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OVERVIEW 5

Preface

You are looking at Notes on root systems [pdf].

Here is a prelude: [13] (Notes on root systems (two roots), [pdf]).

Currently this is a draft of a part of projected notes on root systems.

There is more to come, hopefully.

Still collecting material. . .

Plans

• Recover a root system R from the set R = R/{±1} and the set of triples
in R consisting of “three roots with sum zero”. Here the topic of “four
roots with sum zero” plays an important role. This is motivated in parts
by Tits 1966 (“Sur les constantes. . . ”) [20].

• Get a better understanding of “folding” (any root system is obtained
from a simply laced one by taking invariants). Actually, this part will be
hopefully about “unfolding”.

• Present a construction of the Chevalley Lie algebra of a root system.
Basically as in Tits 1966 (“Sur les constantes. . . ”) [20], but hopefully
simpler.

• Along the way, a lot of special things showed up. Ever noticed the linear
bijection A3 → G2?

Overview

The program is very far from complete. Even the goals are not really clear.
Currently the purpose of these notes is to pin down some considerations. The
notion of a “C-matrix” appeared as a first step.

Chapter I “Main” contains the current version of the notes, so to speak.

Section 1 “C-matrices” contains a new (tentative) definition, which see.
Section 2 “Root systems” derives the properties of root systems needed for

C-matrices. The arguments are slightly non-standard.
Section 3 “The root system of a finite C-matrix” is a stub. Expanding it is the

next task.

Chapter II “Further sections” contains sections to be merged later.

Section 4 “Preliminaries” will be used in Section 3.

Chapter III “Appendices” contains what its title says.

Chapter IV “Unordered snippets” contains what its title says.

http://www.math.uni-bielefeld.de/~rost/root-systems.html#root-systems-notes
https://www.math.uni-bielefeld.de/~rost/data/root-systems-notes.pdf
http://www.math.uni-bielefeld.de/~rost/root-systems.html#root-systems-two-roots
https://www.math.uni-bielefeld.de/~rost/data/root-systems-two-roots.pdf




CHAPTER I

Main

§1. C-matrices

The notion of a C-matrix comprises properties of the family of integers

n(a, b) = a∗(b)

in a root system.

(1.1) Definition. A C-matrix is a triple (R, τ,N) where R is a set,

τ : R→ R

is a fix-point free involution on R and

N : R×R→ Z

is a function such that the following conditions (C1)–(C6) hold for a, b ∈ R:

N(τ(a), b) = N(a, τ(b)) = −N(a, b)(C1)

N(a, a) = 2(C2)

N(a, b) = N(b, a) = 2 ⇒ a = b(C3)

N(a, b) = 0 ⇔ N(b, a) = 0(C4)

N(a, b)N(b, a) ∈ {0, 1, 2, 3, 4}(C5)

There exists s(a, b) ∈ R with(C6)

N(d, s(a, b)) = N(d, b)−N(a, b)N(d, a) (d ∈ R)(C6s)

N(s(a, b), e) = N(b, e)−N(b, a)N(a, e) (e ∈ R)(C6t)

The transpose of a C-matrix (R, τ,N) is the C-matrix (R, τ,N t), where

N t : R×R→ Z

N t(a, b) = N(b, a)

A C-matrix (R, τ,N) is called symmetric if N t = N .
A C-matrix (R, τ,N) is called finite if R is finite.

(1.2) Remark. The triple (R, τ,N t) is indeed a C-matrix as well. For instance,
(C6t) is (C6s) with N replaced by N t.

We derive some properties of a C-matrix (R, τ,N).

(1.3) Lemma. Let a, b ∈ R with

N(d, a) = N(d, b) (d ∈ R)

or with

N(a, e) = N(b, e) (e ∈ R)

7



8 I. MAIN

Then a = b.

Proof : In the first condition, taking d = a, b yields N(a, a) = N(a, b), N(b, a) =
N(b, b), respectively. From (C2) one gets N(a, b) = 2 = N(b, a), thus a = b by (C3).
Similarly for the second condition. �

(1.4) Corollary. The element s(a, b) in (C6) is unique.
One has

s(τ(a), b) = s(a, b)

s(a, τ(b)) = τ(s(a, b))

Moreover

s(a, a) = τ(a)

and, if N(a, b)N(b, a) = 0,

s(a, b) = b

Proof : The first claim is immediate from Lemma (1.3). Then the τ -variances follow
from (C1) and the remaining claims from (C2) resp. (C4). �

In particular, a C-matrix comes along with the map

s : R×R→ R

(a, b) 7→ s(a, b)

Let a, b ∈ R and write

m = M(a, b) = N(a, b)N(b, a) ∈ {0, 1, 2, 3, 4}
for the integer appearing in (C5). Since m takes only non-negative values, it follows
that N(a, b), N(b, a) are both ≥ 0 or ≤ 0. After possibly replacing a by τ(a)
(see (C1)) and interchanging a, b, one can arrange

0 ≤ N(a, b) ≤ N(b, a)

Under this assumption, exactly one of the following conditions holds (by looking at
the factorizations of m and using (C4)):

m = 0, N(a, b) = N(b, a) = 0(N0)

m = 1, 2, 3, 4, N(a, b) = 1, N(b, a) = m(N1)

m = 4, N(a, b) = N(b, a) = 2, a = b(N2)

(1.5) Lemma. The map s is completely determined by its restriction to pairs a, b
with

N(a, b) = 1 or N(b, a) = 1

and also by its restriction to pairs a, b with

N(a, b) = −1 or N(b, a) = −1

Proof : In the cases (N0), (N2), the element s(a, b) is known anyway, cf. Corol-
lary (1.4). The remaining case (N1) has to be considered up to a permutation of
a, b. By the sign rule (C1) and Corollary (1.4) there remain the cases N(a, b) = ±1,
N(b, a) = ±1 where the signs can be chosen arbitrarily (with two alternatives for-
mulated in the Lemma). �
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1.0.1. Infinite C-matrices. I have no special interest in specific infinite C-
matrices. However it might be clarifying to see which definitions and arguments
work smoothly in the infinite case as well.

