On the spinor norm and $A_0(X, K_1)$ for quadrics by Markus Rost

This is a TeXed version (Sept. 1996) of the original preprint Sept. 1988.

I. Introduction

1) We denote by K_nF the *n*-th Milnor K-group of field (for convenience).

For X/F projective there is a complex

$$\bigoplus_{v \in X_{(1)}} K_{n+1}K(v) \xrightarrow{d} \bigoplus_{v \in X_{(0)}} K_nK(v) \xrightarrow{N} K_nF$$

where d is given by the tame symbol and N is given by the norm map in Milnor K-Theory. We denote coker d by $A_0(X, K_n)$ and by $N_X : A_0(X, K_n) \to K_n F$ the induced norm map.

2) In this note all fields have characteristic different from 2.

Let $\varphi: V \to F$ be a quadratic module. We denote by $X_{\varphi} \subset \mathbb{P}V$ the associated projective quadric hypersurface and we put $N_{\varphi} = N_{X_{\varphi}}$. Note that $X_{c\varphi} = X_{\varphi}$.

Let $C(\varphi)$, $C_0(\varphi)$ be the (even) Clifford algebra of φ and consider V as a subspace of $C(\varphi)$ in the usual way.

The special Clifford group of φ is defined as

$$S\Gamma(\varphi) = \{ \alpha \in C_0(\varphi) \mid \alpha V \alpha^{-1} = V \text{ in } C(\varphi) \}.$$

One has a commutative diagram

$$S\Gamma \longrightarrow F^* \longrightarrow S\Gamma(\varphi) \longrightarrow SO(\varphi) \longrightarrow 1$$

$$\downarrow \text{sn} \qquad \qquad \downarrow \text{sn}$$

$$F^* \stackrel{2}{\longrightarrow} F^* \longrightarrow F^*/(F^*)^2 \longrightarrow 1$$

where $F^* \subset S\Gamma(\varphi)$ is central and $S\Gamma(\varphi)$ acts on (V, φ) by $\alpha(v) = \alpha v \alpha^{-1}$; the spinor norm sn is given by $\operatorname{sn}(\alpha) = \alpha^t \alpha$.

If dim $\varphi = 2$, the $S\Gamma(\varphi) = C_0(\varphi)^*$, $C_0(\varphi)$ is the quadratic extension of F defined by the discriminant of φ and sn is given by the norm for $C_0(\varphi)/F$.

If dim $\varphi = 3$, then $S\Gamma(\varphi) = C_0(\varphi)^*$, $C_0(\varphi)$ is a quaternion algebra and sn is induced by the reduced norm for the algebra $C_0(\varphi) \mid F$.

If φ_0 is a subform of φ (i.e. $\varphi_0 = \varphi \mid V_0$ for some subspace V_0 of V), then $S\Gamma(\varphi_0) \subset S\Gamma(\varphi)$.

3) In this note we construct a natural homomorphism

$$\tilde{\omega}_{\varphi}: S\Gamma(\varphi) \longrightarrow A_0(X_{\varphi}, K_1)$$

such that $N_{\varphi} \circ \tilde{\omega}_{\varphi} = \text{sn.}$

 $\tilde{\omega}_{\varphi}$ is surjective (at least if F has no odd extensions). Therefore, if one investigates the injectivity of N_{φ} , one is let to consider the kernel of the spinor norm.

- 4) An element $\alpha \in S\Gamma(\varphi)$ is called plane, if $\alpha \in S\Gamma(\varphi_0)$ for a 2-dimensional subform φ_0 of φ . It is known that $S\Gamma(\varphi)$ is generated by plane elements (Dieudonné). We denote by $\overline{S\Gamma(\varphi)}$ the quotient of $S\Gamma(\varphi)$ by its commutator subgroup and elements of the form $\alpha\beta^{-1}$, where $\alpha, \beta \in S\Gamma(\varphi)$ are plane such that $\operatorname{sn}(\alpha) = \operatorname{sn}(\beta)$. Let $\overline{\operatorname{sn}} : \overline{S\Gamma(\varphi)} \to F^*$ be the homomorphism induced by sn. An element of $\overline{S\Gamma(\varphi)}$ is called plane, if it equals $\bar{\alpha}$ for some plane $\alpha \in S\Gamma(\varphi)$. It turns out that $\tilde{\omega}_{\varphi}$ factors through a homomorphism $\omega_{\varphi} : S\Gamma(\varphi) \to A_0(X_{\varphi}, K_1)$.
- 5) Since $N \circ \omega_{\varphi} = \overline{sn}$ and ω_{φ} is surjective, we have

Theorem 1.

