
ON THE GALOIS COHOMOLOGY OF SPIN(14)

MARKUS ROST

Preliminary Notes

Note from May/June 2006

I am very grateful to Skip Garibaldi for comments. They led to several correc-
tions and additions.

In the version from 1999 I had claimed without proof ed(Spin13) = 6. I have
now added a new section (Section 10) containing a proof.

Abstract

Let k be a field with char k 6= 2. For i = 6, 7 we define invariants

hi : H1
(
k,Spin(14)

)
→ Hi(k,Z/2)/(−1)Hi−1(k,Z/2).

Further we show that the natural map

H1
(
k, (G2 ×G2) o µ8

)
→ H1

(
k,Spin(14)

)
is surjective.

One concludes that the essential dimension of Spin(14) is equal to 7.
Similar considerations are done for Spin(12). We also present the list of essential

dimensions of the split groups Spin(n) for n ≤ 14.
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2 MARKUS ROST

1. The Arason invariant

1.1. The invariants ei, i ≤ 3. Let

ei : Ii(k)/Ii+1(k) → Hi(k,Z/2), i = 0, . . . , 3

be the first invariants on the graded Witt ring given by dimension, discriminant,
the Hasse-Witt invariant, and Arason’s invariant, cf. [1, 26].

1.2. The split groups of type Dn. We denote by SO(n, n) the automorphism
group of the quadratic form

n∑
1

(x2
i − y2

i ).

Furthermore, Spin(n, n) denotes the universal cover of SO(n, n) and

PSO(n, n) = SO(n, n)/{±1} = Spin(n, n)/µ

denotes the corresponding adjoint group. Here µ is the center of Spin(n, n). One
has µ = µ2 × µ2 if n is even and µ = µ4 if n is odd.

If n is odd, every split group of type Dn is isomorphic to one of Spin(n, n),
SO(n, n), PSO(n, n).

1.3. Galois cohomology of SO(n, n). The set H1
(
k,SO(n, n)

)
consists of the

isomorphism classes of 2n-dimensional quadratic forms with trivial discriminant.
We consider H1

(
k,SO(n, n)

)
as a subset of I2(k) ⊂W (k).

The image of
H1

(
k,SO(n, n)

)
→ H1

(
k,PSO(n, n)

)
consists of the similarity classes of the quadratic forms in H1

(
k,SO(n, n)

)
. For

u ∈ H1
(
k,Spin(n, n)

)
let qu be the corresponding quadratic form.

The image of
H1

(
k,Spin(n, n)

)
→ H1

(
k,SO(n, n)

)
consists of those classes in H1

(
k,SO(n, n)

)
with trivial Hasse-Witt invariant.

1.4. The invariant ẽ3 in KM
3 /2. Let KM

n k be Milnor’s K-group [18].
By Merkurjev’s theorem [2, 16, 31] the invariant e2 is bijective. Furthermore,

Milnor’s homomorphism

s3 : KM
3 k/2 → I3(k)/I4(k)

is bijective (cf. [11, 17, 18, 25]).
Putting things together yields natural maps

ẽ3 : H1
(
k,Spin(n, n)

)
→ KM

3 k/2.

For u ∈ H1
(
Spin(n, n)

)
the class ẽ3(u) depends alone on qu. For u ∈ H1

(
Spin(8, 8)

)
the corresponding quadratic form qu is a 3-fold Pfister form (cf. [5, 15, 20, 26]); if
qu = 〈〈a, b, c〉〉, then ẽ3(u) = {a, b, c}. Furthermore, the maps ẽ3 behave additively
with respect to the natural inclusions

Spin(n, n)× Spin(m,m) → Spin(n+m,n+m).

These properties determine the family of maps ẽ3 uniquely.
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2. Reduced squares

It has been observed by Serre that for any n ≥ 2 there is a natural map

P : KM
n k/2 → KM

2nk/(2K
M
2nk + {−1}n−1KM

n+1k)

characterized by

P
(∑

i

xi

)
=

∑
i<j

xixj mod (2KM
2nk + {−1}n−1KM

n+1k)

where xi are symbols. (An element x ∈ KM
n k/2 is called a symbol if it is of the

form x = {a1, . . . , an} for some ai ∈ k∗.)
To define the operation P one checks that the right hand side of this formula does

not depend on the presentation of an element as a sum of symbols. This follows
easily from the definition of Milnor’s K-theory and the identity {a, a} = {a,−1},
cf. [18].

Let
αn : KM

n k/2 → Hn(F,Z/2)

be the norm residue homomorphism [18]. Milnor’s conjecture (cf. [30]) asserts that
αn is bijective. With Milnor’s conjecture, the operations P give rise to correspond-
ing maps

Hn(k,Z/2) → H2n(k,Z/2)/(−1)n−1Hn+1(k,Z/2).

Combining this with the fact that (−1)H2n−1(k,Z/2) is in the kernel of the natural
maps H2n(k,Z/2) → H2n(k,Z/4), one obtains operations

Hn(k,Z/2) → H2n(k,Z/4).