For an infinite C-matrix (R, τ,N) I expect that every finite subset of R is
contained in a finite C-“submatrix” (a notion we haven’t defined yet, same for
irreducibility).

An irreducible infinite C-matrix should be a C-submatrix of one of the two
C-matrices given as limit via ⋃

n≥0

Dn,
⋃
n≥0

BCn

The maximal irreducible C-matrices should be these two together with G2, F4, E8.

(1.6) Remark. The axioms (C1)–(C6) for C-matrices have some redundancies.
For now Definition (1.1) serves as a convenient list of properties of root systems.

After the main constructions have been worked out, one may relax one or the other
axiom.

In the finite case (which we are mainly interested in anyway) one may probably
drop (C4), (C5). This will become clearer (I hope) after Section 3 has been com-
pleted (constructing a root system out of a finite C-matrix). Namely, (C4), (C5)
correspond to basic properties of root systems (usually proved using the finiteness
of the Weyl group).

However, we are more interested in relaxing condition (C6), see Remark (1.7).
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(1.7) Remark. (This discussion is preliminary.)
Let

X = N−1(−1) = { (a, b) | N(a, b) = −1 }
Consider the functions

u1, u2, v1, v2 : X → R

u2(a, b) = v1(a, b) = s(a, b)

u1(a, b) = v2(a, b) = s(b, a)

As we have just noticed, each of the pairs u1, u2 and v1, v2 determine the map s.
Condition (C6) yields

N(d, u2(a, b)) = N(d, b) +N(d, a) (d ∈ R)(1.8)

N(u1(a, b), e) = N(a, e) +N(b, e) (e ∈ R)(1.9)

and

N(d, v2(a, b)) = N(d, a)−N(b, a)N(d, a) (d ∈ R)(1.10)

N(v1(a, b), e) = N(b, e)−N(b, a)N(a, e) (e ∈ R)(1.11)

Conditions (1.8), (1.9) are particularly appealing as they have no factor N(b, a).
If I am not mistaken, under presence of (C1)–(C5) the existence of functions

u1, u2 : X → R

with (1.8), (1.9) imply (C6) with s defined by

s(a, b) = u2(a, b), s(b, a) = u1(a, b)
(
(a, b) ∈ X

)
The proof I have in mind at the moment is pretty long (and hasn’t been fully

worked out).
Further (again: if I am not mistaken), under presence of (C1)–(C5) the exis-

tence of functions
v1, v2 : X → R

with (1.10), (1.11) also imply (C6) with s defined by

s(a, b) = v1(a, b), s(b, a) = v2(a, b)
(
(a, b) ∈ X

)
Interestingly, the proof I have in mind is for the v1, v2-case considerably simpler

than for the u1, u2-case.
For the v1, v2-case I have no application in mind, except for a better under-

standing of the various possibilities to ensure condition (C6) for a C-matrix.
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§2. Root systems

In this section we define root systems and establish some (well known) proper-
ties. The goal is to show in the end that a root system defines a C-matrix (Propo-
sition (2.24)).

Along the way we do not shy away from further comments and discussions.

Our general reference for root systems is Serre 2001 (1966) [15, Chapter V.
Root systems, p. 24]. (I don’t have the French original.)

Another major reference: Bourbaki 1968 [3, Chapitre VI. Systèmes des racines,
p. 142], English translation: Bourbaki 2002 (1968) [4, Chapter VI. Root Systems,
p. 155].

2.1. Definition of root systems.

(2.1) Definition. A root system is a pair (V,R) where V is an R-vector space and

R ⊂ V \ {0}

is a subset of nonzero vectors in V such that the following conditions hold:

R is finite.(R0.1)

R generates V as R-vector space.(R0.2)

For each a ∈ R there exists an R-linear map(R1)

a∗ : V → R

with

a∗(R) ⊂ Z(R1.1)

a∗(a) = 2(R1.2)

b− a∗(b)a ∈ R (b ∈ R)(R1.3)

An element a ∈ R is called a root of the root system.
A linear form a∗ as in (R1) is called a coroot of a.
The dimension

n = dimR V

of V is called the rank of the root system.
One also speaks of R as a root system in V .

(2.2) Remark. Coroots are uniquely determined, see the subsequent Lemma (2.7).
Hence one may speak of the coroot a∗ of a.

The rank is finite by (R0.1), (R0.2).
One has

R = −R
(take b = a in (R1.3) and use (R1.2)).

2.1.1. Comments. Definition (2.1) adopts the definition in Bourbaki [3] for
the case of the ground field R. It is equivalent to the definition in Serre [15].

However it is formulated entirely in terms of coroots. This comes arguably
close to the definition of a C-matrix (Definition (1.1)). A side effect is that there
is no need for a preceding discussion of symmetries or reflections (to be considered
next).
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2.1.2. References. There are of course many places where root systems are
defined. Here is a list of related articles and books, most of which I haven’t digested
or looked at a long time ago (so this is rather a to-do list for myself).

Bourbaki [3], Serre [15] (see above).
Tits 1966 (“Sur les constantes. . . ”) [20, 3. Systèmes des racines, p. 37 (541)]

has almost the same wording as Definition (2.1) but assumes additionally that the
root system is reduced, that is Qa ∩R = {±a}.

Tits 1966 (“Normalisateurs de tores”) [19, 4.1. Systèmes des racines, p. 111]
starts with a free abelian group V , generated over Q by R and the intersection of
the hyperplanes ker a∗. R is reduced.

The notion of “root data” starts with a dual pair of root lattices, see SGA3 [6,
Exposé XXI, Donnés radicielles, M. Demazure, p. 85], Springer 1979 [16], Springer
2009 (1981) [17, 7. Weyl group, Roots, Root Datum, 7.4. Root data, p. 124]

Some books: (Springer, Humphreys, Humphreys, Fulton-Harris, Borel) [17, 9,
10, 7, 2].