If every element of $\overline{S\Gamma(\varphi)}$ can be written as a product of two plane elements, then N_{φ} is injective in degree 1.

All forms φ , for which I can prove the injectivity of N_{φ} satisfy the the hypothesis of Theorem 1. We have

Proposition 2.

 φ satisfies the hypothesis of Theorem 1 in the following cases

- i) dim $\varphi \leq 5$
- ii) $\varphi = \rho \otimes (\psi \oplus \langle c \rangle)$, where ρ is a Pfister form, ψ is a Pfister neighbor and $c \in F^*$
- iii) $\varphi = \psi \oplus c\langle 1, 1 \rangle$, where ψ is a Pfister neighbor and $c \in F^*$.

Recall that a Pfister neighbor is a form of type $\psi_0 \oplus b\psi_1$ where ψ_0 is a Pfister form and ψ_1 is a subform of ψ_0 . Note that every Pfister neighbor (hence every Pfister form) is included in case ii).

6) The perhaps simplest type of quadratic forms not covered by i), ii) or iii) are 6-dimensional forms φ such that $C_0(\varphi)$ has (maximal) index 4 over its center. We have

Proposition 3. There exists a field F and

6-dimensional quadratic form φ over F, such that N_{φ} is not injective. φ can be chosen to have discriminant 1.

This result is based on a relation between $\operatorname{Ker} N_{\varphi}$ and $SK_1(C_0(\varphi))$ which is obtained by Swan's computation of $K_1(X_{\varphi})$.

To give an explicit example, let $A = D(a, b) \otimes D(\bar{a}, \bar{b})$ a tensor-product of two quaternion algebras such that $|SK_1A| > 2$. Let

$$\varphi = \langle -a, -b, ab \rangle \oplus - \langle -\bar{a}, -\bar{b}, \bar{a}\bar{b} \rangle$$

be the associated form (X_{φ}) is the Grassmanian for submodules of A of rank 8). By Swan we have $K_1(X) = (K_1F)^4 \oplus K_1A \oplus K_1A$. Consider

$$j: A_0(X_{\varphi}, K_1) = H^4(X; K_5) \longrightarrow K_1(X) \longrightarrow K_1A$$

where the last map is given by projection to one of the factors. One may check that $\operatorname{Nrd} \circ j = 2N_{\varphi}$. Hence $j(\ker N_{\varphi}) \subset SK_1A$. One can show that $SK_1(A)/j(\ker N_{\varphi})$ is of order at most 2; it is generated by j(u) for any u such that $N_{\varphi}(u) = -1$.

II. The special Clifford group

Remark added in July 1996: In the following I seem to care only on anisotropic forms. The much simpler case of isotropic forms should considered in the very beginning.

Let $\varphi: V \to F$ be a quadratic module. For $\alpha \in S\Gamma(\varphi)$ let

$$\operatorname{supp} \alpha = \{ v \in V; \ \alpha(v) = v \}^{\perp}.$$

Note that $\alpha \in S\Gamma(\varphi \mid \text{supp}(\alpha))$. Clearly

$$\mathrm{supp}\ \alpha = 0 \Longleftrightarrow \alpha \in F^*$$

$$\dim \operatorname{supp} \ \alpha \leq 2 \iff \alpha \text{ is plane}.$$

Since the product of any two reflections in $O(\varphi)$ is a plane rotation, we have the following consequence of the theorem of Cartan-Dieudonné.

Proposition 4.

Any element of $S\Gamma(\varphi)$ can be written as product of $\left[\frac{\dim \varphi}{2}\right]$ plane elements.

Consequently $\dim(\operatorname{supp} \alpha) \neq 1, 3$ for $\alpha \in S\Gamma(\varphi)$. Two plane elements α, β are called to be **linked** if $\dim(\operatorname{supp} \alpha + \operatorname{supp} \beta) \leq 3$. In this case $\alpha\beta$ is again plane, because $\operatorname{supp} \alpha\beta \subset \operatorname{supp} \alpha + \operatorname{supp} \beta$ and $\dim(\operatorname{supp} \alpha\beta) = 3$ is impossible.

