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0 Introduction

The purpose of these lectures is to present a part of Markus Rost’s work on Norm
Varieties. The primary goal is to prove the following result [MC/l, theorem 6.3] that
is necessary to complete the inductive step in the proof of the Bloch – Kato conjecture.

0.1 Theorem (M. Rost). For any non-trivial n-symbol {a1, . . . , an} ∈ KM
n (k)/l there

exists a splitting variety X such that
1) X is a ν6n−1 variety
2) the sequence

H−1,−1(X ×X)
(p1)∗−(p2)∗−−−−−−−−→ H−1,−1(X) −−−−→ H−1,−1(k) = k∗

is exact.

An interested reader may find out more about both the history and the strategy of the
proof of the conjecture in the introduction to the paper [MC/2]. A diagram illustrating
various implications of results in the motivic cohomology that are used in the inductive
step appears in the introduction to the notes [EMS].

∗Preliminary version of March 29, 2005
†Author was supported by...
‡Notetaker was supported by...
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Observe that to get the proof of Bloch - Kato conjecture in general it suffices to prove
the main theorem above for an arbitrary prime number l > 2 and an arbitrary base field
k of the characteristic zero containing a primitive l-th root of unity. Moreover, the base
field may be assumed to be l - special, see the definition 1.11 below. While the restriction
on the characteristic is not essential for many steps of the construction, we impose it for
the sake of simplicity. Thus we freely use the resolution of singularities technique by
Hironaka [H]. We don’t assume that l is odd because it gives no simplification.

The present proof of the theorem in weight n uses the Theorem 2.4 that in turn follows
from the Bloch - Kato conjecture in weight n− 1. Thus, rather then being a completely
independent statement it is a part of inductive step

Bloch - Kato
conjecture

in weight n− 1
=⇒

Bloch - Kato
conjecture

in weight n.

Here is the outline of the argument. In the first section we give all the necessary
definitions and introduce the so-called group of reduced 0 - dimensional K1 - cycles on a
smooth scheme to replace the (−1,−1) - homology of the main theorem. We discuss a
number of properties of these cycles and formulate the theorem 1.20 which is the central
result of these notes. In short, it claims that splitting varieties of the special type exist,
and that any such variety satisfies the claim of the main theorem. In conclusion of the
section one we show that theorem 1.20 implies theorem 0.1 if the base field is l-special.

In the section two we describe an inductive construction of l-generic splitting varieties
for a symbol. These varieties are constructed from symmetric powers and are, in fact,
exactly the ones we want to produce. Toward the end we show that 1.20 implies 0.1 for
a base field that is not necessary l-special.

The following two sections deal with the pseudo-Galios (i.e. ‘Galois almost everywere’)
coverings. In the section three we define the η invariant of such coverings and show that
it satisfies an appropriate degree formula. In the section four it is shown, by means of
introduction of b - classes, that knowing η invariant of l-th (Cartesian) power of a variety
over its l-th cyclic power is essentially the same as to know whether it is a ν6n−1 variety.

Finally in the section five we use Markus Rost’s Chain Lemma to show that variety
in question is indeed ν6n−1, and also to prove the Multiplication Principle for reduced
0 - dimensional K1 - cycles. In turn Multiplication Principle together with the Norm
Principle (see [R]) obviously imply the remaining claim of the theorem 1.20 hence the
main theorem as well.

1 Reduced 0 - dimensional K1 - cycles

We would like to transform the statement of the main theorem 0.1 into one about algebraic
cycles.

Let X be a smooth, irreducible, projective variety of dimension d. Recall that the
K-cohomology groups of X are those of the Gersten complex

KM
d+1(k(X)) −→

∐
codim x=1

KM
d (k(x)) −→ · · · −→

∐
codim x=d

KM
1 (k(x)).
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The last cohomology group is

Hd(X,Kd+1) = coker

 ∐
dim ȳ=1

KM
2 (k(y)) ∂−→

∐
x is a closed point of X

KM
1 (k(x))

 .

