ON QUADRATIC FORMS ISOTROPIC OVER THE FUNCTION FIELD OF A CONIC

MARKUS ROST

Consider a quadratic extension $L=F(\sqrt{a})$ of a field $F($ Char $F \neq 2)$. The behaviour of quadratic forms over F under base extension $\varphi \rightarrow \varphi_{L}$ is well understood, since any anisotropic form φ is isomorphic to $\psi \perp\langle 1,-a\rangle \varrho$ with forms ψ, ϱ over F such that ψ_{L} is anisotropic [S, 2. Sect. 5]. This implies that the anisotropic part $\left(\varphi_{L}\right)_{\text {an }}$ of φ_{L} is isomorphic to ψ_{L} and therefore already defined over F and that if φ is anisotropic and φ_{L} is hyperbolic then φ is a multiple of $\langle 1,-a\rangle$.

Now let K be the function field of a conic, i.e. K is for some $a, b \in F^{*}$ isomorphic to the fraction field of $R=F[s, t] /\left(s^{2}-a t^{2}-b\right)$. Then K is the universal splitting field of the form $\langle 1,-a,-b\rangle$ and in view of the decomposition mentioned above it is natural to ask whether a form φ which becomes isotropic over K contains a subform similar to $\langle 1,-a,-b\rangle$. This however is not true in general; see [L, Sect. 6] for further information. The purpose of this note is to prove
Proposition. Let φ be a form over F. Then there exist a number p, forms φ_{i}, ψ_{i} $(i=0, \ldots, p)$ and elements $c_{i} \in F^{*}(i=0, \ldots, p-1)$ such that $\varphi=\varphi_{0}$ and
i) $\varphi_{i} \simeq c_{i}\langle 1,-a\rangle \perp \psi_{i}, \quad i=0, \ldots, p-1$;
ii) $\varphi_{i+1} \simeq c_{i} b\langle 1,-a\rangle \perp \psi_{i}, \quad i=0, \ldots, p-1$;
iii) $\left(\left(\varphi_{p}\right)_{K}\right)_{\text {an }} \cong\left(\left(\varphi_{p}\right)_{\text {an }}\right)_{K}$.

This proposition shows that the extension $K \mid F$ has similar splitting properties as the quadratic extension $L \mid F$:
Corollary. Let φ be a form over F. Then there exists a form ψ over F such that $\left(\varphi_{K}\right)_{\text {an }}$ is isomorphic to ψ_{K}. If φ is anisotropic and φ_{K} is hyperbolic then φ is a multiple of $\langle 1,-a,-b, a b\rangle$.

The first statement of the corollary has been proved by Arason in [ELW, Appendix II]; it follows from the proposition by taking $\psi=\left(\varphi_{p}\right)_{\text {an }}$, since all φ_{i} are isomorphic over K. The second statement is well known, see e.g. [A, Sect. 2] or $[S, 4$. Sect. 5$]$; it is a consequence of the proposition and Witt cancellation. The method of proof presented here is direct and constructive and might indicate a way to handle the extension $K \mid F$ also for other questions.

Note that $R=F[t] \oplus s F[t]$ as F-vector space. Define $d: R \rightarrow \mathbb{N} \cup\{-\infty\}$ by

$$
d(P+s Q)=\max \{\operatorname{deg} P, 1+\operatorname{deg} Q\} \quad \text { for } P, Q \in F[t]
$$

(here $\operatorname{deg} 0=-\infty$). Moreover let $R_{n}=\{r \in R \mid d(r) \leq n\}$. R_{n} is a F-vector subspace of R and one has $R_{0}=F$ and $R_{n} \cdot R_{m} \subset R_{n+m}$.
Lemma. Let $\varphi: V \rightarrow F$ be an anisotropic form and suppose that for some $n \geq 1$ there exist

$$
v \in\left(V \otimes_{F} R_{n}\right) \backslash\left(V \otimes_{F} R_{n-1}\right)
$$

such that $\varphi(v)=0 \in R$.
Then there exists a subspace $L \subset V$ of dimension 2 such that

1) $\varphi \mid L \simeq c\langle 1,-a\rangle$ for some $c \in F^{*}$,
2) there exists a nonzero $\tilde{v} \in V \otimes_{F} R_{n-1}$ such that $\tilde{\varphi}(\tilde{v})=0$, where $\tilde{\varphi}=b(\varphi \mid L) \perp$ $(\varphi \mid W)$ and $W=L^{\perp}$.