Note that α and β commute, if supp $\alpha \perp \text{supp } \beta$.

Theorem 5.

Let G be the free group on the set of all plane elements of $S\Gamma(\varphi)$. Denote by g_{α} the generator corresponding to α . Then

$$G \longrightarrow S\Gamma(\varphi), \quad g_{\alpha} \longrightarrow \alpha$$

is surjective and its kernel is the normal subgroup generated by elements of the form

- R_1) $g_{\alpha}g_{\beta}g_{\alpha\beta}^{-1}$ if α and β are linked.
- R_2) $[g_{\alpha}, g_{\beta}]$ if $supp(\alpha) \perp supp(\beta)$.

For $v_1, v_2 \in V$ such that $\varphi(v_1) = \varphi(v_2)$ we denote by $\varepsilon(v_2, v_1) \in S\Gamma(\varphi)$ the trivial element if $v_1 = v_2$, otherwise any plane element such that $\varepsilon(v_2, v_1)(v_1) = v_2$. Note that a plane $\alpha \in S\Gamma(\varphi)$ is linked with $\varepsilon(\alpha(v), v)$ for any $v \in V$.

Remark added in Jan 1998: The plane element $\varepsilon(v_2, v_1)$ is assumed to have support in the subspace generated by v_1, v_2 .

Let \hat{G} be the quotient of G by the relations R_1 , R_2 and denote by \hat{g} the image of g_{α} in \hat{G} . Theorem 5 states that $\hat{G} \to S\Gamma(\varphi)$, $\hat{g} \to \alpha$ is bijective. Surjectivity follows from Proposition 4. In the following we proof the injectivity (I don't know, whether and in how far this question has been considered in the literature).

Lemma 6.

$$\hat{g}_{\alpha}\hat{g}_{\beta}\hat{g}_{\alpha}^{-1} = \hat{g}_{\alpha\beta\alpha^{-1}}$$
 for plane $\alpha, \beta \in S\Gamma(\varphi)$.

Proof. Let $W = (\operatorname{supp} \alpha)^{\perp} \cap \operatorname{supp} \beta$.

If dim W = 2, then supp $\beta \subset (\operatorname{supp} \alpha)^{\perp}$. Therefore $\alpha \beta \alpha^{-1} = \beta$ and the lemma follows from R_2 .

If dim W < 2, then there exists a nonzero $v \in W^{\perp} \cap \text{supp } \beta$. Then α, β are linked with $\gamma = \varepsilon(\alpha(v), v)$, hence by R_2 :

$$\hat{g}_{\alpha}\hat{g}_{\beta}\hat{g}_{\alpha}^{-1}\hat{g}_{\alpha\beta\alpha^{-1}} = \hat{g}_{\alpha'}\hat{g}_{\beta'}\hat{g}_{\alpha'}^{-1}\hat{g}_{\alpha'\beta'\alpha'^{-1}}$$

with $\alpha' = \alpha \gamma^{-1}$, $\beta' = \gamma \beta \gamma^{-1}$.

Note that γ fixes W, because $v \in W^{\perp}$ and α fixes W. This shows $W \subset W' = (\operatorname{supp} \alpha')^{\perp} \cap \operatorname{supp} \beta'$. Moreover $\alpha(v) = \gamma(v) \in W' \setminus W$, hence $\dim W' > W$ and we are left with the case $\dim W = 2$ after eventually repeating this argument.

End of the proof of Theorem 5: Let $\alpha_1, \ldots, \alpha_N \in S\Gamma(\varphi)$ be plane such that $\alpha_1 \ldots \alpha_N = 1$. We show $\hat{g}_{\alpha_1} \ldots \hat{g}_{\alpha_N} = 1$ by induction on dim φ .

Let $v \in V$ be any anisotropic vector, let $v_i = \alpha_i \dots \alpha_n(v)$, $v_{N+1} = v = v_1$, let $\gamma_i = \varepsilon(v_i, v_{i+1})$ and $\beta_i = \alpha_i \gamma_i^{-1}$. α_i and γ_i are linked, because $\alpha_i(v_{i+1}) = v$, thus $\hat{g}_{\alpha_i} = \hat{g}_{\beta_i} \hat{g}_{\gamma_i}$.