Finally recall that the latter group may also be denoted A0(X,K1) and, when written in
this form, is called the group of 0 - dimensional K1 - cycles.

The connection between the motivic homology H−1,−1(X) and A0(X,K1) is a direct
consequence of standard relations.

1.1 Lemma. Let X be a smooth, irreducible, projective variety of dimension d. Then
H−1,−1(X) = A0(X,K1).

Proof. Using duality (see [TC]) and usual isomorphism between motivic and K-cohomology,
as well as above remarks we compute

H−1,−1(X) = HomDM−(Z(−1)[−1],M(X)) (definition)
= HomDM−(Z(−1)[−1],Hom(M(X),Z(d)[2d])) (duality)
= HomDM−(Z(−1)[−1]⊗M(X),Z(d)[2d])
= HomDM−(M(X),Z(d+ 1)[2d+ 1])

= H2d+1(X,Z(d+ 1)) (definition)

= Hd(X,Kd+1) [MC/2, lemma 4.11]
= A0(X,K1) (definition)

with Hom being the internal Hom-object in the category DM−.
Note that a proper morphism f : X → Y induces a map of Gersten complexes, hence

the map f∗ : A0(X,K1) → A0(Y,K1), consequently the groups A0(−,K1) are covariant,
in particular, with respect to morphisms of projective varieties. Moreover the map f∗ is
compatible with the corresponding map of (−1,−1) homology groups.

1.2 Notation. For a smooth, irreducible, projective variety X let Ā0(X,K1) denote the
group of reduced 0 - dimensional K1 - cycles

coker
(
A0(X ×X,K1)

(p1)∗ − (p2)∗ // A0(X,K1)
)
.

Finally let us point out that the map N : A0(X,K1) → A0(Spec k,K1) = k× induced
by the structure map, is the sum of norm maps of Milnor K-groups, and that it obviously
factors through Ā0. Now we can make a trivial but very important observation.

1.3 Remark. A projective varietyX verifies the second requirement of the main theorem
0.1 if and only if the norm map N : Ā0(X,K1) → k× is injective.

Observe that the group Ā0(X,K1) is generated by elements of the form [x, µ], where
x ∈ X is a closed points, µ ∈ k(x)×. Such element may be thought of either as the image
of µ under the canonical map k(x)× = Ā0(Spec k(x),K1) → Ā0(X,K1) corresponding to
embedding of x into X or simply as µ placed at x.
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Let L/k be a field extension. A morphism φ : SpecL→ X is determined by a point x
of X and a field embedding k(x) ↪→ L over k. We will refer to such φ as L - valued point
of X. If L/k is a finite extension then x must be a closed point of X. For such point the
map φ∗ defined above admits very explicit description. It is induced by the norm map

L×
NL/k(x) // k(x)×

canonical
map��

A0(SpecL,K1)
φ∗ // A0(X,K1).

This allows to give the following description of Ā0(X,K1).

1.4 Lemma. Ā0(X,K1) is obtained from A0(X,K1) by factoring out all the relations of
the form φ∗(λ)−ψ∗(λ) where L is any finite extension of k, λ ∈ L×, and φ, ψ : SpecL→
X are any two L - valued points.

Proof. Any two morphisms φ, ψ : SpecL→ X determine the product morphism (φ, ψ) :
SpecL → X × X. For any λ ∈ L therefore φ∗(λ) − ψ∗(λ) = ((p1)∗ − (p2)∗)(φ, ψ)∗(λ)
vanishes in Ā0(X,K1). Conversely every element in the image of (p1)∗ − (p2)∗ must be
a sum of terms of that form.