Comments and further suggestions are welcome.

2.2. Duals and the trace. In the following, V can be a finitely generated
locally free module over some ring k. We are mainly interested in the cases k = Z,
Q, R. In the case of fields, V is a finite-dimensional vector space. When k = Z,
V is a finitely generated free abelian group. In any of these cases, V has a k-basis
(V ' kn).

The dual space of V is denoted by

V ∨ = Hom(V, k)

For a k-module W we identify

V ∨ ⊗W = Hom(V,W )

via the natural isomorphism

ϕ⊗ w 7→ (v 7→ ϕ(v)w)

In particular
V ∨ ⊗ V = End(V )

This way the trace map
trace : End(V )→ k

reads as evaluation:
trace(ϕ⊗ v) = ϕ(v)

2.3. Reflections. References:
Serre [15, Chapter V. Root systems, 1. Symmetries, p. 24–25],
Bourbaki 1968 [3, Chapitre V. Groupes engendrés par des réflexions, §2 Ré-

flexions, p. 66], Bourbaki 2002 [4, Chapter V. Groups generated by reflections, §2
Reflections, p. 70].

In the following, the ground field is R (or any field with char 6= 2, resp. char = 0
starting from Lemma (2.6)).

(2.3) Definition. A reflection in V is an endomorphism s of V which leaves a
hyperplane H ⊂ V pointwise fixed and such that the induced endomorphism on
the line V/H is multiplication by −1.

If v ∈ V \ {0}, a symmetry with vector v is a reflection in V with s(v) = −v.
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(The latter wording is very convenient. It has been taken from Serre [15].)
A decomposition

V = V−1 ⊕ V+1, rankV−1 = 1

yields a reflection with matrix (
−1 0
0 1

)
and any reflection is of this form with V±1 as eigenspaces (by Definition (2.3), the
eigenvalues are ±1 and the subspace of +1-eigenvectors has codimension 1). In
particular, a reflection s is of order 2:

s2 = 1

Other descriptions of reflections are

(2.4) Lemma. An endomorphism s is a reflection if and only if it is in

End(V ) = V ∨ ⊗ V

of the form

s = 1− ϕ⊗ v
with ϕ ∈ V ∨, v ∈ V such that

ϕ(v) = 2

(In this case s is a symmetry with vector v and V+1 = kerϕ.) �

(2.5) Lemma. An endomorphism s is a reflection if and only if t = 1− s has the
properties

rank t = 1

trace t = 2

(In this case V−1 = im t and V+1 = ker t.) �

2.3.1. Comment. Lemma (2.5) yields a quick description/definition of reflec-
tions in terms of the map

t = 1− s : V/V+1 → V−1

of rank 1. The “residual space” (1− s)(V ) ⊂ V appears also in other contexts, for
instance for s in an orthogonal group (in particular in characteristic 2).

2.3.2. Remark. Consider the integral 2× 2-matrices

A =

(
−1 0
0 1

)
, B =

(
−1 1
0 1

)
∈ GL2(Z)

When considered in GL2(R), both of A and B are reflections. However, when
passing to GL2(F2), A becomes the identity, while the B becomes a non-trivial
transvection.

Over the base ring Z, the matrix B is not diagonalizable: the eigenvectors(
1
0

)
,

(
1
2

)
span a subgroup of Z2 of index 2.
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On the other hand, B is conjugated in GL2(Z) to the permutation matrix(
0 1
1 0

)
Hence Z2 is a free module over the group {1, B} (B2 = 1).

It is not difficult to see that any s ∈ GL2(Z) which over R is a reflection is
conjugated in GL2(Z) to A or B.

For root systems, the following remark is important.

(2.6) Lemma. In a finite group of automorphisms of V , every element is diago-
nalizable and there is at most one reflection for a given −1-eigenspace.

Proof : Since char R = 0, Jordan blocks of size > 1 and with non-zero eigenvalue
have infinite order. Let s, s′ be two reflections with same −1-eigenspace and let

V = V−1 ⊕ V+1

be the eigenspace decomposition for s. The induced endomorphisms on V/V−1 are
the identity. Thus s, s′, ss′ have the form

s =

(
−1 0
0 1

)
, s′ =

(
−1 f
0 1

)
, ss′ =

(
1 −f
0 1

)
Hence f = 0 and so s′ = s. �

Given a root system (V,R), let

Aut(V,R) ⊂ GL(V )

be the subgroup of automorphisms leaving R invariant. Since R generates V , the
natural map Aut(V,R)→ ΣR to the permutation group of R is injective. Since R
is finite, it follows that Aut(V,R) is finite.

2.4. First properties of coroots. Let (V,R) be a root system.
Fix a family of coroots a∗ (a ∈ R) as in (R1).
For a root a, let

sa : V → V

sa = 1− a∗⊗ a
sa(v) = v − a∗(v)a

Since a∗(a) = 2 by (R1.2), the endomorphism sa is a reflection and a symmetry
with vector a. Its eigenspace decomposition is

V = aR⊕Ha

with +1-eigenspace the hyperplane

Ha = ker a∗ ⊂ V

Condition (R1.3) means that sa leaves R invariant,

sa(R) ⊂ R

that is, sa ∈ Aut(V,R).
We are ready to prove uniqueness of the coroots.
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(2.7) Lemma. Let
a∗, a∗′ : V → R

be two coroots of a. Then a∗′ = a∗.

Proof : The reflection sa and the reflection

s′a = 1− a∗′ ⊗ a
corresponding to a∗′ are both symmetries with vector a and in the finite group
Aut(V,R). Hence s′a = sa by Lemma (2.6) and the claim follows. �

Here comes an important coroot computation.