Put $\delta_i = \gamma_1 \dots \gamma_i$, $(\delta_0 = 1)$; δ_i is plane and is one choice of $\varepsilon(v, v_{i+1})$. Hence γ_i and δ_{i-1} are linked and therefore $\hat{g}_{\delta_i} = \hat{g}_{\gamma_1} \dots \hat{g}_{\gamma_i}$.

Let $\rho_i = \delta_{i-1}\beta_i\delta_{i-1}^{-1}$. Then $g_{\delta_{i-1}}g_{\beta_i}g_{\delta_{i-1}}^{-1} = g_{\rho_i}$ by the lemma. Taking things together we find

$$g_{\alpha_1} \dots g_{\alpha_N} = g_{\beta_1} g_{\gamma_1} g_{\beta_2} \dots g_{\beta_N} g_{\gamma_N} = g_{\rho_1} \dots g_{\rho_N} g_{\rho_N}.$$

Now, we are done, because $\rho_1 \dots \rho_N$ and δ_N fix v.

We have the following consequence of Theorem 5.

Corollary 7. Let \bar{G} be the free abelian group generated by all plane elements of $S\Gamma(\varphi)$. Denote by \bar{g}_{α} the generator corresponding to α . Then

$$\bar{G} \longrightarrow \overline{S\Gamma(\varphi)}, \quad \bar{g}_{\alpha} \longrightarrow \bar{\alpha}$$

is surjective and its kernel is generated by elements of the form

$$\bar{R}_0$$
) $\bar{g}_{\alpha}\bar{g}_{\beta}^{-1}$ if $\operatorname{sn}(\alpha) = \operatorname{sn}(\beta)$

$$\bar{R}_1$$
) $\bar{g}_{\alpha}\bar{g}_{\beta}\bar{g}_{\alpha\beta}^{-1}$ if α and β are linked.

The corollary is the basis of our construction of an epimorphism $\omega_{\varphi}: S\Gamma(\varphi) \to A_0(X, K_1)$ described in the next section.

The rest of this section is devoted to the proof of Proposition 2. Clearly Proposition 2 i) follows from Proposition 4.

Let

$$D(\varphi) = \{ \varphi(v); \ v \in V \text{ anisotropic} \} \subset F^*$$

and

$$N(\varphi) = \{\operatorname{sn}(\alpha); \ \alpha \in S\Gamma(\varphi) \text{ plane } \} \subset F^*.$$

 $N(\varphi)$ consists just of all norms from quadratic extensions K/F such that φ_K is isotropic. Define

$$\sum_{\varphi} : N(\varphi) \longrightarrow \overline{S\Gamma(\varphi)}, \ \sum_{\varphi} (\operatorname{sn}(\alpha)) = \bar{\alpha}$$

 Σ_{φ} is well defined by the very definition of $S\overline{\Gamma(\varphi)}$. Σ_{φ} is injective, since sn is a left inverse. $\Sigma_{\varphi}(N(\varphi))$ generates $\overline{S\Gamma(\varphi)}$ by Proposition 4.

For a subform φ_0 of φ , we denote by $i_*: \overline{S\Gamma(\varphi_0)} \to \overline{S\Gamma(\varphi)}$ the homomorphism induced by the inclusion $S\Gamma(\varphi_0) \subset S\Gamma(\varphi)$.

Lemma 8.

Let φ be a quadratic form. Then

- i) $D(\varphi) \cdot D(\varphi) = N(\varphi)$.
- ii) If φ represents 1, then $D(\varphi) \subset N(\varphi)$.
- iii) Let $v \in V$ and $\alpha \in S\Gamma(\varphi)$ plane, such that $\varphi(v) = 1$ and $v \in \operatorname{supp} \alpha$. Then $\operatorname{sn}(\alpha) \in D(\varphi)$.
- iv) Let $v \in V$ and $\alpha \in S\Gamma(\varphi)$. Then $\alpha = \alpha_1 \ldots \alpha_n$ with α_i plane and $v \in \operatorname{supp} \alpha_i$.
- v) If φ represents 1, then

$$\sum_{\varphi}(\varphi(v_1)\varphi(v_2)) = \sum_{\varphi}(\varphi(v_1))\sum_{\varphi}(\varphi(v_2))$$

for any anisotropic $v_1, v_2 \in V$. (The left hand side is defined by i)).

vi) Suppose ψ represents 1 and let $\varphi = \psi \oplus \langle b \rangle$. Then

$$\overline{S\Gamma(\varphi)} = i_*(\overline{S\Gamma(\psi)}) \cdot \sum_{\varphi} (D(\varphi)).$$

Proof.