Making the right choice of L we obtain

1.5 Corollary. 1) Assume that x, x′ ∈ X are closed points such that there exists an iso-
morphism σ : k(x) ∼−→ k(x′). Then for every λ ∈ k(x)×, [x, λ] = [x′, σ(λ)] in Ā0(X,K1).
2) Assume that x, x′ ∈ X are closed points such that there exists a field embedding
k(x′) ↪→ k(x). Then for every λ ∈ k(x)×, [x, λ] = [x′, Nk(x)/k(x′)(λ)] in Ā0(X,K1).

1.6 Corollary. If X has a k - rational point x0 then N : Ā0(X,K1)
∼→ k× is an

isomorphism.

Proof. The morphism X → Spec k induces the map N : Ā0(X,K1) → k× that sends
[x, µ] to Nk(x)/k(µ). It has right inverse that maps µ ∈ k× to [x0, µ]. It is enough to
show that the latter is surjective. Let x ∈ X be any closed point. Then according to the
corollary 1.5 for each µ ∈ k(x)× we get [x, µ] = [x0, Nk(x)/k(µ)] in Ā0(X,K1).

1.7 Corollary. If X has a closed point of degree n then both the kernel and the cokernel
of N : Ā0(X,K1) −→ k× are annihilated by n.

Proof. Let x ∈ X be the point with [k(x) : k] = n. After extension of scalars to k(x)
the map in question becomes an isomorphism. The usual transfer argument completes
the proof.

Now we recall the notion of a generic splitting variety.

1.8 Definition. Let {a} = {a1, . . . , an} ∈ KM
n (k)/l be a non - zero symbol. A smooth

variety X is a splitting variety for {a} if
1) {a} = 0 in KM

n (k(X))/l.
It is a generic splitting variety if in addition

2) for any L/k such that {a} = 0 inKM
n (L))/l there is an L - valued point SpecL→ X

over k.
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1.9 Remark. Observe that for any x ∈ X the map KM
n (k)/l → KM

n (k(x))/l factors
through a (non-canonical) specialization map KM

n (k(X))/l→ KM
n (k(x))/l. Therefore if

X is a splitting variety for {a} then {a} = 0 in KM
n (k(x))/l for every point x of X.

Unfortunately the generic splitting varieties are only known to exist for n 6 3 and
also for arbitrary n provided l = 2. Observe however that if L′/L is a finite extension of
degree prime to l and L′ splits {a} then by the usual transfer argument L splits {a} as
well. Therefore we can, without much loss, relax the definition as follows.

1.10 Definition. A smooth variety X is an l - generic splitting variety for a non - zero
symbol {a} ∈ KM

n (k)/l if
1) X is a splitting variety for {a} and
2) for any L/k such that {a} = 0 in KM

n (L))/l there is a finite extension L′/L of
degree prime to l and an L′ - valued point SpecL′ → X over k.

Fields L as above are called splitting fields of {a}.

1.11 Definition. A field F is called l - special provided F has no finite extensions of
degree prime to l or equivalently if Gal (Falg/F ) is a pro - l - group.

1.12 Remark. Let L be any field. Choose an algebraic closure Lalg of L. Let G :=
Gal (Lalg/L) and Gl be a Sylow l - subgroup of the profinite group G. Set L̃ := LGl

alg to be
subfield fixed by Gl. Then L̃ is l - special while the degree of every its finite subextension
L′/L is prime to l. Such field L̃ is called a maximal extension of L of degree prime to l.

With a notion of l - special field at our disposal we can give an alternative description
of l - generic splitting varieties
1.10′ Definition. A variety X is an l - generic splitting variety for a non - zero symbol
{a} ∈ KM

n (k)/l if
1) X is a splitting variety for {a} and
2) for any l - special splitting field F of {a} there is an F - valued point SpecF → X

over k.
Note that the definitions 1.10 and 1.10’ are equivalent. Indeed if X is an l - generic

splitting variety according to 1.10 and L is l - special then L′/Lmust be a trivial extension
and any L′ - valued point is an L - valued point. Conversely let X be an l - generic
splitting variety according to 1.10’ and L be a splitting field for {a}. Let L̃ be a maximal
extension of L of degree prime to l. Since {a} vanishes over L it does so over L̃ hence X
has an L̃ - valued point. It is supported in a point x of X. Since k(x) is finitely generated
over k there exists some finite subextension L′/L such that field embedding k(x) ↪→ L̃
factors through L′. Thus, by construction, X has an L′ - valued point supported in x
and L′/L is finite of degree prime to l.