In the case n = 2 this operation is nothing else than the Pontryagin square, cf. [3,
4, 32, 33]. For n > 2 I don’t know any explanation of the operations P by an
operation defined on the cohomology of topological spaces.

3. Lambda operations

Let Ŵ (k) be the Grothendieck (-Witt) ring of quadratic forms over k. One
defines λ-operations

λi : Ŵ (k) → Ŵ (k)

in the usual fashion (see for instance [13]):
For a quadratic form ϕ : V → k let λiϕ :

∧i
V → k be its i-th exterior power.

One has λ0ϕ = 〈1〉 and λ1ϕ = ϕ. The form λ2 is also given by the Killing form on
the Lie algebra so(ϕ) (at least if Q̄ ⊂ k).

One forms the formal power series

λtϕ =
∑
i≥0

tiλiϕ.

Then
λt(ϕ⊥ ψ) = λtϕ⊗ λtψ.

The series λt extends to Ŵ (k) by

λt(ϕ− ψ) = λtϕ⊗ (λtψ)−1
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and the operations λi on Ŵ (k) are defined by

λt(x) =
∑
i≥0

tiλi(x)

for x ∈ Ŵ (k).
We are mainly interested in λ2. Note that

λ0(x) = 1,

λ1(x) = x,

y2 = dim y + 2λ2(y),

λ2(x+ y) = λ2(x) + xy + λ2(y),

λ2(x− y) = λ2(x)− y(x− y)− λ2(y),

λ2(x− y) = λ2(x)− xy + dim y + λ2(y),

λ2(〈a〉x) = λ2(x)

for x, y ∈ Ŵ (k) and a ∈ k∗.
Let Î(k) ⊂ Ŵ (k) be the fundamental ideal of zero dimensional virtual quadratic

forms. The projection Ŵ (k) → W (k) induces identifications În(k) = In(k) for
n > 0. În(k) is additively generated by elements of the form

〈〈a1, . . . , an〉〉 − 〈〈1〉〉n = 〈〈a1, . . . , an−1〉〉 − 〈an〉〈〈a1, . . . , an−1〉〉.

Lemma 3.1. Let ϕ be an n-fold Pfister form and x = ϕ− 〈〈1〉〉n. Then

λ2(x) = 〈〈−1〉〉n−1x.

Proof. Write ϕ = ψ〈〈a〉〉 where ψ is an (n− 1)-fold Pfister form and where a ∈ k∗.
Then x = ψ − 〈a〉ψ and one finds

λ2(x) = λ2(ψ − 〈a〉ψ)

= λ2(ψ)− 〈a〉ψx− λ2(ψ)

= −〈a〉〈〈−1〉〉n−1x

= 〈〈−1〉〉n−1〈−a〉x = 〈〈−1〉〉n−1x

Here one uses ψ2 = 〈〈−1〉〉n−1ψ, 〈−a〉x = −〈a〉x if dimx = 0, and 〈−a〉〈〈a〉〉 =
〈〈a〉〉. �

Corollary 3.2. Let ϕ be an n-fold Pfister form. Then

λ2(ϕ) ' ϕ′〈〈−1〉〉n−1,

λ2(ϕ′) ' ϕ′(〈〈−1〉〉n−1)′. �

We define operations

P ′ : In(k) → I2n(k),

P ′(x) = λ2(x)− 〈〈−1〉〉n−1x.

It follows from Lemma 3.1 and λ2(x + y) = λ2(x) + xy + λ2(y) that indeed
P ′(x) ∈ I2n(k).

These operations lift the operations P to the Witt ring.
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4. Multiplicative transfer

Let L/F be separable field extension. In addition to the restriction map

rL/F : W (F ) →W (L), [ϕ] 7→ [ϕL]

and the corestriction map

cL/F : W (L) →W (F ), [ψ] 7→ [traceL/F ϕ]

one may define a multiplicative transfer map

NL/F : W (L) →W (F ).

This map is analogous to the multiplicative transfer in cohomology, cf. [6, 12, 29].
We are interested in the case [L : F ] = 2. Let σ denote the generator of the

Galois group. Then for a quadratic form ψ : W → L the form NL/F (ψ) is given by
the restriction of ψ⊗ σψ : W ⊗ σW → L to the subspace of invariants (W ⊗ σW )σ.

Suppose L = F (
√
a). One has the following rules

dimF

(
NL/F (ψ)

)
= (dimL ψ)2,

NL/F (〈α〉) = 〈NL/F (α)〉,
NL/F (x+ y) = NL/F (x) + cL/F (xσ(y)) +NL/F (y),

NL/F (x− y) = NL/F (x)− cL/F (xσ(y)) +NL/F (y),

λ2
(
cL/F (x)

)
= cL/F

(
λ2(x)

)
+ aNL/F (x),

NL/F (〈〈α〉〉) = 〈〈a〉〉+

{
〈〈traceα,−aNL/F (α)〉〉 if traceα 6= 0,
0 if traceα = 0,

NL/F (〈〈α1, . . . , αn〉〉) = 〈〈a〉〉n +

{∏
i〈〈traceαi,−aNL/F (αi)〉〉 if traceαi 6= 0,

0 else.

