free magmas

Given the endofunctor F and an object X of C, define the endofunctor FX of C
by

FX(M) = X q F (M)

FX(f) = idX q F (f)

In other words, FX is the coproduct of the constant functor with value X and F .
Or, if ΦX is the endofunctor

ΦX(Y ) = X q Y
ΦX(f) = idX q f

then FX is the composite

FX = ΦX ◦ F
It follows that FX commutes with colimits Lim

k→∞
since F and ΦX do.

An FX -magma M consists of an F -magma M and a C-morphism λM : X →M :

µFX

M = (λM , µ
F
M ) : X q F (M)→M

In the following definition we assume the existence of an initial object 0, but see
Remark (4.3).

(4.1) Definition. The free F -magma on X is the universal FX -magma

M(F,X) = L(FX , 0)

Hence (abbreviating MX = M(F,X))

(MX , µ
F
MX

, λMX
)

is universal among triples

(M,µ : F (M)→M,λ : X →M)

Since universal magmas are stable (Lemma (1.3)) it follows that

(4.2) X q F (MX)
(λMX

,µF
MX

)
−−−−−−−−→MX

is an isomorphism. We call (4.2) the F -decomposition of the free F -magma on X.

(4.3) Remark. One has

L(FX , 0) = L(FX , F
h
X(0)) (h ≥ 0)

The FX -comagma

FX(0) = X q 0 = X

can be defined without reference to 0 as follows.
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One considers X as FX -comagma with

δX : X → FX(X) = X q F (X)

the inclusion of the first term.
For an FX -magma M and a C-morphism f : X →M one finds

cFX
(f) = µFX

M FX(f)δX = λM

as can be seen by following the commutative diagram

X M

X q F (X) X q F (M)

cFX
(f)

δX

FX(f)

= idXqF (f)

µ
FX
M

=(λM ,µF
M )

Hence SFX
(X,M) = {λM} and L(FX , X) is a universal FX -magma.

Therefore one may generally define the free F -magma on X as

M(F,X) = L(FX , X)

(4.4) Summary. The free F -magma on X is the limit of terms

M1 = X

M2 = X q F (X)

M3 = X q F (M2)

M4 = X q F (M3)

· · ·
with the transitions given by the identity on X and the F -transform of the preceding
transition morphism.

§5. Examples

(5.1) Example. If F = idC is the identity functor, then

F kX(0) =

k∐
h=1

X = X × {1, . . . , k}

and the free F -magma MX = M(idC , X) on X is

MX = X ×N = X qX qX q · · ·
with λMX

= idX × {1} the inclusion of the first term and µMX
= idX × {+1} the

shift to the right.
For a triple (M,µ : M →M,λ : X →M) the corresponding morphism ϕ : MX →

M is given by
ϕ|X × {k} = µk−1λ

The F -decomposition (4.2) is the isomorphism

X q (X ×N)
'−→ X ×N

induced from the bijection

N0
+1−−→ N
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(5.2) Example. We consider the case of classical magmas. So let C = Sets and
F (Z) = Z2 (this stands of course for F (Z) = Z × Z, F (f) = f × f).

Then the free magma M(F,X) on X is the limit of

M1 = X

M2 = X qX2

M3 = X q (X qX2)2

= X qX2 q (X ×X2)q (X2 ×X)q (X2 ×X2)

M4 = X q (X q (X qX2)2)2

· · ·

This limit is actually a union with Mk+1 \ Mk consisting of the parenthesized
expressions with maximal depth of nested paren pairs equal to k (hereX2 = (X×X)
counts for 1 pair).

In contrast, in [5, p. 18] (also in [2, Chapter I, §7.1, p. 81], [1, p. 17]) the free
magma on X (denoted as MX) is defined as follows:

X1 = X

Xn =
∐

p+q=n

Xp ×Xq (n ≥ 2)

MX =

∞∐
n=1

Xn

This description corresponds to the filtration by length with first terms

X1 = X

X2 = X2

X3 = (X ×X2)q (X2 ×X)

X4 = (X × (X ×X2))q (X × (X2 ×X))

q (X2 ×X2)

q ((X ×X2)×X)q ((X2 ×X)×X)

The filtration by length is more natural and convenient for classical magmas.
However for general F there is no notion similar to length.

The F -decomposition (4.2) is

MX = X qM2
X

as noted in [5, Properties 2), p. 18] and in [2, p. 81], [1, p. 17].

(5.3) Example. Similar remarks apply to multi-magmas (see (1.2)). Here the
F -decomposition (4.2) is

MX = X q
∐
n≥2

Mn
X

In [4] it is called arity-decomposition ([4, (1.3), p. 6]) and an indispensable tool for
inductive definitions and proofs.
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(5.4) Example. More generally, let P be a set of ordered finite nonempty sets
and consider in Sets the endofunctor

F (Z) =
∐
I∈P

ZI

This set up includes Examples (5.1) (for C = Sets), (5.2), (5.3).
The general construction of M(F,X) (Definition (4.1)) establishes the existence

of free F -magmas right away without much ado about the details of F .
One way to construct the free F -magma MX directly is to consider parenthetical

expressions with nested “I-paren pairs” looking like this

(α1 · · ·α|I|)I
Alternatively, MX can be identified with the set of isomorphism classes of finite

rooted planar trees with labels as follows: Each leaf (a vertex of valency 1, excluding
the root) is marked with an element of X. Further, for each inner node (a vertex
with valency≥ 2) the ordered set of incoming edges (coming from a leaf) is identified
with some I ∈ P (so the valency of the node is |I|+ 1).

If |I| = 1 for some I ∈ P , then the subsets of MX of a given number of leaves
(the length in the preceding examples) are not finite already for |X| = 1 since any
number of nodes of valency 2 is possible.

In the particular case
F (Z) = Z

(the case P = {{∗}}) the element

(x, k) ∈MX = X ×N

(see Example (5.1)) is represented in terms of parenthetical expressions by

(· · · ((x)) · · ·)
with k − 1 paren pairs and in terms of trees by

x root

with k − 1 inner nodes.
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