Everywhere in these notes all the splitting varieties are always assumed to be smooth
and projective.

1.13 Lemma. Let f : X → X ′ be a birational morphism of projective varieties. Then
for each point x′ in the smooth locus of X ′ there exists x ∈ X such that f(x) = x′ and
k(x) = k(x′).

Proof. Assume first that X ′ is smooth and f : X ′ → X is a blow - up with a smooth
center. In this special case the claim holds for obvious reasons.
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In the general case consider the inverse rational map f−1 : X ′− → X. Using the
resolution of singularities one can find a tower of blow - ups Xn → · · · → X1 → X ′ such
that Xn is smooth and π : Xn → X ′ is an isomorphism over the smooth locus of X ′. In
particular the fiber of g over x′ consists of a single point x′′ with the same residue field.

Then again using the resolution of singularities for the morphism π◦f−1 one constructs
a tower of blow - ups with smooth centers Ym → · · · → Y1 → Xn such that π ◦ f−1 :
Xn = X ′− → X lifts to a morphism g : Ym −→ X.

X

f

��
Ym //

g

66mmmmmmmmmmmmmmmm
Xn

π // X ′.

f−1

OO�
�
�

According to the special case one can further lift x′′ ∈ Xn to x′′′ ∈ Ym with the same
residue field. Setting x := g(x′′′) we observe that f(x) = x′ and moreover that k(x′) =
k(x′′′) ⊃ k(x) ⊃ k(x′) hence the residue fields k(x) and k(x′) are the same.

1.14 Notation. For a variety X set FEX := {F/k : X has an F - valued point}. (FE
stands for ‘field extension’.)

Using a tower of blow - ups as in the previous lemma one can readily prove the
following.

1.15 Lemma. Assume that X− → X ′ is a rational map of smooth projective varieties.
Then FEX ⊂ FEX′ .

1.16 Remark. According to the lemma the property of being generic splitting variety
for a given symbol is a birational invariant.

1.17 Notation. For a variety X set FElX := {F/k : F is l - special and X has an F -
valued point}.

We will repeatedly use the following technical statement.

1.18 Lemma. Let f : X → X ′ be a dominant morphism of a degree prime to l of
projective varieties of an equal dimension. Let L′ be any field and ψ : SpecL′ → X ′ be
a morphism supported in the smooth locus of X ′. Then ψ may be lifted to a morphism
φ : SpecL→ X so that L/L′ is a finite extension of degree prime to l.

Proof. According to Raynaud - Gruson platification theorem [RG] there exists a blow
- up p : BZ′X ′ → X ′, not necessarily with a smooth center, such that the proper pull -
back p!f of f is flat. Since p!f is flat proper, and generically finite (because so is f) then
it is flat and finite.

Let X̃ ′ be a variety resolving singularities of BZ′X ′ and set X̃ to be the pull - back
of the corresponding square.

SpecL
φ̃ //

��

X̃ //

f̃

��

p!X //

p!f

��

X

f

��
SpecL′

ψ̃

// X̃ ′ // BZ′X ′
p
// X ′

6



Since X̃ ′ → X ′ is a birational morphism the lemma 1.13 allows to lift the morphism
ψ : SpecL′ → X ′ to ψ̃ : SpecL′ → X̃ ′. Consider the fiber of f̃ over the L′ - valued point
ψ̃. It is a finite scheme of degree prime to l over SpecL′ and hence has a closed point
also of degree prime to l over SpecL′. This point provides a morphism φ̃ : SpecL → X̃
that lifts ψ̃ with L/L′ being a finite extension of degree prime to l. Composing φ̃ with
the other two morphisms in the top row of the diagram we get the required lifting of ψ.