In particular, if −1 is a square in F , then

NL/F

(
In(L)

)
⊂ I2n(F )

for n ≥ 2.

5. The invariants h6 and h7

For this section it is assumed for simplicity that
√
−1 ∈ k.

We define

h6 : H1
(
k,Spin(7, 7)

)
→ H6(k,Z/2),

h6(u) = α6 ◦ P ◦ ẽ3(u).
The invariant h6(u) depends only on qu.

By the remarks of Section 3 one can lift this invariant to I6(k).
In some cases the invariant h6 can be described explicitly. For a Pfister form ϕ

one denotes by ϕ′ its pure subform (one has ϕ = 〈1〉⊥ϕ′). Let ai, bi, c ∈ k∗, i = 1,
2, 3, and put

(1) q = c(〈〈a1, a2, a3〉〉′ ⊥−〈〈b1, b2, b3〉〉′)
Then q = qu for some u ∈ H1

(
k,Spin(7, 7)

)
and for any such u one finds

(2) h6(u) = (a1, a2, a3, b1, b2, b3).

Lemma 5.1. Let u ∈ H1
(
k,Spin(7, 7)

)
. If qu is isotropic, then h6(u) = 0.
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Proof. If qu is isotropic, the qu has a representation (1) with a1 = b1, see [19, Satz
14, Zusatz] or [24]. The claim follows from (2). �

Proposition 5.2. Let u ∈ H1
(
k,Spin(7, 7)

)
and let c be a nonzero value of qu.

The element
h6(u) ∪ (c) ∈ H7(k,Z/2)

does not depend on the choice of c.

Proof (Variant 1). Write q = qu. If q is isotropic, then h6(u) = 0 by Lemma 5.1.
We may therefore assume that q is anisotropic. Let c = q(v) and c′ = q(v′) be two
values of q with v, v′ linearly independent. Then c/c′ is a norm from the quadratic
extension L splitting the 2-dimensional subform q|(vk + v′k). Say c/c′ = NL/k(λ).
Then

h6(u) ∪ (c)− h6(u) ∪ (c′) = h6(u) ∪ (c/c′)

= h6(u) ∪NL/k

(
(λ)

)
= NL/k

(
h6(uL) ∪ (λ)

)
= NL/k

(
0 ∪ (λ)

)
= 0

since qL is isotropic and by Lemma 5.1. �

Proof (Variant 2). Write q = qu as q : V → k. Then any x = [v] ∈ PV determines
an element

q(x) ∈ κ(x)/
(
κ(x)∗

)2
.

Let ξ ∈ PV be the generic point and consider

ω = h6(u) ∪
(
q(ξ)

)
∈ H7

(
k(PV ),Z/2

)
.

The element ω is unramified on PV , except possibly at the divisor

Z = {q = 0} ⊂ PV

Here the residue is a multiple of (in fact, equal to)

h6(u)k(Z) ∈ H6
(
k(Z),Z/2

)
But the quadratic form qk(Z) is isotropic, whence h6(u)k(Z) = 0 by Lemma 5.1.
Hence ω is unramified everywhere on PV and therefore ω = (ω0)k(PV ) for some
ω0 ∈ H7(k,Z/2). The claim follows by specialization. �

Proposition 5.2 gives rise to an invariant

h7 : H1
(
k,Spin(7, 7)

)
→ H7(k,Z/2),

h7(u) = h6(u) ∪
(
qu(v)

)
where qu(v) is any nonzero value of qu.

As for h6, the invariant h7(u) depends only on qu. If qu = q with q as in (1),
then

h7(u) = (a1, a2, a3, b1, b2, b3, c).
This computation shows that the invariant h7 is non-trivial.

In the next two statements (Proposition 5.3, Lemma 5.4) we assume that k
contains the algebraic closure of Q. This assumption is made to be sure that we
can neglect some universal constants arising in decompositions of Killing forms and
of λ2(q). I have not tried to figure out the best possible conditions.
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Proposition 5.3. Assume Q̄ ⊂ k. Any value of h6 and of h7 is a symbol.

Proof. It suffices to consider h6. Let u ∈ H1
(
k,Spin(7, 7)

)
and write q = qu. Then

h6(u) is represented by 92-dimensional form

λ2q ⊥ 〈1〉.
The form λ2q is also given by the Killing form on so(q).