(2.8) Lemma. Let a, b ∈ R and let c = sa(b). Then

sc = sasbsa(2.9)

c∗ = b∗ ◦ sa(2.10)

c∗ = b∗ − b∗(a)a∗(2.11)

Proof : The first claim follows from Lemma (2.6), since both of sc and sasbs
−1
a are

symmetries with vector c and are in the finite group Aut(V,R).
The second claim follows then from an inspection of

sb = 1− b∗ ⊗ b
sasbsa = 1− (b∗ ◦ sa)⊗ sa(b)

sc = 1− c∗ ⊗ c
Making it explicit yields the third claim:

c∗(v) =
(
b∗ ◦ sa

)
(v) = b∗

(
v − a∗(v)a

)
=
(
b∗ − b∗(a)a∗

)
(v)

�

2.4.1. Comment. Let q be a definite Weyl invariant quadratic form on V
and let

〈v, w〉 = q(v + w)− q(v)− q(w)

be the associated symmetric bilinear form (so that 〈v, v〉 = 2q(v)). Then

a∗(v) =
〈a, v〉
q(a)

(a ∈ R)

The computation (2.11) follows also like this

c∗(v) =
〈c, v〉
q(c)

=
〈b− a∗(b)a, v〉

q(b)
= b∗(v)− 〈b

∗(a)a, v〉
q(a)

= b∗(v)− b∗(a)a∗(v)

using, of course,

(2.12)
a∗(b)

q(b)
=
〈a, b〉
q(a)q(b)

=
b∗(a)

q(a)

Strangely, I don’t know an explicit reference for (2.11). On the other hand, (2.10)
is part of establishing the inverse root system (not yet included in this text). Com-
ments and suggestions are welcome.

References for Weyl invariant quadratic forms:
Serre [15, Chapter V. Root systems, 5. Invariant quadratic forms, pp. 27],
Bourbaki 1968 [3, Chapitre VI. Systèmes des racines, pp. 143], Bourbaki 2002

(1968) [4, Chapter VI. Root Systems, pp. 156].
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2.5. Traces of elements of finite order in SL2(Z).

2.5.1. Prelude.

m = 2 + Trace(f) Trace Order Example sasb = f

0 −2 2
(−1 0

0 −1
) (−1 0

0 1

)(
1 0
0 −1

)
=
(−1 0

0 −1
)

1 −1 3
(
0 −1
1 −1

) (−1 1
0 1

)(
1 0
1 −1

)
=
(
0 −1
1 −1

)
2 0 4

(
0 −1
1 0

) (−1 1
0 1

)(
1 0
2 −1

)
=
(
1 −1
2 −1

)
3 1 6

(
0 −1
1 1

) (−1 1
0 1

)(
1 0
3 −1

)
=
(
2 −1
3 −1

)
4 2 1

(
1 0
0 1

)
-

The table will be explained soon. By the way, filling the empty spot yields
elements of order ∞:

m = 1 · 4 :

(
−1 1

0 1

)(
1 0
4 −1

)
=

(
3 −1
4 −1

)
= 1 +

(
1
2

)(
2 −1

)
m = 2 · 2 :

(
−1 2

0 1

)(
1 0
2 −1

)
=

(
3 −2
2 −1

)
= 1 + 2

(
1
1

)(
1 −1

)
Sometimes we write T (f) = trace(f) for the trace of an endomorphism f .

(2.13) Lemma. Let f ∈ SL2(Z) have finite order n. The possible traces of f are

T (f) = −2,−1, 0, 1, 2

If T (f) = −2, then f = −1. If T (f) = 2, then f = 1.
The corresponding orders are

n = 2, 3, 4, 6, 1

Proof : Each eigenvalue of f is an n-th root of unity. Since det(f) = 1, the two
eigenvalues are reciprocal, hence of the form cosϕ± i sinϕ for some ϕ. Moreover,

2 cosϕ = T (f) ∈ Z

is integral and |cosϕ| ≤ 1 yields the lists of possible traces.
If T (f) = ±2, there is only one eigenvalue ±1. By Lemma (2.6), f is diagonal-

izable, hence conjugated over R to ±1. Since ±1 is central, this means f = ±1.
The corresponding orders are the orders of the eigenvalues. �

2.6. Two roots. Let (V,R) be a root system.
For two roots a, b define the integer

m = m(a, b) = a∗(b)b∗(a) ∈ Z

(2.14) Lemma. One has

(2.15) m(a, b) ∈ {0, 1, 2, 3, 4}
and

m(a, b) = 0 ⇒ a∗(b) = b∗(a) = 0(2.16)

a∗(b) = b∗(a) = 2 ⇒ a = b(2.17)

Moreover

(2.18) m(a, b) = 4− trace(1− sasb)
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2.6.1. Comment. The trace description (2.18) of m(a, b) is currently not
used. However it is appealing, because it doesn’t explicitly refer to coroots, but
rather to generators of the Weyl (or Coxeter) group.

We give the 5-element set a prominent notation:

Ω = {0, 1, 2, 3, 4}
This is all about Ω!

We are going to prove Lemma (2.14).

For two roots a, b ∈ R let

La,b = aZ + bZ ⊂ V
be the subgroup generated by them. This is a free abelian group of rank 1 or 2.
By (R1.1) one has

sa(La,b) ⊂ La,b
2.6.2. Comment. One would like to speak of the root subsystem generated

by a, b. We plan to define later the notions of a root subsystem and of the root
subsystem generated by a subset of R. I think everybody knows what these mean,
but, strangely, there seems to be no precise discussion in the literature—comments
and suggestions are welcome. (There is a small subtlety about changing the ambient
vector space V .)

FIXME. The motivation for the following is to treat the cases

rankLa,b = 1, rankLa,b = 2

simultaneously. I am not sure yet whether this is a good idea or just an unnecessary
complication. Anyway, the following presentation is preliminary.

Lemma (2.14) follows of course also from standard references on the classifica-
tion of root systems of rank 2.

2.6.3. An abstract lattice. We consider an abstraction of La,b together with
the endomorphisms

Sa = sa|La,b, Sb = sb|La,b
Let

L0 = Z2

and let h, k ∈ Z. Then

α =

(
−1 h
0 1

)
= 1−

(
1
0

)(
2 −h

)
β =

(
1 0
k −1

)
= 1−

(
0
1

)(
−k 2

)
are reflections (in L0 ⊗R) with eigenvectors(

1
0

)
,

(
h
2

)
resp.