1.19 Corollary. Assume that X− → X ′ is a dominant rational map of smooth projective
varieties of same dimension and of degree prime to l. Then FElX = FElX′ .

Proof. According to lemma 1.15 we may replaceX by any birationally equivalent smooth
projective variety. Thus by resolution of singularities we may assume that f : X → X ′

is a morphism. Then inclusion FElX ⊂ FElX′ is obvious.
To prove the opposite inclusion consider an l-special field L′ such that X ′ has an L′

- valued point. By lemma 1.18 X has an L - valued point for an appropriate extension
L/L′. Since L′ is l - special this extension is in fact trivial that is X also has an L′ -
valued point.

In conclusion of this section we state the theorem, the proof of which will occupy the
remainder of the paper and show that it implies the main theorem in those cases we are
mostly interested in.

1.20 Theorem (M. Rost). Let n > 2 and 0 6= {a} = {a1, . . . , an} ∈ KM
n (k)/l. Then

1) there exists an absolutely irreducible projective l - generic splitting variety for {a}
of the dimension ln−1 − 1.
Assume further that the field k is l-special. If X is a projective l - generic splitting variety
for {a} of the dimension ln−1 − 1 then

2) X is a νn−1 variety;
3) each element of Ā0(X,K1) is of the form [x, λ], where x ∈ X is a closed point of

degree [k(x) : k] = l, λ ∈ k(x)×.

1.21 Corollary. Let k be l-special and X be as in the theorem. Then X is a ν6n−1

variety.

Proof. We have to show that for every 1 6 i < n − 1 there is a νi variety equipped
with a morphism to X. Consider a non - zero symbol {a1, . . . , ai+1} ∈ KM

i+1(k)/l. By
the theorem it has an l - generic splitting variety Xi of the dimension li− 1. Its function
field k(Xi) splits {a1, . . . , ai+1} and hence splits {a1, . . . , an}. Therefore there exists a
finite extension F/k(Xi) of the degree prime to l and a F - valued point SpecF → X.
Choosing a model for F and resolving singularities of the corresponding rational map we
get a smooth projective variety X ′

i of the same dimension as Xi and a pair of morphisms

X ′
i

f

~~}}
}}

}}
}} g

  @
@@

@@
@@

@

Xi X

so that f is dominant of degree prime to l. By the corollary 1.19 FElXi
= FElX′

i
con-

sequently X ′
i is another l - generic splitting variety for an (i + 1) - symbol and because

dimX ′
i = dimXi = li− 1 it is νi by the theorem. Thus we have constructed a morphism

g from a νi variety to X.
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1.22 Remark. For i = 0 the same argument applied to X0 = Spec k( l
√
a1) shows that

X has an F - valued point where F/k( l
√
a1) is a finite extension of degree prime to l.

However since k is l - special this extension can only be the trivial one, that is X must
have a k( l

√
a1) - valued point.

1.23 Corollary. Let k be l-special and X be as in the theorem. Then the norm map
N : Ā0(X,K1) → k× is injective.

Proof. Consider [x, λ] ∈ kerN with [k(x) : k] = l. Let σ be a generator of Gal(k(x)/k) ∼=
Z/l. By the Hilbert’ 90 Theorem Nk(x)/k(λ) = 1 implies λ = µ1−σ for some µ ∈ k(x)×.
Thus [x, λ] = [x, µ]− [x, σ(µ)] = 0 by corollary 1.5

1.24 Remark. Evidently the corollaries 1.21 and 1.23 along with the remark 1.3 allow
us to conclude that the theorem 1.20 implies the main theorem 0.1 in the case of an l -
special base field.

2 Symmetric powers

In order to prove the existence clause of the theorem 1.20 we use the following construction
suggested by V. Voevodsky. It is based on the notion of symmetric powers that we briefly
recall below.