We may assume that u is induced from an element x ∈ H1
(
k, (G2 ×G2) o µ8

)
,

see Corollary 7.3. Let g ⊂ so(q) be the Lie algebra of type G2 +G2 corresponding
to x. Its Killing form is the trace of the Killing form of a Lie algebra of type G2

over some quadratic extension. In view of the next Lemma, this form is hyperbolic.
Therefore the 92-dimensional form λ2q⊥〈1〉 contains a 28-dimensional hyperbolic

subform. Thus h6(u) is represented by a 92− 28 = 64-dimensional quadratic form,
which therefore must be a multiple of a 6-fold Pfister form. �

This proof indicates that one may represent h6(u) by a form on the spinor
representation S, cf. below. In fact there is a natural way to represent h6(u) as
NL/k(ψ) on S, where ψ/L is the 3-fold Pfister form corresponding to a reduction x ∈
H1

(
k, (G2 ×G2) o µ8

)
of u, cf. [24].

Lemma 5.4. Assume Q̄ ⊂ k. Let g be a Lie algebra of type G2 and let ϕ be the
associated 3-fold Pfister form. Then the Killing form on g is hyperbolic.

Proof. Let V be the 7-dimensional representation of g. Then

g⊥ V =
∧2
V.

Let further ψ denote the Killing form on g and let ϕ be the associated 3-fold Pfister
form. Then

ψ ⊥ ϕ′ = λ2(ϕ′) = ϕ′〈〈−1,−1〉〉′

by Corollary 3.2. The claim follows. �

Our considerations in the construction of the invariants h6, h7 may be also
applied to the group SO(6). This leads to invariants

H1
(
k,SO(6)

)
→ Hi(k,Z/2)

for i = 4, 5, given by

c(〈〈a1, a2〉〉′ ⊥ 〈〈b1, b2〉〉′) 7→ (a1, a2, b1, b2),

c(〈〈a1, a2〉〉′ ⊥ 〈〈b1, b2〉〉′) 7→ (a1, a2, b1, b2, c).

The latter coincides with the invariant

〈a1, a2, a3, a4, a5, a6〉 7→ (a1, a2, a3, a4, a5)

defined by Serre.

6. A reduction lemma

Let G be an algebraic group over k and let i : H ⊂ G be a subgroup. For
x ∈ H1(k,G) we denote by Px a corresponding G-torsor.

Lemma 6.1. Let x ∈ H1(k,G). Then x is in the image of

i∗ : H1(k,H) → H1(k,G)

if and only if the variety Px/H has a k-rational point.
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Proof. Indeed, if x = i∗(y), then Px ' Py ×H G and Px/H has the k-rational point
given by [Py, 1] mod H.

Conversely, if z ∈ Px/H is k-rational, then the fiber of z under P → Px/H is an
H-torsor Q with Q×H G ' Px. �

This simple lemma is the basis of many structure theorems on quadratic forms
and algebras. It applies usually when there is a “small” representation of G, i.e., a
representation G→ GL(V ) with dimV < dimG.

A fairly simple example is given by G = O(n) and H = O(n − 1) × µ2: Let
x ∈ H1

(
k,O(n)

)
; if qx : V → k is the corresponding quadratic form, then Px/H is

naturally isomorphic to U = PV \{qx = 0}. Since U has a rational point, it follows
that x has a reduction to H.

Her majesty E8 does not have a small representation.

7. 14-dimensional spinors

Let Spin(7, 7) → GL(S) be one of the spinor representations (dimS = 64) and let
PSO(7, 7) → PGL(S) be the induced homomorphism. We denote G = PSO(7, 7)
and define H ⊂ G as the image of

(G2 ×G2) o Z/2 → PSO(7, 7)

given by

(g, h)εn 7→
(
ρ(g) 0
0 ρ(h)

) (
0 1
1 0

)n

where ρ : G2 → Spin(7) is the standard representation.
We need the following fact, see [7, 9, 21, 24].

Proposition 7.1. The action of G on PS has an open and dense orbit U . If k
is algebraically closed, then the isotropy group Hu of u ∈ U is conjugate to H. In
particular, U = G/H.

Now let x ∈ H1(k,G). Then Xx = Px ×G PS is a Brauer-Severi variety whose
Brauer class coincides with the Tits class t(x) ∈ H2(k, µ4) of x. Further, the variety
Ux = Px×GU = Px/H is a dense open subscheme of Xx. It follows that Px/H has
k-rational points if and only if t(x) = 0 (to be sure, let us assume that k is infinite).
Lemma 6.1 shows

Corollary 7.2. An element x ∈ H1(k,G) has an H-reduction if and only if t(x) =
0. �

Let H̃ be the preimage of H under Spin(7, 7) → PSO(7, 7). One finds (see [24])

H̃ = (G2 ×G2) o µ8

where µ8 ⊂ Spin(7, 7) is the normalizer of G2 ×G2.