(
0
1

)
,

(
2
k

)
Note that

(2.19) γ = αβ =

(
hk − 1 −h
k −1

)
has trace

T (γ) = hk − 2
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(2.20) Remark. Section 2.5.1 lists α, β, γ for the cases

hk ∈ Ω = {0, 1, 2, 3, 4}
(h, k) = (0, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2)

Take

h = −a∗(b)
k = −b∗(a)

so that hk = m.
The epimorphism

λ : L0 → La,b

λ(x, y) = xa+ yb

has the properties

(2.21)
λ ◦ α = Sa ◦ λ
λ ◦ β = Sb ◦ λ

2.6.4. The case rankLa,b = 1. In this case U = kerλ has rank 1. (2.21)
shows α(U), β(U) ⊂ U . Hence U is contained in an eigenspace of α and of β. Since
a, b 6= 0, the only possibilities are(

h
2

)
,

(
2
k

)
∈ U

But then

0 = det

(
h 2
2 k

)
= hk − 4 = m− 4

Hence m = 4 and, after possibly changing a sign of a or b and interchanging a, b,
there are the two cases

(2.22)
a∗(b) = b∗(a) = 2

a∗(b) = 4, b∗(a) = 1

In the first case one gets h = k = −2 and U is generated by (1,−1), hence
a = b. We have the root system

{±a}

of type A1.
In the second case U is generated by (2,−1) and one gets b = 2a. We have the

root system

{±a,±2a}

of type BC1.

2.6.5. Comment. We plan to describe details for at least some of the partic-
ular root systems of the various types An, Bn, . . . later. For moment we refer to
Bourbaki [3], Serre [15].
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2.6.6. The case rankLa,b = 2. In this case λ is an isomorphism and γ has
finite order (since λγλ−1 = (sasb)|La,b and sasb ∈ Aut(V,R)). By Lemma (2.13)
one gets

m = 2 + T (γ) ∈ 2 + {−2,−1, 0, 1, 2} = Ω

Moreover, if m = 0, then γ = −1 and (2.19) shows a∗(b) = b∗(a) = 0. And if
m = 4, then γ = 1 which is impossible, cf. (2.19).

For the record:

m = 4 ⇔ rankLa,b = 1

and the first part of Lemma (2.14) is proved.
Finally let us show (2.18). If rankLa,b = 1, then sa = sb and the claim is clear.

Otherwise m 6= 4. The map

Φ: R2 (a, b)−−−→ V
(a∗, b∗)−−−−→ R2

has matrix (
2 a∗(b)

b∗(a) 2

)
∈M2(Z)

with determinant 4−m. But det Φ 6= 0 means that the vector space V is the direct
sum of Ha ∩Hb and La,b⊗R. Since 1− sasb vanishes on Ha ∩Hb, its trace can be
computed on La,b. One finds indeed

trace(1− sasb) = trace(1− γ) = 4−m

Lemma (2.14) is proved.

(2.23) Lemma. If a, b are R-proportional, say b = ta, then

t ∈ {±1,±2,±2−1}

Proof : If a, b are R-linearly dependent, then det Φ = 0. Hence m = 4 and we are
in the case rankLa,b = 1 which falls into the cases described in and after (2.22).
(For a simpler argument, see Serre [15, end of p. 25]). �

2.6.7. Summary. In the following R(a, b) is meant to be the root system
generated by a, b (as this notion is not yet defined, the reader may take for R(a, b)
the corresponding known root system of rank 2 with appropriate choices for a, b).

(1) If m(a, b) = 0, then a∗(b) = b∗(a) = 0 and R(a, b) is of type A1 ×A1.
(2) If m(a, b) = 1, then R(a, b) is of type A2.
(3) If m(a, b) = 2, then R(a, b) is of type B2.
(4) If m(a, b) = 3, then R(a, b) is of type G2.
(5) If m(a, b) = 4 and a∗(b) = 4, then b = 2a and R(a, b) is of type BC1.
(6) If m(a, b) = 4 and a∗(b) = 2, then b = a and R(a, b) is of type A1.

0

A1×A1

1

A2

2

B2

3

G2

4

BC1,A1
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2.6.8. Interlude. Here is a table from my schooldays. Its rows are related to
the root systems BC1, G2, B2, A2, A1 ×A1, respectively.

Werte der trigonometrischen Funktionen für 0◦, 30◦, 45◦, 60◦ und 90◦.

(nach Bronstein-Semendjajew1)

Winkel Bogen sin cos tan cot sec csc
0◦ 0 0 1 0 ∓∞ 1 ∓∞
30◦ 1

6π
1
2

√
3
2

√
3
3

√
3 2

√
3

3 2

45◦ 1
4π

√
2
2

√
2
2 1 1

√
2
√

2

60◦ 1
3π

√
3
2

1
2

√
3

√
3
3 2 2

√
3

3

90◦ 1
2π 1 0 ±∞ 0 ±∞ 1

2.6.9. Comment. Obviously we do not try be brief in our account of prop-
erties of root systems—in this regard, there is no better text than the booklet
Serre [15].

Features of our treatment are:

• The use of the lattice L0 clarifies, I think, the case distinction rankLa,b =
1, rankLa,b = 2.

• Weyl invariant quadratic forms are not used. The arguments are rather
“local” at two roots (but use the finiteness of R).

2.6.10. Comment. Clearly Weyl invariant quadratic forms provide a very
convenient tool (see Comment 2.4.1 for an example) and are normally used at a
very basic level.

(And, by the way, the group of integral Weyl invariant quadratic forms ap-
pears for the cohomological H3-invariant for the corresponding simply connected
Chevalley group. Reference: Garibaldi-Merkurjev-Serre 2003 [8, 6.10, 6.12, p. 118].)