It is easy to check i) - iii) for dim $\varphi = 2$ and iv) - vi) for dim $\varphi = 3$. One may however reduce to these cases by restriction to appropriate subforms. This is obvious except for iv) and vi). For iv) one has to consider only plane elements α by Proposition 4; hence one may replace φ by $\varphi \mid (\text{supp } \alpha + vf)$, which is of dimension ≤ 3 .

For vi) the reduction can be done as follows. Write $(V, \varphi) = (W, \psi) \oplus (F, \langle b \rangle)$ and let $v_0 = (0, 1) \in W \times F = V$. For a given $\alpha \in S\Gamma(\varphi)$ put $\beta = \varepsilon(\alpha(v_0), v_0)$. Then $\beta^{-1} \cdot \alpha$ fixes v_0 and is therefore contained in $S\Gamma(\psi)$. Hence it remains to show $\bar{\beta} \in i_*(S\Gamma(\psi)) \cdot \sum_{\varphi} (D(\varphi))$ for which one may restrict to $\varphi \mid V'$ with $V' = \text{supp } \beta + Fv_1$, where $v_1 \in V$ is such that $\varphi(v_1) = 1$.

Lemma 9.

Let $\psi = \langle 1 \rangle \oplus \psi'$ be a Pfister form, let $\bar{\psi}'$ be a subform of ψ' and let $\bar{\psi} = \langle 1 \rangle \oplus \bar{\psi}'$. Moreover let ζ be an arbitrary form representing 1 and let $b \in F^*$. Put $\varphi = (\psi \otimes \zeta) \oplus \langle b \rangle$ and $\hat{\varphi} = \varphi \oplus b\bar{\psi}' = (\psi \otimes \zeta) \oplus b\bar{\psi}$. Then

$$i_*: \overline{S\Gamma(\varphi)} \longrightarrow \overline{S\Gamma(\hat{\varphi})}$$

is surjective.

Proof.

Since $\hat{\varphi}$ represents 1 we know that $\sum_{\hat{\varphi}} (D(\hat{\varphi}))$ generates $\overline{S\Gamma(\hat{\varphi})}$ by Lemma 8 i). Note that

$$D(\hat{\varphi}) \subset D(\varphi) \cdot D(\bar{\psi}) \subset D(\varphi) \cdot D(\varphi) = N(\varphi)$$

since ψ is multiplicative and ζ represents 1. Hence

$$\sum_{\hat{\varphi}} (D(\hat{\varphi})) \subset \sum_{\hat{\varphi}} (N(\varphi)) \subset i_*(\overline{S\Gamma(\varphi)})$$

by Lemma 8 v).

Lemma 10.

Let φ be a Pfister neighbor, i.e. $\varphi = \psi \oplus b\bar{\psi}$ where ψ is a Pfister form, $\bar{\psi}$ is a subform of ψ and $b \in F^*$. Then $\overline{sn} : \overline{S\Gamma(\varphi)} \to F^*$ is injective and has image $N(\varphi) = D(\psi \otimes \ll -b \gg)$.

Proof.

Let $\rho = \psi \otimes \ll -b \gg$. Then $D(\rho)$ is a group as for every Pfister form and therefore $D(\rho) = N(\rho)$ by Lemma 8 i). Since φ_K is isotropic if and only if ρ_K is isotropic, we have $N(\varphi) = D(\rho)$. Therefore $N(\varphi)$ is a group, hence Im sn = $N(\varphi) = D(\rho)$.

Injectivity of \overline{sn} : If φ is a Pfister form (i.e. $\overline{\psi} = \psi$), then Σ_{φ} is a homomorphism in view of Lemma 8 v) and is a left inverse to \overline{sn} .