Corollary 7.3. The homomorphism

H1
(
k, (G2 ×G2) o µ8

)
→ H1

(
k,Spin(7, 7)

)
is surjective.
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Proof. This follows from a diagram chase in

H1(k, µ4) −→ H1
(
k, (G2 ×G2) o µ8

)
−→ H1

(
k, (G2 ×G2) o Z/2

)
−→ H2(k, µ4)∥∥∥ y y ∥∥∥

H1(k, µ4) −→ H1
(
k,Spin(7, 7)

)
−→ H1

(
k,PSO(7, 7)

) t−→ H2(k, µ4)

�

It can be shown that there exist a field k and x ∈ H1
(
k,Spin(7, 7)

)
such that x

has no reduction to the subgroup (G2 ×G2)× µ4. This means that the appearing
forms of G2 × G2 are necessarily of type R`/k(G2) with `/k a quadratic field ex-
tension. Examples have been provided in [8] using residue arguments and in [10]
using computations of the K-theory of certain homogeneous varieties.

8. The essential dimension of Spin(14)

We denote by ed(G) the essential dimension of G, see [22].

Proposition 8.1. ed
(
Spin(14)

)
= 7.

Proof. ed
(
Spin(14)

)
≥ 7 follows from the non-triviality of the invariant h7.

It remains to show ed
(
Spin(14)

)
≤ 7. By Corollary 7.3 it suffices show ed(H̃) ≤

7. To describe any H̃-torsor one needs one parameter to describe a class (a) ∈
H1(k, µ8) = k∗/(k∗)8 and 3 · 2 parameters to describe an octonion algebra

O(a1 +
√
ab1, a2 +

√
ab2, a3 +

√
ab3)

over k(
√
a). �

9. On the cohomology of Spin(12)

We briefly sketch a proof of ed
(
Spin(6, 6)

)
= 6.

We define H ⊂ SO(6, 6) as the image of

SL(6) o Z/2 → SO(6, 6)

given by

gεn 7→
(
g 0
0 (gt)−1

) (
0 1
1 0

)n

.

Here we understand coordinates (x, y) with respect to the quadratic form
∑

i xiyi.
The preimage H̃ of H in Spin(6, 6) is

H̃ = SL(6) o µ4.

By the mentioned theorem of Pfister ([19, Satz 14, Zusatz] or [24]), any Spin(6, 6)-
torsor admits an H̃-reduction. Since any hermitian form can be diagonalized, the
map

H1
(
k,SO(6)× µ4

)
→ H1(k, H̃)

is surjective. Hence

Corollary 9.1. ed
(
Spin(6, 6)

)
≤ 6.

We define invariants in H5(Z/2), H6(Z/2) by a variant of the previous method.
It is based on the following facts:
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Lemma 9.2. Let a ∈ k∗. Then the kernel of

W (k) →W (k), x 7→ 〈〈a〉〉x
is generated by 2-dimensional forms of the form 〈〈N`/k(α)〉〉 with α ∈ `∗, ` = k(

√
a).

Proof. Well known. . . �

Lemma 9.3. Let a, b ∈ k∗ and let x, y ∈W (k). If

〈〈a〉〉x = 〈〈b〉〉y,
then there exist z ∈W (k) with

〈〈a〉〉x = 〈〈a〉〉z = 〈〈b〉〉z = 〈〈b〉〉y.
Moreover, any such z may be written as a sum of 2-dimensional forms of the form
〈〈N`/k(α)〉〉 with α ∈ `∗, ` = k(

√
ab).

Proof. Let ϕ be a quadratic form representing x, let K = k(
√
b), and suppose that

〈〈a〉〉ϕK is split.
Since 〈〈a〉〉ϕK is isotropic, one has 〈〈a〉〉ϕ = 〈〈a〉〉(c〈〈d〉〉+ ϕ′) such that 〈〈a, d〉〉K is

isotropic. To see this, let ϕ = 〈a1, . . . , an〉 and let

q : V = Ln → k

q(λ1, . . . , λn) =
∑

i

aiNL/k(λi)

with L = k(
√
a). Note that q = 〈〈a〉〉ϕ and that q(λv) = NL/k(λ)q(v) for λ ∈ L. If

qK is isotropic, there exists a 2-dimensional L-submodule W of V such that q|W is
isotropic over K. Next note that q|W = c〈〈a, d〉〉 for some c, d.

We may assume ϕ = c〈〈d〉〉 ⊥ ϕ′. There exists e such that

〈〈a, d〉〉 = 〈〈a, e〉〉 = 〈〈b, e〉〉
Then 〈〈a〉〉ϕ = c〈〈a, e〉〉 + 〈〈a〉〉ϕ′. The claim follows by induction on dimϕ and
Lemma 9.2. �

Let I2(k) ⊂ I(k) be the subset of elements which are split over some quadratic
extension. One defines an operation

Q : I2(k) → I2(k),

Q(〈〈a〉〉x) = 〈〈a〉〉λ2(x).