Weyl invariant quadratic forms are usually obtained by choosing some definite
form and making it Weyl invariant by integration. Or one defines one right away
by taking ∑

a∈R
(a∗)2

as in Tits 1966 (“Sur les constantes. . . ”) [20, 3.2.1. La fonction λ, p. 38 (542)]. For
two given roots, there is a rather delightful construction, see Section 2.6.11.

Note that the section “Invariant quadratic forms” in Serre [15, Chapter V. Root
systems, 5. Invariant quadratic forms, p. 28] rather considers symmetric bilinear
forms 〈 , 〉. When starting with a quadratic form q, the coroot is given by the
inversion formula

a∗ =
a

q(a)
∈ V = V ∨

upon identifying V with its dual V ∨ by means of the bilinear form 〈 , 〉 of q. There
is no factor 2 as in the customary formula

a∗ =
2a

〈a, a〉
∈ V = V ∨

1From [5, p. 79]. In a recent edition, the table got split: [21, p. 59, p. 65]
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2.6.11. Prospect. Let L be a module of rank 2 (locally free, over some ring)
and let f ∈ End(L). Consider the quadratic map

qf : L→ Λ2L

qf (x) = x ∧ f(x)

(This is actually a linear module homomorphism

S2L→ Λ2L

x⊗2 7→ x ∧ f(x)

where S2L ⊂ L⊗2 is the submodule of tensors invariant under the switch involu-
tion.)

The map qf is a quadratic form in the usual sense (taking values in the base
ring) only after choosing a basis of the rank 1-module Λ2L.

The map qf is equivariant under f :

qf (f(x)) = f(x) ∧ f2(x) = Λ2(f)qf (x)

(by the way, Λ2(f) = det(f)).
Applying this to L = La,b (assuming the rank 2 case) and the rotation SaSb

(with Sa = sa|La,b) yields the quadratic map

qa,b : S2L→ Λ2L ' Z

qa,b(x) = x ∧ SaSb(x) = −Sa(x) ∧ Sb(x)

which can be turned into a quadratic form via

q′a,b(x) =
qa,b(x)

a ∧ b
∈ Z

The form q′a,b is invariant under the group W ⊂ GL(La,b) generated by Sa, Sb. It

is non-zero and definite if m 6= 0, 4 (if m = 0, 4, then SaSb = ∓1 and qa,b = 0).
One has for instance

qa,b(b) = b ∧ Sa(−b) = −b ∧ (−a∗(b)a)

and so

q′a,b(b) = −a∗(b)
We hope to discuss more details later. (Probably only after the inverse root system
given by the coroots has been established.)
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2.7. The C-matrix of a root system. Definition (2.1), Lemma (2.14), and
the coroot computation (2.11)

c = b− a∗(b)a
c∗ = b∗ − b∗(a)a∗

yield:

(2.24) Proposition. A root system R defines a C-matrix (R, τ,N) (called the
C-matrix of the root system) by taking

τ(a) = −a
and

N(a, b) = a∗(b)

where a∗ is the coroot of a.
The function s is given by the reflections of the root system as follows:

s(a, b) = sa(b)

�

If S ⊂ R is a base of the root system, the restriction of N to S × S is known
as the Cartan matrix with respect to S.

A root system with symmetric C-matrix (or Cartan matrices) is usually called
a simply laced root system.

§3. The root system of a finite C-matrix

Our goal is to turn a finite C-matrix into a root system. A first step is to
construct the ambient vector space V .

Let (R, τ,N) be a finite C-matrix.
We use the notations of Section 4.3.
We consider N : R×R→ Z as bilinear map

N : Z[R]× Z[R]→ Z(
e(a), e(b)

)
7→ N(a, b)

Taking the dual of the first factor yields

Ñ : Z[R]→ Z[R]

e(a) 7→
∑
d∈R

N(d, a)e(d)

One now puts

L = im Ñ , V = L⊗R

(Taking the dual of the second factor yields the lattice and vector space of the
inverse root system.)

To establish the desired properties needs some preparations.

To be continued. . .
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Further sections

This “chapter” contains preliminary sections to be merged later.

§4. Preliminaries (notations for sets)

Let M be a set and let k ≥ 0 be a non-negative integer.
The group of permutations of M is denoted by

ΣM = { f : M →M | f is bijective }
Particular cases are the standard permutation groups

Σk = Σ{1,...,k}

4.1. Subset notations. We write

SkM =

(
M

k

)
= {U ⊂M | |U | = k }

for the set of (unordered) k-element subsets of M . For an injective map f : M → N
of sets let

Skf : SkM → SkN
Skf({x1, . . . , xk}) = {f(x1), . . . , f(xk)}

be the induced map.
Moreover let

SkM = Mk/Σk

denote the set of unordered k-tuples in M (with possible repetitions). Its elements
are denoted by

[x1, . . . , xk] = Σk · (x1, . . . , xk)

For a map f : M → N of sets let

Skf : SkM → SkN

Skf([x1, . . . , xk]) = [f(x1), . . . , f(xk)]

be the induced map.
The set SkM contains the subsets

M = diagk(M),

(
M

k

)
containing the diagonal elements [x, . . . , x] and the tuples without repetitions, re-
spectively. The latter elements will be denoted by the corresponding k-element set
{x1, . . . , xk} as well.

Clearly

S2M =

(
M

2

)
∪ diag2(M)

23
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For k = 3 there is the decomposition

S3M =

(
M

3

)
∪ S2,1M ∪ diag3(M)

according to the cases {x1, x2, x3}, [x, x, y] (x 6= y), [x, x, x] (with S2,1M ⊂ S3M
the subset of triples with a single repetition).

4.2. Fix-point free involutions. Let

τ : M →M

be a fix-point free involution on M . This means τ(x) 6= x and τ(τ(x)) = x for
x ∈M . In other words, the group C2 = {1, τ} of order 2 acts freely on M .