In the general case one may apply Lemma 9 with $\zeta = \langle 1 \rangle$ to reduce to case $\bar{\psi} = \langle 1 \rangle$. In this case we find by Lemma 8 vi) and the above remarks for Pfister forms:

$$\overline{S\Gamma(\varphi)} = i_*(\overline{S\Gamma(\psi)}) \cdot \sum_{\varphi} (D(\varphi)) = \sum_{\varphi} (N(\psi)) \cdot \sum_{\varphi} (D(\varphi)).$$

Hence every element in $\overline{S\Gamma(\varphi)}$ can be written as product of two plane elements and we are done.

Proof of Proposition 2 ii).

By Lemma 9 we may replace $\varphi = \rho \otimes (\psi \oplus \langle c \rangle)$ by $\tilde{\varphi} = (\rho \otimes \psi) \oplus \langle c \rangle$. Since $\rho \otimes \psi$ is itself a Pfister neighbor, we may assume $\varphi = \psi \oplus \langle c \rangle$. By Lemma 8 vi) and Lemma 10 we have

$$\overline{S\Gamma}(\varphi) = \sum_{\varphi} (N(\psi)) \cdot \sum_{\varphi} (D(\varphi)). \qquad \Box$$

Proof of Proposition 2 iii).

Write $(V, \varphi) = (W, \psi) + (F \times F, \langle c, c \rangle)$ and let $v_0 = (0, 0, 1), v_1 = (0, 1, 0) \in V = W \times F \times F$. For given $\alpha \in S\Gamma(\varphi)$ let $\beta = \varepsilon(\alpha(v_0), v_0)$ and $\gamma = \varepsilon(\beta^{-1}\alpha(v_1), v_1)$. Then $\delta = \gamma^{-1}\beta^{-1}\alpha$ fixes v_0 and v_1 , hence $\delta \in S\Gamma(\psi)$ and $\bar{\delta} \in \Sigma_{\varphi}(N(\psi))$ by Lemma 10. By Lemma 8 iii) we have $\mathrm{sn}(\beta)$, $\mathrm{sn}(\gamma) \in D(c\varphi)$ and therefore $\bar{\beta} \cdot \bar{\gamma} \in \Sigma_{\varphi}(D(c\varphi)) \cdot \Sigma_{\varphi}(D(c\varphi)) = \Sigma_{\varphi}(N(\varphi))$. Hence $\bar{\alpha} = \bar{\beta} \cdot \bar{\gamma} \cdot \bar{\delta}$ is in $\Sigma_{\varphi}(N(\psi)) \cdot \Sigma_{\varphi}(N(\varphi))$.

III. The map
$$\overline{S\Gamma(\varphi)} \longrightarrow A_0(X_{\varphi}, K_1)$$

We will use the following

Theorem 11.

- i) $A_0(X_{\varphi}, K_0) \hookrightarrow K_0 F$ for arbitrary φ
- ii) $A_0(X_{\varphi}, K_n) \hookrightarrow K_n F$ for isotropic φ
- iii) $A_0(X_{\varphi}, K_1) \hookrightarrow K_1 F$ for dim $\varphi = 3$.
- i) is proved in [Merkuriev, Suslin; On the norm homomorphism in degree 3].
- ii) follows from i) by the norm principle.
- iii) is one of the main points in the proof of Hilbert Satz 90 for K_2 for quadratic extensions. It stands at the heart of our construction. It shows that for a 3-dimensional form φ the groups $\overline{S\Gamma(\varphi)} = S\Gamma(\varphi)/[S\Gamma(\varphi), S\Gamma(\varphi)]$ and $A_0(X_{\varphi}, K_1)$ are naturally isomorphic, because \overline{sn} and N_{φ} are injective and have the same image in $F^* = K_1 F$.

Theorem 12.

For quadratic forms φ over F there exists unique homomorphisms

$$\omega_{\varphi}: \overline{S\Gamma(\varphi)} \longrightarrow A_0(X_{\varphi}, K_1)$$

such that

- i) If dim $\varphi = 3$, then $\omega_{\varphi} = N_{\varphi}^{-1} \circ \overline{\operatorname{sn}}$.
- ii) If φ_0 is a subform of φ , then

$$\overline{S\Gamma(\varphi_0)} \xrightarrow{\omega_{\varphi_0}} A_0(X_{\varphi_0}, K_1)$$

$$\downarrow^{i_*} \qquad \qquad \downarrow^{i_*}$$

$$\overline{S\Gamma(\varphi)} \xrightarrow{\omega_{\varphi}} A_0(X_{\varphi}, K_1)$$

is commutative.