This map is well defined by Lemma 9.2 and Lemma 9.3.
We assume that −1 is a square. Let u ∈ H1

(
k,Spin(6, 6)

)
. Then

qu = a〈〈b〉〉(〈〈c, d〉〉′ − 〈〈e, f〉〉′)
and

Q(qu) = 〈〈b, c, d, e, f〉〉
Hence we an invariant

k5 : H1
(
k,Spin(6, 6)

)
→ H5(k,Z/2).

If qu is isotropic, then qu = a〈〈b, c′, d′〉〉 ⊥ 〈1,−1〉. This shows Q(qu) = 0. By the
same argument as in the proof of Proposition 5.2 we get an invariant

k6 : H1
(
k,Spin(6, 6)

)
→ H6(k,Z/2),

k6(u) = k5(u) ∪
(
qu(v)

)
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where qu(v) is any nonzero value of qu.
If qu = a〈〈b〉〉(〈〈c, d〉〉′ − 〈〈e, f〉〉′), then

k6(u) = (a, b, c, d, e, f).

This shows that k6 is nontrivial.

Corollary 9.4. ed
(
Spin(6, 6)

)
≥ 6.

10. On the cohomology of Spin(13)

Let

q : V = k13 → k

q(x1, . . . , x13) = (x2
1 + x2

2 + x2
3)− (x2

4 + x2
5 + x2

6)

− (x2
7 + x2

8 + x2
9) + (x2

10 + x2
11 + x2

12)− x2
13

An element of H1(k,SO(q)) is given by a 13-dimensional quadratic form q′ with

q′ ⊥ 〈1〉 ∈ H1(k,SO(7, 7)) ⊂ I2 ⊂W (k)

Let G be the subgroup of SO(q) generated by (matrix notation with respect to
k13 = k3 × k3 × k3 × k3 × k)

U(g, h) =


g 0 0 0 0
0 g 0 0 0
0 0 h 0 0
0 0 0 h 0
0 0 0 0 1


and

V (α, β) =


1 0 0 0 0
0 α 0 0 0
0 0 1 0 0
0 0 0 β 0
0 0 0 0 αβ

 , W (η) =


0 0 η 0 0
0 0 0 η 0
η 0 0 0 0
0 η 0 0 0
0 0 0 0 1


with g, h ∈ SO(3), α, β ∈ µ2 and η ∈ µ4. One has

G =
(
SO(3)× µ2

)2 o µ4 ⊂ SO(q)

with µ4 acting via the projection µ4 → µ2 = Z/2 by permutation of the factors.
We consider the commutative diagram

(3)

1 −−→ µ2 −−→ G̃
πG−−→ G −−→ 1∥∥∥ yj̃

yj

1 −−→ µ2 −−→ Spin(q) π−−→ SO(q) −−→ 1

where G̃ ⊂ Spin(q) is the preimage of G under the projection π : Spin(q) → SO(q)
and j̃, j are the inclusions.

We describe the image

J = j∗
(
H1(k,G)

)
⊂ H1(k,SO(q))
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Lemma 10.1. The set J consists exactly of the (isomorphism classes of) quadratic
forms q′ of the type

(4) q′ = q̃ ⊥ 〈−det(q̃)〉
with

(5) q̃ = (TK/k)∗
(
〈s〉〈1,−λ〉〈−µ1,−µ2, µ1µ2〉

)
with K = k[s]/(s2 − b) for some b ∈ k× and λ, µ1, µ2 ∈ K×.

Proof. Note that G ⊂ SO(q) leaves the subspace V ′ = k12×{0} ⊂ V invariant. Let

` : G→ O(q|V ′)

`(g) = j(g)|V ′

Then
j(g) =

(
`(g),det(`(g))

)
∈ O(q|V ′)×O(1) ⊂ O(q)

This yields the decomposition (4).
It remains to show that `∗

(
H1(k,G)

)
⊂ H1(O(q|V ′)) consists of the forms q̃ as

in (5).
Elements of H1(k,G) are the isomorphism classes of triples (K ′, ϕ, ϕ1), where

K ′ = k[t]/(t4 − b) is a Galois µ4-algebra and where ϕ, ϕ1 are quadratic forms
over the quadratic subextension K = k[s] ⊂ K ′, s = t2 with ϕ of rank 3 and
determinant 1 and with ϕ1 of rank 1. Let

H =
(
O(1)×O(1)×O(1)

)
∩ SO(3) ' µ2 × µ2

and
G′ = (H × µ2)2 o µ4 ⊂ G

Since quadratic forms (over K) can be diagonalized, it follows that H1(k,G′) →
H1(k,G) is surjective.

The claim follows from Corollary 10.3 below. �

Lemma 10.2. Let
G′′ = (µ2)2 o µ4

generated by µ4 and elements α, β with the relations

α2 = β2 = (αβ)2 = 1, ζαζ−1 = β, ζβζ−1 = α

for a generator ζ of µ4.
Let

q0 : k2 → k

q0(x, y) = x2 − y2

and let
ϕ : G′′ → O(q0)

be the homomorphism with

ϕ(α) =
(
−1 0
0 1

)
, ϕ(β) =

(
1 0
0 −1

)
, ϕ(η) =

(
0 η
η 0

)
with α, β ∈ µ2 and η ∈ µ4.