Proof of the proposition. We use induction on $\operatorname{dim} \varphi_{\mathrm{an}}$. It is clear that we may assume that φ is anisotropic and φ_{K} is isotropic.

Since K is the fraction field of R there exist $n \geq 0$ and a nonzero $v \in V \otimes_{F} R_{n}$ such that $\varphi(v)=0$. We proceed by induction on n. If $n=0$, then $v \in V$ and φ would be isotropic over F; hence $n \geq 1$. We may assume $v \notin V \otimes_{F} R_{n-1}$ and we take $\varphi_{1}=\tilde{\varphi}$ where $\tilde{\varphi}$ is the form in the lemma. If $\tilde{\varphi}$ is anisotropic we apply the induction hypothesis for $n-1$ and if $\tilde{\varphi}$ is isotropic we apply the induction hypothesis for $\operatorname{dim} \tilde{\varphi}_{\text {an }}<\operatorname{dim} \varphi$. In any case we find forms $\tilde{\varphi}=\tilde{\varphi}_{0}, \tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{p}$ as in the proposition and $\varphi=\varphi_{0}, \varphi_{i}=\tilde{\varphi}_{i-1}(i=1, \ldots, p+1)$ is a sequence as required.

In order to prove the lemma we write

$$
v=v_{0}+\sum_{i=1}^{n} v_{i} s t^{i-1}+w_{i} t^{i} ; \quad v_{i}, w_{i} \in V
$$

Claim. $\left\langle v_{n}, w_{n}\right\rangle_{\varphi}=0$ and $\varphi\left(w_{n}\right)=-a \varphi\left(v_{n}\right)$.
Proof of the claim:

$$
\begin{aligned}
0 & =\varphi(v) \bmod R_{2 n-1} \\
& =\varphi\left(v_{n}\right) s^{2} t^{2(n-1)}+2\left\langle v_{n}, w_{n}\right\rangle_{\varphi} s t^{2 n-1}+\varphi\left(w_{n}\right) t^{2 n} \bmod R_{2 n-1} \\
& =\left(\varphi\left(v_{n}\right) a+\varphi\left(w_{n}\right)\right) t^{2 n}+2\left\langle v_{n}, w_{n}\right\rangle_{\varphi} s t^{2 n-1} \bmod R_{2 n-1}
\end{aligned}
$$

The claim follows since $t^{2 n}$ and $s t^{2 n-1}$ define F-independent vectors of $R / R_{2 n-1}$.
Note that $v_{n} \neq 0$ and $w_{n} \neq 0$ since $v \notin V \otimes_{F} R_{n-1}$ and φ is anisotropic. Let

$$
L=F[z] /\left(z^{2}-a\right)
$$

and let $\alpha \in L^{*}$ be the class of z. We identify L with $\left\langle v_{n}, w_{n}\right\rangle_{F} \subset V$ by $1 \rightarrow v_{n}$ and $\alpha \rightarrow w_{n}$. Then the claim shows that $\varphi \mid L=c N_{L \mid F}$ with $c=\varphi\left(v_{n}\right)$ and $N_{L \mid F}: L \rightarrow F, e+\alpha f \rightarrow e^{2}-a f^{2}$ the norm form.

Now write $v=x+y$ with $x \in L \otimes_{F} R$ and $y \in W \otimes_{F} R, W=L^{\perp}$. Then $x \in(s+t \alpha) t^{n-1}+L \otimes_{F} R_{n-1}$ and $y \in W \otimes_{F} R_{n-1}$.

