A PFISTER FORM INVARIANT FOR ETALE ALGEBRAS

MARKUS ROST

Let k be a field of characteristic different from 2. We denote by GW(k) the Witt-Grothendieck ring of k.

For $a \in k^*$ we denote $k_a = k[t]/(t^2 - a)$. Further we denote

$$[[a]] = \langle 1 \rangle - \langle a \rangle$$

This is a 0-dimensional element of GW(k), with image $\langle\!\langle a \rangle\!\rangle$ in the Witt ring. We fix a quadratic extension $L = k_a$.

The multiplicative norm in GW for quadratic extensions. The conjugation in L is denoted by $\alpha \mapsto \overline{\alpha}$. We consider the additive trace map

$$T_{L/k}: GW(L) \to GW(k)$$

and the multiplicative norm map

$$N_{L/k}: GW(L) \to GW(k)$$

One has

$$N_{L/k}(x+y) = N_{L/k}(x) + T_{L/k}(x\bar{y}) + N_{L/k}(y)$$

and

$$N_{L/k}(\langle \alpha \rangle) = \langle N_{L/k}(\alpha) \rangle$$

for $\alpha \in L^*$.

Lemma 1. For $\alpha \in L^*$ one has

$$N_{L/k}(\langle\!\langle \alpha \rangle\!\rangle) = \langle\!\langle T_{L/k}(\alpha), -aN_{L/k}(\alpha) \rangle\!\rangle + [[a]]$$

Proof.

$$\begin{split} N_{L/k}(\langle\!\langle \alpha \rangle\!\rangle) &= N_{L/k}(\langle\!\langle 1, -\alpha \rangle\!) \\ &= N_{L/k}(\langle\!\langle 1 \rangle\!\rangle) + T_{L/k}(\langle\!\langle -\overline{\alpha} \rangle\!\rangle) + N_{L/k}(\langle\!\langle -\alpha \rangle\!\rangle) \\ &= \langle\!1 \rangle + \langle\!\langle -T_{L/k}(\alpha) \rangle\!\langle 1, aN_{L/k}(\alpha) \rangle\!\rangle + \langle\!N_{L/k}(\alpha) \rangle \\ &= \langle\!1, -T_{L/k}(\alpha) \rangle\!\langle 1, aN_{L/k}(\alpha) \rangle\! + \langle\!N_{L/k}(\alpha) \rangle[[a]] \end{split}$$

Corollary 1. Let n > 0 and let f be a n-fold Pfister form over L. Then $N_{L/k}(f) - [[a]]^n$

 $is \ a \ 2n\ fold \ P\ fister \ form \ over \ k.$

Proof. For $\alpha \in L^*$ one has $\langle\!\langle -aN_{L/k}(\alpha)\rangle\!\rangle[[a]] = 0$. Hence Lemma 1 gives $N_{L/k}(\alpha) = \prod_{i=1}^{N} ||T_{L/k}(\alpha)| = \sum_{i=1}^{N} ||T_$

$$N_{L/k}(\langle\!\langle \alpha_1, \ldots, \alpha_n \rangle\!\rangle) = \prod_i \langle\!\langle T_{L/k}(\alpha_i), -aN_{L/k}(\alpha_i) \rangle\!\rangle + \lfloor\![a]\rfloor^2$$

and the claim is clear.

Date: November 23, 2002.

Invariants for etale algebras over a quadratic extension. Let Θ be a cohomological (or Witt group) invariant for etale algebras E over L of some fixed degree n. That is, for each field F over k and each etale extension E of $F \otimes L$ of degree n we are given an element $\Theta(E) \in H(F)$, compatible with the restriction maps for morphisms $F \to F'$. We denote by Θ_L the induced invariant given by $\Theta_L(E) = \Theta(E)_L \in H(F \otimes L).$

Proposition 1. Suppose $\Theta_L = 0$. Then Θ is constant.