Let ξ ∈ H1(k,G′′) and write the corresponding Galois G′′-algebra as

Eξ = k[t, s, x, y]/(t4 − b, s− t2, x2 − u− sv, y2 − u+ sv)
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with b, u, v ∈ k, b 6= 0, u2 − bv2 6= 0. Here the action of G′′ is given by

ζ(t) = ζt, ζ(s) = −s, ζ(x) = y, ζ(y) = x

α(t) = t, α(s) = s, α(x) = −x, α(y) = y

β(t) = t, β(s) = s, β(x) = x, β(y) = −y

Then the associated quadratic form qξ = ϕ∗(ξ) ∈ H1(k,O(q0)) is given by

qξ = (TK/k)∗
(
〈s〉〈u+ sv〉

)
with K = k[s] ⊂ Eξ.

Proof. One has (more or less by definition)

qu = (q0 ⊗k E)|(k2 ⊗k E)G′′

with G′′ acting on k2 via O(q0) and on E as Galois algebra, respectively.
The claim follows from the following explicit computation (for a related consid-

eration see Garibaldi’s Lens notes from May 2006, Example 16.5):
One finds that (k2 ⊗k E)G′′

is the free k-module with basis

X = (xt,−yt), Y = (xt3, yt3) = (xts, yts)

For c, d ∈ k one has with λ = x2 = u+ sv and λ̄ = y2 = u− sv

q0(cX + dY ) =
(
xt(c+ ds)

)2 −
(
yt(−c+ ds)

)2

= λs(c+ ds)2 + λ̄(−s)(c− ds)2

= TK/k

(
λs(c+ ds)2

)
�

Corollary 10.3. Let n, m ≥ 0, let U = (µ2)n and let

Φ: U → O(1)m ⊂ O(m)

be some homomorphism. Let
G′′ = U2 o µ4

with µ4 acting via the projection µ4 → µ2 = Z/2 by permutation of the factors and
let

ϕ : G′′ → O(m,m)

ϕ(u1, u2) =
(

Φ(u1) 0
0 Φ(u2)

)
ϕ(ζ) =

(
0 ζ
ζ 0

)
for (u1, u2) ∈ U2 and a generator ζ of µ4.

Let ξ ∈ H1(k,G′′) and write the corresponding Galois G′′-algebra as

Eξ = k[t, s, xi, yi; i = 1, . . . , n]/(t4 − b, s− t2, x2
i − ui − svi, y

2
i − ui + svi)

with b, ui, vi ∈ k, b 6= 0, u2
i − bv2

i 6= 0 (with obvious G′′ action, see Lemma 10.2).
Then the associated quadratic form qξ = ϕ∗(ξ) ∈ H1(k,O(m,m)) is given by

qξ = (TK/k)∗
(
〈s〉〈µ1, . . . , µm〉

)
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with K = k[s] ⊂ Eξ and with

µj =
n∏

i=1

λ
Φij

i ∈ K, j = 1, . . . ,m

where
λi = ui + svi

and where Φij = 0, 1 is defined by

Φ(α1, . . . , αn) =
( n∏
i=1

α
Φij

i

)
j=1,...,m

Proof. One easily reduces to the case m = 1, n = 1 and Φ = id, which is treated in
Lemma 10.2. �

Proposition 10.4. The natural map j̃∗ : H1(G̃) → H1(Spin(q)) is surjective.

Proof. Let u ∈ H1(k,Spin(q)) and let qu ∈ H1(k,SO(q)) be the associated qua-
dratic form. Then

qu ⊥ 〈1〉 ∈ I3

By the results on 14-dimensional forms in I3 one has

qu ⊥ 〈1〉 = (TK/k)∗(〈s〉ϕ′)

with K = k[s]/(s2 − b) for some b ∈ k× and with ϕ a 3-fold Pfister form over K
(and with ϕ = 〈1〉 ⊥ ϕ′). Since the left hand side represents 1, there exists a
value −λ of ϕ′ with TK/k(−sλ) = 1. As for any (invertible) value −λ of ϕ′, one
has ϕ = 〈〈λ, µ1, µ2〉〉 for some µ1, µ2 ∈ K×. Note that

(TK/k)∗(〈−sλ〉) = 〈1,−NK/k(λ)〉
Thus

qu = (TK/k)∗
(
〈s〉〈〈λ〉〉〈〈µ1, µ2〉〉′

)
⊥ 〈−NK/k(λ)〉

By Lemma 10.1 it follows that qu ∈ J . A diagram chase (see diagram (3)) involv-
ing the coboundary maps H1(k,G), H1(k,SO(q)) → H2(k, µ2) shows that there
exists ũ ∈ H1(k, G̃) such that j̃(ũ), u ∈ H1(k,Spin(q)) have the same image in
H1(k,SO(q)). Another diagram chase shows that we can arrange j̃(ũ) = u. �

We next compute G̃ ⊂ Spin(q) ⊂ C(q) inside the Clifford algebra. Let e1, . . . ,
e13 be the standard base of V .

