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Consider a quadratic extension L = F (
√
a) of a field F (CharF 6= 2). The be-

haviour of quadratic forms over F under base extension ϕ→ ϕL is well understood,
since any anisotropic form ϕ is isomorphic to ψ ⊥ 〈1,−a〉% with forms ψ, % over F
such that ψL is anisotropic [S, 2. Sect. 5]. This implies that the anisotropic part
(ϕL)an of ϕL is isomorphic to ψL and therefore already defined over F and that if
ϕ is anisotropic and ϕL is hyperbolic then ϕ is a multiple of 〈1,−a〉.

Now let K be the function field of a conic, i.e. K is for some a, b ∈ F ∗ isomorphic
to the fraction field of R = F [s, t]/(s2 − at2 − b). Then K is the universal splitting
field of the form 〈1,−a,−b〉 and in view of the decomposition mentioned above
it is natural to ask whether a form ϕ which becomes isotropic over K contains a
subform similar to 〈1,−a,−b〉. This however is not true in general; see [L, Sect. 6]
for further information. The purpose of this note is to prove

Proposition. Let ϕ be a form over F . Then there exist a number p, forms ϕi, ψi
(i = 0, . . . , p) and elements ci ∈ F ∗ (i = 0, . . . , p− 1) such that ϕ = ϕ0 and

i) ϕi ' ci〈1,−a〉 ⊥ ψi, i = 0, . . . , p− 1;
ii) ϕi+1 ' cib〈1,−a〉 ⊥ ψi, i = 0, . . . , p− 1;
iii)

(
(ϕp)K

)
an
∼=
(
(ϕp)an

)
K

.

This proposition shows that the extension K|F has similar splitting properties
as the quadratic extension L|F :

Corollary. Let ϕ be a form over F . Then there exists a form ψ over F such that
(ϕK)an is isomorphic to ψK . If ϕ is anisotropic and ϕK is hyperbolic then ϕ is a
multiple of 〈1,−a,−b, ab〉.

The first statement of the corollary has been proved by Arason in [ELW, Ap-
pendix II]; it follows from the proposition by taking ψ = (ϕp)an, since all ϕi are
isomorphic over K. The second statement is well known, see e.g. [A, Sect. 2]
or [S, 4. Sect. 5]; it is a consequence of the proposition and Witt cancellation. The
method of proof presented here is direct and constructive and might indicate a way
to handle the extension K|F also for other questions.

Note that R = F [t]⊕ sF [t] as F -vector space. Define d : R→ N ∪ {−∞} by

d(P + sQ) = max{degP, 1 + degQ} for P , Q ∈ F [t]

(here deg 0 = −∞). Moreover let Rn = { r ∈ R | d(r) ≤ n }. Rn is a F -vector
subspace of R and one has R0 = F and Rn ·Rm ⊂ Rn+m.

Lemma. Let ϕ : V → F be an anisotropic form and suppose that for some n ≥ 1
there exist

v ∈ (V ⊗F Rn) \ (V ⊗F Rn−1)
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such that ϕ(v) = 0 ∈ R.
Then there exists a subspace L ⊂ V of dimension 2 such that
1) ϕ|L ' c〈1,−a〉 for some c ∈ F ∗,
2) there exists a nonzero ṽ ∈ V ⊗F Rn−1 such that ϕ̃(ṽ) = 0, where ϕ̃ = b(ϕ|L) ⊥

(ϕ|W ) and W = L⊥.

Proof of the proposition. We use induction on dimϕan. It is clear that we may
assume that ϕ is anisotropic and ϕK is isotropic.

Since K is the fraction field of R there exist n ≥ 0 and a nonzero v ∈ V ⊗F Rn
such that ϕ(v) = 0. We proceed by induction on n. If n = 0, then v ∈ V and
ϕ would be isotropic over F ; hence n ≥ 1. We may assume v 6∈ V ⊗F Rn−1 and
we take ϕ1 = ϕ̃ where ϕ̃ is the form in the lemma. If ϕ̃ is anisotropic we apply
the induction hypothesis for n − 1 and if ϕ̃ is isotropic we apply the induction
hypothesis for dim ϕ̃an < dimϕ. In any case we find forms ϕ̃ = ϕ̃0, ϕ̃1, . . . , ϕ̃p
as in the proposition and ϕ = ϕ0, ϕi = ϕ̃i−1 (i = 1, . . . , p + 1) is a sequence as
required.

In order to prove the lemma we write

v = v0 +
n∑
i=1

vist
i−1 + wit

i; vi, wi ∈ V .

Claim. 〈vn, wn〉ϕ = 0 and ϕ(wn) = −aϕ(vn).

Proof of the claim:

0 = ϕ(v) mod R2n−1

= ϕ(vn)s2t2(n−1) + 2〈vn, wn〉ϕst2n−1 + ϕ(wn)t2n mod R2n−1

= (ϕ(vn)a+ ϕ(wn))t2n + 2〈vn, wn〉ϕst2n−1 mod R2n−1.

The claim follows since t2n and st2n−1 define F -independent vectors of R/R2n−1.

Note that vn 6= 0 and wn 6= 0 since v 6∈ V ⊗F Rn−1 and ϕ is anisotropic. Let

L = F [z]/(z2 − a)

and let α ∈ L∗ be the class of z. We identify L with 〈vn, wn〉F ⊂ V by 1 → vn
and α → wn. Then the claim shows that ϕ|L = cNL|F with c = ϕ(vn) and
NL|F : L→ F , e+ αf → e2 − af2 the norm form.

Now write v = x + y with x ∈ L ⊗F R and y ∈ W ⊗F R, W = L⊥. Then
x ∈ (s+ tα)tn−1 + L⊗F Rn−1 and y ∈W ⊗F Rn−1.

Put ṽ = b−1(s − tα)x + y. Then ṽ is a zero of the form ϕ̃ = b(ϕ|L) ⊥ (ϕ|W ),
since

bϕ(b−1(s− tα)x) = bcNL|F (b−1(s− tα)x) = bcb−2(s2 − at2)NL|F (x)

= cNL|F (x) = ϕ(x).

It remains to show that ṽ ∈ V ⊗F Rn−1. In order to do this we have to show that
(s− tα)x ∈ L⊗F Rn−1.

Case I: n ≥ 2. Then there exist µ, λ ∈ L and x̃ ∈ L⊗F Rn−2 such that

x = (s+ tα)tn−1 + (s+ tα)tn−2µ+ tn−1λ+ x̃
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We have with ω = tn−1 + tn−2µ and λ̄ the conjugate of λ under α→ −α:

0 = ϕ(v) mod R2n−2 = ϕ(x) mod R2n−2

= cNL|F ((s+ tα)ω + tn−1λ) mod R2n−2

= c[NL|F ((s+ tα)ω) + trL|F ((s+ tα)ωtn−1λ̄) +NL|F (tn−1λ)] mod R2n−2

= c[b ·NL|F (ω) + trL|F ((s+ tα)t2n−2λ̄) + 0] mod R2n−2

= c[0 + st2n−2 trL|F λ̄+ t2n−1 trL|F (αλ̄)] mod R2n−2

Hence the traces of λ̄ and αλ̄ are zero and therefore λ = 0. Finally:

(s− tα)x = bω + (s− tα)x̃ ∈ L⊗F Rn−1.

Case II: n = 1. Then x = s + tα + λ for some λ ∈ L and it suffices to show
λ = 0. However

0 = ϕ(v) = b+ s trL|F λ̄+ t trL|F αλ̄+NL|F (λ) + ϕ(y)

and therefore again λ = 0 since ϕ(y) ∈ F .
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