Proof.

Let \bar{G} be as in Corollary 7 and define

$$\hat{\omega}_{\varphi}: \bar{G} \longrightarrow A_0(X_{\varphi}, K_1)$$

as follows. For $\alpha \in S\Gamma(\varphi)$ plane choose a subform φ_0 of φ of dimension 2 such that $\alpha \in S\Gamma(\varphi_0)$. $(\varphi_0$ is unique if $\alpha \notin F^*$). Then $\alpha \in S\Gamma(\varphi_0) = K_1F(X_{\varphi_0}) = A_0(X_{\varphi_0}, K_1)$ and we define $\hat{\omega}_{\varphi}(\bar{g}_{\alpha})$ to be the image of α under $A(X_{\varphi_0}, K_1) \to A(X_{\varphi}, K_1)$. This definition does not depend on the choice of φ_0 because of Theorem 11 i). In order to prove Theorem 12, it suffices to show that $\hat{\omega}_{\varphi}$ vanishes on the relations \bar{R}_0 , \bar{R}_1 in Corollary 7. This is clear for \bar{R}_1) because of Theorem 11 iii) and follows for \bar{R}_0 from

Proposition 12.

Let $v_1, v_2 \in X_{(0)}$ be two points of degree 2, let $F_i = K(v_i)$ and let $\alpha_i \in F_i^*$ such that $N_{F_1|F}(\alpha_1) = N_{F_2|F}(\alpha_2)$. Then $[\{\alpha_1\}, v_1] - [\{\alpha_2\}, v_2]$ is in the image of

$$\bigoplus_{v \in X_{(1)}} K_2K(v) \stackrel{d}{\longrightarrow} \bigoplus_{v \in X_{(0)}} K_1K(v).$$

Proof.

Let $F_0 = F_1 \otimes_F F_2$. We have

$$\alpha_i = \{\beta\} + \{N_{F_0|F_i}(\gamma)\}\$$

for some $\beta \in F^*$ and $\gamma \in F_0^*$ (take $\beta = (\operatorname{tr} \alpha_1 + \operatorname{tr} \alpha_2)^{-1}$, $\gamma = \alpha_1 + \alpha_2$ in the generic case). Hence

$$[\{\alpha_1\}, v_1] - [\{\alpha_2\}, v_2] = \{\beta\} \cdot (v_1 - v_2) + \operatorname{cor}_{F_1|F}(u_1 - u_2)$$

where $u_1, u_2 \in \bigoplus_{v \in (X_{F_1})_{(0)}} K_1K(v)$ are given by

$$u_1 = [N_{F_0|F_1} \{\gamma\}, \tilde{v}_1],$$

with \tilde{v}_1 a rational point of X_{F_1} and

$$u_2 = [\gamma, \tilde{V}_2]$$

with \tilde{v}_2 the point over v_2 .

Now $\{\beta\} \cdot (v_1 - v_2) \in \operatorname{Im} d$, because $A_0(X_{\varphi}, K_0) \hookrightarrow K_1 F$.

Furthermore, over F_1 we have $N_{\varphi}(u_1 - u_2) = 0$, hence $u_1 - u_2 \in \text{Im } d$, because X_{F_1} has a rational point.

Proposition 13.

If F has no extension of odd degree, then $\omega_{\varphi}: \overline{S\Gamma(\varphi)} \to A_0(X_{\varphi}, K_2)$ is surjective.

It follows from Knebusch's norm principle that $\operatorname{Im}(N_{\varphi} \circ \omega_{\varphi}) = \operatorname{Im} N_{\varphi}$. One may use the proof of Knebusch's norm principle to show that ω_{φ} is surjective in general. Since this is a bit tedious I omit a proof here.

Proof of Theorem 1.