Proof. A versal parameter space for our objects E is the Weil restriction Z = $R_{L/k}(\mathbf{A}^n \setminus \Delta)$ of the versal parameter space $\mathbf{A}^n \setminus \Delta$ (with Δ the discriminant locus of normed polynomials of degree n). One has $R_{L/k}(\mathbf{A}^n) = \mathbf{A}^{2n}$. Thus Z is an open subvariety of \mathbf{A}^{2n} . Its complement Δ' is a divisor birational isomorphic to $\mathbf{A}^n \times \Delta \times \operatorname{Spec} L.$

The invariant Θ defines a versal class $\Theta_{\text{gen}} \in H(k(Z))$ unramified on Z. If $\Theta_L = 0$, then Θ_{gen} is unramified in Δ' as well, since $k(\Delta')$ contains L. Thus Θ_{gen} is unramified on all of \mathbf{A}^{2n} .

Serre's splitting principle. A cohomological (or Witt group) invariant for etale algebras E over k (of some fixed degree) which vanishes on multiquadratic extensions is trivial.

(A multiquadratic extension is a product of extensions of degree 1 or 2.)

The reduced trace form S_E . For an etale extension E of degree n let q_E be its trace form, let

$$\omega_n = \begin{cases} \langle 2, 2, ..., 2 \rangle \; (\operatorname{rank} m) & \text{if } n = 2m \\ \langle 1, 2, ..., 2 \rangle \; (\operatorname{rank} m + 1) & \text{if } n = 2m + 1 \end{cases}$$

and let

$$S_E = q_E - \omega_n$$

to be considered as an element of GW(k). One has dim $S_E = m$. For extensions E, F of even degree and $a \in k^*$ one has

$$S_{E \times k} = S_E$$
$$S_{E \times F} = S_E + S_F$$
$$S_{k_a} = \langle 2a \rangle$$

If E is multiquadratic, then S_E is given by an honest quadratic form of dimension m. Although this is not true in general, S_E has some properties of a *m*-dimensional quadratic form. Here are two of these properties (due to Serre):

$$\lambda^i(S_E) = 0$$
 if $i > m$
 $w_i(S_E) = 0$ if $i > m$

They are immediate from Serre's splitting principle. Theorem 1 below yields another one.

$\mathbf{2}$

The Pfister form P(E). Let

$$P(E) = P(E/k) = \sum_{i=0}^{m} \lambda^i(S_E) = \sum_{i=0}^{\infty} \lambda^i(S_E)$$

Note that dim $P(E) = 2^m$. If E is multiquadratic, then it is easy to see that P(E) is a *m*-fold Pfister form.

We first note some elementary properties: Let E, F be of even degree and $a \in k^*$. Then

$$P(E \times k) = P(E)$$
$$P(E \times F) = P(E)P(F)$$
$$P(k_a) = \langle 1, 2a \rangle = \langle \langle -2a \rangle \rangle$$

These statements are clear from the definitions and the standard properties of the λ -operations. For the multiplicativity property one may also resort to Serre's splitting principle and reduce to the trivial case of multiquadratic extensions.

Theorem 1. P(E) is a m-fold Pfister form.

Proof. One may assume that k has no proper field extensions of odd degree. Then, by the multiplicativity property of P, we may further assume that E is a field extension of a quadratic extension $L = k_a$.

Let r be the degree of E/L. The case r = 1 is clear. Otherwise r = 2s. Let

$$\Theta(E) = P(E/k) - N_{L/k} (P(E/L)) + [[a]]^{\dagger}$$

By induction on the degree and by Corollary 1 it suffices to show $\Theta(E) = 0$.

The class $\Theta(E)$ defines an invariant as considered in Proposition 1. One has

$$\Theta(E)_L = P(E \times \overline{E}) - P(E)P(\overline{E}) = 0$$

(with $\bar{}$ denoting the conjugation of L/k). Thus Θ is constant.

It remains to check that $\Theta(E) = 0$ for some specific E. Thus we may assume that $E = (F \times \cdots \times F) \otimes L$ for any given quadratic extension F of k. Using the multiplicativity properties of P and $N_{L/k}$ and Lemma 1 one reduces to the case $E = F \otimes L$.

Take $F = k \times k$. Then $S_{E/k} = \langle 2a, 2a \rangle$ and therefore $P(E/k) = \langle \langle -2a, -2a \rangle \rangle = \langle \langle -1, -a \rangle \rangle$. Furthermore, $S_{E/L} = \langle 2 \rangle$, $P_{E/L} = \langle \langle -2 \rangle \rangle$. Therefore $N_{L/k}(P(E/L)) = \langle \langle -4, -4a \rangle \rangle + [[a]]$ by Lemma 1. The claim follows.