Consider the natural action of τ on SkM (via Skτ). For odd k it is fix-point
free as well, since a fixed point [x1, . . . , xk] decomposes into pairs [xj , τ(xj)].

4.3. The groups Z[M ]. We denote by Z[M ] the free abelian group on M .
The generator for x ∈ M is sometimes denoted by the same letter x, for instance
in a group ring Z[G]. For clarity and emphasis, we normally use the notation ex or
even e(x). Thus

Z[M ] =
⊕
x∈M

Ze(x)

Given a fixed point free involution τ : M →M , we write

M = M/{1, τ}

for the set of orbits with the elements of M denoted as

[x] = {x, τ(x)} ∈M

Further we put

Z[M ] = Z[M ]/(1 + τ)Z[M ]

FIXME. This is an abuse of notation, it would be clearer to write

something like

Z[M ]−τ = Z[M ]/(1 + τ)Z[M ]

The group Z[M ] has the presentation with generators

E(x) = e(x) mod (1 + τ)Z[M ] (x ∈M)

and relations

E(τ(x)) = −E(x) (x ∈M)

Thus

Z[M ] =
⊕
w∈M

Zw

with the summands Z[x] ' Z generated by E(x) = −E(τ(x)). The involution τ

acts on Z[M ] by multiplication with −1, obviously.

(4.1) Remark. The group Z[M ] = Z[M ]/(1+τ)Z[M ] could be called the group of
anti-coinvariants. When allowing arbitrary involutions, there is a summand Z/2Z
for each fixed point.
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In the case M = {1, τ} one gets

Z(τ) = Z[{1, τ}]/(1 + τ)Z[{1, τ}]
that is, the group Z with τ acting by −1. Then

Z[M ] = H0

(
{1, τ},Z[M ]⊗ Z(τ)

)
4.3.1. Duals. The Z-duals are

HomZ(Z[M ],Z) = ZM = {f : M → Z}

HomZ(Z[M ],Z) =
(
Z(τ)M

)τ
= { f : M → Z | f(τ(x)) = −f(x) }

There are the natural inclusions

Z[M ]→ HomZ(Z[M ],Z)

e(a) 7→ δa

and

Z[M ]→ HomZ(Z[M ],Z)

E(a) 7→ δa − δ−a
where δa(b) is the Kronecker delta. If M is finite, these are bijections.





CHAPTER III

Appendices

§5. Traces of rotations of finite order

Here is a variation of the argument to get the possible traces as in Lemma (2.13).

For f ∈M2(k) the Caley-Hamilton theorem (which for 2×2-matrices is quickly
verified) says

f2 = T (f)f − det(f)

For f ∈ SL2(k) one gets

f2 = T (f)f − 1(5.1)

This gives a recursion for the powers fn, and a fortiori for their traces T (fn). If
f is of finite order, the sequence T (fn) is finite. So it is natural to check what
happens when starting from an integer T (f) ∈ Z.

In fact, one quickly succeeds to get the desired restrictions for T (f) by iterat-
ing f 7→ f2: Taking in (5.1) the trace yields

T (f2) = T (f)2 − 2(5.2)

One now observes that for the iterates of the function

q : R→ R

q(n) = n2 − 2

the sequence q◦k(n) (k ≥ 1) is bounded exactly for −2 ≤ n ≤ 2. Hence, if T (f) ∈ Z
and f has finite order, then indeed

T (f) ∈ {−2,−1, 0, 1, 2}
5.0.1. Comment 1. The behavior of the iterates is a bit easier to see after

the change of variables n 7→ n+ 2. Namely for

p : R→ R

p(n) = q(n− 2) + 2 =
(
(n− 2)2 − 2

)
+ 2

= (n− 2)2

= n+ (n− 1)(n− 4)

it is pretty obvious that

n < 0 ⇒ p(n) > 4

n > 4 ⇒ p(n) > n

Hence the p◦k(n) are bounded only for 0 ≤ n ≤ 4. This gives the restriction

T (f) + 2 ∈ {0, 1, 2, 3, 4}

27
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Note that in the context of “two roots” one has

m = T (f) + 2

cf. Section 2.5.1 and (2.18).

5.0.2. Comment 2. Let us also try for

T (1− f) = 2− T (f)

The corresponding variable change (for q it is n 7→ 2 − n, for p it is n 7→ 4 − n)
yields

r : R→ R

r(n) = 2− q(2− n) = 2−
(
(2− n)2 − 2

)
r(n) = 4− p(4− n) = 4− (4− n− 2)2

= 4− (n− 2)2 = n(4− n) = 4n− n2

This gives

(5.3) T (1− f2) = 4T (1− f)− T (1− f)2

The restriction for T (f) ∈ Z and f of finite order is

T (1− f) ∈ {0, 1, 2, 3, 4}

which is what we want anyway, cf. (2.18).

(5.4) Remark. We prefer (5.3) over (5.2) since it holds in any dimension for
f ∈ SLn(k) leaving a subspace of codimension ≤ 2 pointwise fixed.

5.0.3. Comment 3. The eigenvalues x, y of f ∈ SL2(k) lie universally in the
Laurent series ring

Z[x, y]/(xy − 1) = Z[x±1]

with T = x+ y = x+ x−1 corresponding to the trace of f . (5.2) is immediate:

(x2 + x−2) = (x+ x−1)2 − 2

5.0.4. Comment 4. (5.2) reflects the classical formula

(5.5) 2 cos 2ϕ = (2 cosϕ)2 − 2

For (5.5) the iteration argument yields, well, |cosϕ| ≤ 1.
Indeed, over Z[2−1, i] one has

Z[2−1, i][x, y]/(xy − 1) = Z[2−1, i][cos, sin]/(cos2 + sin2−1)

with x, y = cos±i sin and T = x+ y = 2 cos. This way the restriction −2 ≤ T ≤ 2
corresponds to |cos| ≤ 1.
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5.0.5. Comment 5 (dynamical systems). Pushing the excursion further,
we mention briefly the topic of dynamical systems and iteration of rational func-
tions.