Let ζ be a primitive 4-th root of unity.
For v, w ∈ V with q(v) = 1, q(w) = −1 and v ⊥ w let

ω(v, w) =
1 + ζwv√

2
Then ω(v, w)ω(w, v) = 1 and therefore ω(v, w) ∈ Spin(q). Moreover ω(v, w)2 =
ζwv and ω(v, w)4 = −1. Furthermore ω(v, w)v = vω(v, w)−1 and ω(v, w)w =
wω(v, w)−1. Also ω(v, w)vω(v, w)−1 = ζw and ω(v, w)wω(v, w)−1 = ζv.

Consider the element

ω = ω(e1, e7)ω(e2, e8)ω(e3, e9)ω(e10, e4)ω(e11, e5)ω(e12, e6) ∈ Spin(q)

Its image in SO(q) is π(ω) = W (ζ). Moreover

ω4 = 1
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Next let
α̃ = e4e5e6e13, β̃ = −ζe10e11e12e13

Both elements are in Spin(q) and π(α̃) = V (−1, 1) and π(β̃) = V (1,−1). Moreover

α̃2 = 1

β̃2 = 1

α̃β̃ = −β̃α̃

(α̃β̃)2 = −1

ωα̃ω−1 = β̃

ωβ̃ω−1 = −α̃

ωα̃β̃ω−1 = α̃β̃

α̃ωα̃−1 = α̃β̃ω

α̃ω2α̃−1 = −ω2

Let H be the subgroup generated by ω and α̃. Then β̃ ∈ H and

H = (µ4 × µ4) o µ2

with the µ2 generated by α̃ and µ4 × µ4 generated by ω and α̃ωα̃−1.
Note further that the diagonal embedding SO(3) → SO(3, 3) lifts to Spin(3, 3).

Thus the connected component of G lifts (uniquely) to Spin(q). This yields:

Lemma 10.5. One has
G̃ '

(
SO(3)

)2 oϕ H

where H acts by permutation of the factors via ϕ : H → Z/2, ϕ(α̃) = 0, ϕ(ω) = 1.

(I was surprised about the simple structure of H. There ought to be a bet-
ter approach to the subgroup G̃ of Spin(13) than just by a computation starting
from G.)

Proposition 10.6. ed(G̃) ≤ 6

Proof. Elements of H1(k,H) are given by Galois H-algebras which can be written
as

L = k[z, x, y]/(z2 − a, x4 − u− sv, y4 − u+ sv)

with a, u, v ∈ k, a 6= 0, u2−av2 6= 0. For the generic case we may assume v 6= 0 and
replace s by sv and a by av2. Then v = 1. Therefore H-torsors are parameterized
by a and u and we have ed(H) ≤ 2.

Thus an element of H1(k, G̃) is given by a Galois H-algebra

L = k[z, x, y]/(z2 − a, x4 − u− s, y4 − u+ s)

and a quadratic form of rank 3 and determinant 1 over K = k[t] ⊂ L with t = (xy)2

and t2 = u2 − a. Thus ed(G̃) ≤ ed(H) + 2 · 2. �

Corollary 10.7. ed(Spin(q)) ≤ 6

Proof. This is clear from Proposition 10.4 and Proposition 10.6. �
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11. The essential dimension of split Spin(n) for n ≤ 14

Let Spinn denote a split form of Spin(n).

Theorem.

ed(Spinn) = 0 for n ≤ 6,

ed(Spin7) = 4,

ed(Spin8) = 5,

ed(Spin9) = 5,

ed(Spin10) = 4,

ed(Spin11) = 5,

ed(Spin12) = 6,

ed(Spin13) = 6,

ed(Spin14) = 7.

Proof. (Sketch) The cases n = 12, 14 have been just considered. It is not difficult
to extend our considerations to the case n = 11.

As for n = 13: By corollary 10.7 one has ed(Spin13) ≤ 6. The invariant h6

restricted to Spin13 is nontrivial, for example for

q ⊥ 〈1〉 = b1
(
〈〈a1, a2, a3〉〉′ − 〈〈b1, b2, b3〉〉′

)
Hence ed(Spin13) ≥ 6.

For n = 7, 10 one uses that any Spinn-torsor admits a reduction to G2×µ2 resp.
to G2 × µ4. For n = 8, 9 one may use the fact that

Spin8 → Spin9 → F4

induce surjections on H1 at the prime 2 and Serre’s H5(Z/2)-invariant for F4,
cf. [27, III. Annexe, § 3.4] or [28, III. Appendix 2, 3.4] and [14, § 40], [23]. For
n ≤ 6 note that any n-dimensional quadratic form with trivial e1-, e2-invariants is
split. �
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