14

M. Rost:

On splitting varieties for 3-symbols mod 3

Consider a symbol $\{a_1, a_2, a_3\} \in K_3^M F/3$. Let $A = (a_1, a_2)$ be the degree 3 algebra given by a_1, a_2 . Then a generic splitting variety for $\{a_1, a_2, a_3\}$ is given by

$$Z = \{ x \in A \mid \operatorname{Nrd}(x) = a_3 \}.$$

Let \overline{Z} be a smooth compactification of Z. Using the theory of exceptional Jordan algebras one can show that the direct image maps $(d = \dim Z = 8)$

$$H^d(\bar{Z};\mathcal{K}_{d+i})\to K_iF$$

are injective for i = 0, 1.

S. Saito:

Filtration on Chow groups and generalized normal functions

Let $X \xrightarrow{f} S$ be a projective smooth morphism of non-singular algebraic varieties. We define a map

$$\rho_{X/S}^{r,\nu} \colon F_S^{\nu} \operatorname{CH}^r(X) \to \Gamma(S, DJ_{X/S}^{r,\nu}).$$

Here $\operatorname{CH}^r(X)$ is the Chow group of cycles of codimension r in X, $F_S^{\nu} \operatorname{CH}^r(X)$ $(\nu \ge 0)$ is a filtration which is a relative version of Bloch-Beilinson filtration, $DJ_{X/S}^{r,\nu}$ is a sheaf on S_{an} and $\Gamma(S, DJ_{X/S}^{r,\nu})$ is the space of the sections which are called generalized normal functions. For $\nu = 1$, $F_S^1 \operatorname{CH}^r(X)$ is the subgroup of cycles homologically equivalent to zero fiberwise and $\rho_{X/S}^{r,1}$ is the classical map associating normal functions due to Griffits. We investigate $\rho_{X/S}^{r,\nu}$ in the case that F is the universal family of complete intersections and show a modest generalization of Abel's theorem.

V. Voevodsky:

Milnor's conjecture

Abstract not provided by the speaker.