The complex selfmap

C→ C

z 7→ z2 − 2

is a very special example. Its Julia set is the interval [−2, 2] (Beardon 1991 [1, p. 9,
p. 14, p. 18]).

(So it is very hard to find fractal images of the Julia set of z2 − 2. ,)
Not surprisingly, z2 − 2 is related to Chebyshev polynomials. Note that Bear-

don [1, p. 10] has two arguments to control iterations, one of them is using cosh, sinh.
For the record: The conjugates

C→ C

z 7→ (z − 2)2

z 7→ 4z − z2

have Julia set [0, 4].

(All this brings back memories to my talk “Sullivansche Lösung II” on the work-
shop Chaos in dynamischen Systemen, Arbeitsgemeinschaft, Oberwolfach, 1985.)

References: Sullivan 1985 [18], Beardon 1991 [1], Milnor 1993 [11], Milnor 2006
(1990) [12].

We conclude with some explicit computations.

(5.6) Lemma. The selfmap z 7→ z2 + c has as fixed points and points of period 2:

z1,2 =
1±
√

1− 4c

2

z3,4 =
−1±

√
−3− 4c

2

Proof : The fixed points are the zeros of

z2 − z + c = 0

The points of period 1, 2 are the zeros of

(z2 + c)2 + c− z = (z2 + c)2 − z2 + (z2 + c− z)
= (z2 + c+ z + 1)(z2 + c− z)

�

(5.7) Corollary. The selfmap z 7→ z2−2 (which has Julia set [−2, 2]) has as fixed
points and points of period 2:

z1,2 = 2,−1

z3,4 =
−1±

√
5

2
= −1 + {η, η}

Here η denotes the golden ratio with conjugate η = 1− η = −η−1:

η2 = η + 1, η =
1 +
√

5

2
= 1.618 . . . , η =

1−
√

5

2
= −0.618 . . .

https://www.math.uni-bielefeld.de/~rost/mfo/TB_Y1985_N017_P0005.jpg
https://www.mfo.de/occasion/8515/www_view
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(5.8) Corollary. The selfmap

z 7→ (z − 2)2

has as fixed points and points of period 2:

F1,2 = 4, 1

P1,2 =
3±
√

5

2
= 1 + {η, η}

where

P1 =
3 +
√

5

2
= 2.618 . . . , P2 =

3−
√

5

2
= 0.381 . . .

Summary:

[0, 4]→ [0, 4] (Julia set)

3 7→ 1 7→ 1

2 7→ 0 7→ 4 7→ 4

1 + η 7→ 1 + η 7→ 1 + η

0

P2 F2

1 2

P1

3

F1

4

5.0.6. Comment 6 (Ω again). Recall

m(a, b) = 4− trace(1− sasb) ∈ Ω = {0, 1, 2, 3, 4}
from Lemma (2.14). Hence

Ω→ Ω

m 7→ (m− 2)2

corresponds to sasb 7→ (sasb)
2. Cf. Section 2.5.1, Section 2.6.7.
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§6. General reflections and rotations

This text rather belongs to an expansion of [14].

In the following, we consider finitely generated locally free modules over some
ring k.

The exterior k-power of f ∈ Hom(V,W ) is the homomorphism

Λkf ∈ Hom(ΛkV,ΛkW )

Λkf(v1 ∧ . . . ∧ vk) = f(v1) ∧ . . . ∧ f(vk)

The following Lemma is a warm up. It emphasizes that we want to work over
any ring (or scheme).

(6.1) Lemma. Let t ∈ End(V ). If

Λ2t = 0

then

t2 = T (t)t

Proof : Locally V ' kn. For t ∈Mn(k) one has(
t2 − T (t)t

)
ij

=
∑
k

tiktkj −
∑
k

tkktij

=
∑
k

(tiktkj − tkktij) =
∑
k

Λ2(t)kj,ik

�

6.1. Reflections. As noted in Lemma (2.5), over a field with char 6= 2 an
endomorphism f is a reflection if and only if t = 1− f has the properties

rank t = 1

trace t = 2

In general, over any ring k (or any scheme), I like to define a (possibly degen-
erate) reflection as follows.

(6.2) Definition. An endomorphism f ∈ End(V ) is called a general reflection if,
with t = 1− f ,

Λ2t = 0

T (t) = 2

Note that Lemma (6.1) yields

f2 = 1

Definition (6.2) yields a closed subscheme of the scheme of endomorphisms of
the module V . If 2 is invertible in k, one necessarily has rank t = 1, so one gets
the standard definition of reflections. In general, one may call the open subscheme
t 6= 0 (=complement of t = 0, same as rank t = 1) the scheme of non-degenerate
reflections/transvections.
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Examples for k = Z (cf. Remark (2.3.2)):

A =

(
−1 0
0 1

)
tA =

(
2 0
0 0

)
B =

(
−1 1
0 1

)
tB =

(
2 −1
0 0

)
The reflection A is not non-degenerate while B is non-degenerate.

6.2. Rotations. Here is a sketch for a “dimension-free” setup for rotations.
Elements in SL2(k) can be considered as (possibly degenerate) rotations, as

they leave in the generic case a non-degenerate quadratic form invariant (see Sec-
tion 2.6.11).

Let f ∈ GL2(k) and put t = 1− f . One finds that the condition

det(f) = 1

is equivalent to
Q(t) = T (t)

where T is the trace and Q is the second coefficient of the characteristic polynomial:

Q(t) = T (Λ2t)

2Q(t) = T (t)2 − T (t2)

So one may think of an endomorphism f ∈ End(V ) (with arbitrary rank of V
and over any base ring or scheme) satisfying (with t = 1− f).

Λ3t = 0

Q(t) = T (t)

as a sort of general rotation. For these one finds that the powers fk have the same
property. Moreover, (5.3) holds.

(Expanding this material should better be done in a separate paper.)



CHAPTER IV

Unordered snippets

This “chapter” contains what its title says. Currently there is nothing here.
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