Since $A_0(X_{\varphi}, K_1) \hookrightarrow K_1 F$ for isotropic φ , we have $2 \operatorname{Ker} N_{\varphi} = 0$ by a transfer argument. Hence we may assume that F has no odd extension, again using transfers. But then by Proposition 13 and the very definition of $\overline{S\Gamma(\varphi)}$:

$$\operatorname{Ker} N_{\varphi} = \omega_{\varphi}(\operatorname{Ker} \overline{\operatorname{sn}}) = 0.$$

For a quadratic form put $D_1(\varphi) = \text{Im sn} = \text{Im } N_{\varphi}$. For the proof of Proposition 13 we need the following lemma which can be deduced also from the arguments in [Merkuriev, Suslin; On the norm homomorphism in degree 3].

Lemma 14.

Let dim $\varphi = 4$ and let H/F be a quadratic extension. Then for every $u \in D_1(\varphi_H)$ there exists (over F) two 3-dimensional subforms φ' , φ'' of φ such that $u \in D_1(\varphi'_H) \cdot D_1(\varphi''_H)$.

Proof. (sketch)

Write $\varphi = \langle -a, -b, ab, c \rangle$. It is easy to check that

$$D_1(\varphi) = \operatorname{Nrd}(D(a,b) \otimes F(\sqrt{c})) \cap F^* \subset F(\sqrt{c})^*.$$

Using this for φ_H one finds

$$u = \operatorname{Nrd}(d) \cdot (1 + c \operatorname{Nrd}(d'))$$

for some $d, d' \in D(a, b) \otimes_F H$ with $d' + \overline{d'} = 0$. Now put $\varphi' = \langle -a, -b, ab \rangle$, then $\operatorname{Nrd}(d) \in D_1(\varphi'_H)$. It is not hard to find $\bar{a}, \bar{b} \in F^*$ such that $D(a, b) \simeq D(\bar{a}, \bar{b})$ and $1 + c\operatorname{Nrd}(d') \in \operatorname{Nrd}(D(\bar{a}c, \bar{b}c) \otimes_F H)$. Since $\bar{\varphi} = \langle -\bar{a}c, -\bar{b}c, a\bar{b}, c \rangle$ has the same even Clifford algebra as φ , we know that $\bar{\varphi}$ is similar to φ by quadratic form theory. Hence $\langle -\bar{a}c, -\bar{b}c, \bar{a}\bar{b} \rangle$ is similar to a subform φ'' of φ . Now we are done because $1 + c\operatorname{Nrd}(d') \in D_1(\varphi''_H)$.

Consequence.

Let H/F be a quadratic extension. Then

$$\operatorname{cor}_{H/F}(\operatorname{Im}\omega_{\varphi_H})\subset \operatorname{Im}\omega_{\varphi}.$$

Proof. We may assume dim $\varphi = 4$.

For $\alpha \in S\Gamma(\varphi_H)$ plane there exists by Lemma 14 subforms φ' , φ'' of φ of dimension 3 and $\alpha' \in S\Gamma(\varphi'_H)$, $\alpha'' \in S\Gamma(\varphi''_H)$ such that $\operatorname{sn}(\alpha) = \operatorname{sn}(\alpha')\operatorname{sn}(\alpha'')$. We know that sn is injective, hence

$$\operatorname{cor}_{H/F}(\omega_{\varphi_H}(\alpha)) = \operatorname{cor}_{H/F}(\omega_{\varphi_H}(\overline{\alpha'}) + \omega_{\varphi_H}(\overline{\alpha''})).$$

Now $\operatorname{cor}_{H/F}(\omega_{\varphi_H}(\overline{\alpha'}))$ is in the image of $A_0(X_{\varphi'}, K_1) \to A_0(X_{\varphi}, K_1)$. But we know that $\omega_{\varphi'}$ is surjective, hence $\operatorname{cor}_{H/F}(\omega_{\varphi_H}(\overline{\alpha'})) \in \operatorname{Im} \omega_{\varphi}$. Similarly $\operatorname{cor}_{H/F}(\omega_{\varphi_H}(\overline{\alpha''})) \in \operatorname{Im} \omega_{\varphi}$.

Proof of Proposition 13.

By the consequence we have the norm principle for $\operatorname{Im}(\omega_{\varphi})$ if F has no odd extensions. Since $A_0(X_{\varphi}, K_1)$ is generated by corestrictions from splitting fields K of φ and since $A_0(X_{\varphi_K}, K_1) = \operatorname{Im} \omega_{\varphi_K}$ we conclude $A_0(X_{\varphi}, K_n) = \operatorname{Im} \omega_{\varphi}$.