Put $\tilde{v}=b^{-1}(s-t \alpha) x+y$. Then \tilde{v} is a zero of the form $\tilde{\varphi}=b(\varphi \mid L) \perp(\varphi \mid W)$, since

$$
\begin{aligned}
b \varphi\left(b^{-1}(s-t \alpha) x\right) & =b c N_{L \mid F}\left(b^{-1}(s-t \alpha) x\right)=b c b^{-2}\left(s^{2}-a t^{2}\right) N_{L \mid F}(x) \\
& =c N_{L \mid F}(x)=\varphi(x)
\end{aligned}
$$

It remains to show that $\tilde{v} \in V \otimes_{F} R_{n-1}$. In order to do this we have to show that $(s-t \alpha) x \in L \otimes_{F} R_{n-1}$.

Case I: $n \geq 2$. Then there exist $\mu, \lambda \in L$ and $\tilde{x} \in L \otimes_{F} R_{n-2}$ such that

$$
x=(s+t \alpha) t^{n-1}+(s+t \alpha) t^{n-2} \mu+t^{n-1} \lambda+\tilde{x}
$$

We have with $\omega=t^{n-1}+t^{n-2} \mu$ and $\bar{\lambda}$ the conjugate of λ under $\alpha \rightarrow-\alpha$:

$$
\begin{aligned}
0 & =\varphi(v) \bmod R_{2 n-2}=\varphi(x) \bmod R_{2 n-2} \\
& =c N_{L \mid F}\left((s+t \alpha) \omega+t^{n-1} \lambda\right) \bmod R_{2 n-2} \\
& =c\left[N_{L \mid F}((s+t \alpha) \omega)+\operatorname{tr}_{L \mid F}\left((s+t \alpha) \omega t^{n-1} \bar{\lambda}\right)+N_{L \mid F}\left(t^{n-1} \lambda\right)\right] \bmod R_{2 n-2} \\
& =c\left[b \cdot N_{L \mid F}(\omega)+\operatorname{tr}_{L \mid F}\left((s+t \alpha) t^{2 n-2} \bar{\lambda}\right)+0\right] \bmod R_{2 n-2} \\
& =c\left[0+s t^{2 n-2} \operatorname{tr}_{L \mid F} \bar{\lambda}+t^{2 n-1} \operatorname{tr}_{L \mid F}(\alpha \bar{\lambda})\right] \bmod R_{2 n-2}
\end{aligned}
$$

Hence the traces of $\bar{\lambda}$ and $\alpha \bar{\lambda}$ are zero and therefore $\lambda=0$. Finally:

$$
(s-t \alpha) x=b \omega+(s-t \alpha) \tilde{x} \in L \otimes_{F} R_{n-1} .
$$

Case II: $n=1$. Then $x=s+t \alpha+\lambda$ for some $\lambda \in L$ and it suffices to show $\lambda=0$. However

$$
0=\varphi(v)=b+s \operatorname{tr}_{L \mid F} \bar{\lambda}+t \operatorname{tr}_{L \mid F} \alpha \bar{\lambda}+N_{L \mid F}(\lambda)+\varphi(y)
$$

and therefore again $\lambda=0$ since $\varphi(y) \in F$.

References

[A] Arason, J. Kr.: Cohomologische Invarianten quadratischer Formen. J. Algebra 36, 448-491 (1975).
[ELW] Elman, R., Lam, T. Y., Wadsworth, A. R.: Amenable fields and Pfister extensions. Conference on quadratic forms 1976, Queen's pap. Pure Appl. Math. 46, 445-491 (1977).
[L] Lam, T. Y.: Fields of u-invariant 6 after A. Merkuriev. In: "Ring theory 1989" in honour of S. A. Amitsur, Isr. Conf. Proc., vol. 1, pp. 12-30.
[S] Scharlau, W.: Quadratic and Hermitian forms. Berlin-Heidelberg-New York: Springer 1985.

NWF I - Mathematik, Universität Regensburg, D-93040 Regensburg, Germany
E-mail address: markus.rost@mathematik.uni-regensburg.de
URL: http://www.physik.uni-regensburg.de/~rom03516