One may also take $F = k_{-1}$. In this case the trace forms of E/L and E/k are hyperbolic. Thus $S_{E/k} = \langle -2, -2 \rangle$ and $P(E/k) = \langle \langle 2, 2 \rangle \rangle$ is hyperbolic. Moreover $S_{E/L} = \langle -2 \rangle$, $P_{E/L} = \langle \langle 2 \rangle \rangle$ and $N_{L/k} (P(E/L)) = \langle \langle 4, -4a \rangle \rangle + [[a]]$ by Lemma 1. Again the claim follows.

Proposition 2. For the invariant e_m of P(E) in $H^m(k, \mathbb{Z}/2)$ one has

$$e_m(P(E)) = \sum_{i=0}^m (-1)^{m-i} w_i(S_E)$$

Proof. By Serre's splitting principle one may assume that E is multiquadratic. Both sides are multiplicative, and so one may assume $E = k_a$. In this case $q_E = \langle 2, 2a \rangle$, $P(E) = \langle \langle -2a \rangle \rangle$ and $w_1(S_E) = (2a)$.

Remark. I don't know any "explanation" of Theorem 1. What is the nature of P(E)? One can play around and base everything on $S'_E = \langle -1 \rangle S_E$ instead of S_E . Then

$$e_m(P(E)) = w_m(S'_E)$$

Let us normalize P(E) to have dimension 0 and write

$$P'(E) = P(E) - \langle\!\langle 1 \rangle\!\rangle^n$$

Then

$$P'(E) = \sum_{i=0}^{m} (-1)^{i} \lambda^{i} (S'_{E})$$

This way the Pfister form invariant appears as a sort of Euler characteristic.

Remark. One has $w(q_E) = w(S_E)(1+(2))^m = w(S_E)(1+m(2))$. It follows that

$$e_m(P(E)) = \sum_{i=0}^m (-1)^{m-i} w_i(q_E) + m(2) w_{m-1}(q_E)$$

Furthermore:

$$e_m(P(E)) = \sum_{i=0}^m (-2)^{m-i} w_i^{\text{gal}}(q_E)$$

I have not made up my mind about the preferred way to look at P(E).

Remark. If one develops the material in terms of S'_E and P'(E), then it seems natural to consider the normalized Pfister forms

$$[[a_1,\ldots,a_n]] = [[a_1]]\cdots[[a_n]] = \langle\!\langle a_1,\ldots,a_n\rangle\!\rangle - \langle\!\langle 1\rangle\!\rangle^n$$

of dimension 0. One gets the following variant of Lemma 1:

Lemma 2. For $\alpha \in L^*$ one has

$$N_{L/k}([[\alpha]]) = [[T_{L/k}(\alpha), -aN_{L/k}(\alpha)]] + [[2, a]]$$

Note that $[[2, a]]^2 = 0$ and $[[T_{L/k}(\alpha), -aN_{L/k}(\alpha)]][[2, a]] = 0.$

Corollary 2. Let $n \ge 2$ and let f be a normalized n-fold Pfister form over L. Then $N_{L/k}(f)$ is a normalized 2n-fold Pfister form over k.

Example. Let E be of degree 4. Then

$$q_E = \langle 1 \rangle + \langle c \rangle \langle -a, -b, ab \rangle$$

for some $a, b, c \in k^*$. One has $P(E) = \langle\!\langle a, b \rangle\!\rangle$.

Remark. Suppose k is ordered. Then the Pfister form P(E) is positive definite if and only if E is totally real.

Remark. One has

$$\wedge q_E = P(E) \langle\!\langle -2 \rangle\!\rangle^m$$

for even n = 2m and

$$\wedge q_E = P(E) \langle\!\langle -1 \rangle\!\rangle^{m+1}$$

for odd n = 2m + 1. This follows easily from Serre's splitting principle.

Remark (Serre). The Pfister form P(E) represents $2^m d$. Here $m = \lfloor n/2 \rfloor$ and d is the discriminant of E (and $n = \dim E$).

Beweis: this amounts to the equation $\langle 2^m d \rangle P(E) = P(E)$ in W(k), which is true when E is multiquadratic, hence is true in general.

Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA

E-mail address: rost@math.ohio-state.edu *URL:* http://www.math.ohio-state.edu/~rost