Let Y be a quasi - projective variety. The symmetric group Σm acts on the m - fold
product Y m and we let SmY (or SymmmY ) denote the quotient variety Y m/Σm.

For every normal and irreducible scheme T one can identify the set of morphisms
Hom(T, SmY ) with the set of all effective cycles Z ⊂ Y × T such that each component
of Z is finite surjective over T and that the degree of Z over T is m.

Assume that Y is smooth and absolutely irreducible hence SmY is absolutely irre-
ducible and normal. The identity morphism id : SmY → SmY then corresponds to the
incidence cycle Z ⊂ Y ×SmY . In fact Z is a closed subscheme equal to the image of the
closed embedding Y × Sm−1Y → Y × SmY mapping (y, z) to (y, z + y).

Let p : Y × Sm−1Y → Y × SmY → SmY be the composition of the above morphism
with the projection onto the second factor. It is finite surjective of the degree m.

Consider the largest open subscheme Y m \ ∆ of Y m on which Σm acts freely. (∆
denotes the union of all the ‘diagonals’ in Y m.) Set U := (Y m \∆)/ΣM ⊂ SmY . From
the diagram

p−1(U)⊂ Y × Sm−1Y

p|p−1U

��

Y m \∆

99ttttttttt

%%KKKKKKKKKKK

U ⊂ SmY

were both slant arrows are Galois étale coverings we see that p|p−1U is a finite étale map
of degree m and that U is smooth.

Note that p∗(OY×Sm−1Y ) is a coherent OSmY - algebra and that the sheaf A :=
p∗(OY×Sm−1Y )|U is a locally free OU - algebra of rank m. Set V := Spec (S∗A#) to be
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the m - dimensional vector bundle over U corresponding to A. (Here A# denotes the
dual sheaf and S∗ denotes its symmetric algebra.)

Since A is a locally free algebra, there is a well - defined norm function N : A →
OU . Moreover locally N is a homogenous polynomial function of degree m that is N ∈
Sm(A#).

We will inductively construct l - generic splitting varieties of the theorem 1.20. The
case of n = 2 is well - known, one can choose a splitting variety to be the Severi - Brauer
variety of a cyclic algebra associated to the symbol {a1, a2}.

So we assume that n > 2, let Y in the preceding construction be a smooth projective
absolutely irreducible l - generic splitting variety for {a1, . . . , an−1} of the dimension
ln−2 − 1, and set m := l.

Let W ⊂ V be the hypersurface defined by the equation N − an = 0.

2.1 Lemma. W is smooth over U (and hence smooth) and absolutely irreducible.

Proof. Since N locally is a form of degree l in l variables, and an 6= 0, the first claim
follows from the Jacobi criterion. To prove the second we may replace k by its algebraic
closure. Assume that W is not irreducible. Hence there exists a point u ∈ U such that the
homogenous polynomial Nu− an with coefficients in Ou is reducible. The the lemma 2.2
below would imply that Nu = Mm is a power of a non-trivial linear form M : Au → Ou.
Observe however that kernel of M is a codimension 1 subspace in Au while the norm
map Nu can not have a degeneracy locus of this form.

2.2 Lemma. Let N be a form of prime degree m in n variables with coefficients in a
UFD B/k and let a 6= 0 in k. The following conditions are equivalent.

1) The polynomial N − a ∈ B[X1, . . . , Xn] is irreducible;
2) The polynomial N − aTm ∈ B[T,X1, . . . , Xn] is irreducible;
3) N does not equal aMm for any linear form M .

Proof. The equivalence of the first two conditions is obvious. The last two are equivalent
thanks to the Gauss lemma applied to B[X1, . . . , Xn] and its fraction field.

By the resolution of singularities we can embed W as an open subvariety into a
smooth, projective, and absolutely irreducible variety X. Note that dimX = dimW =
dimV − 1 = dimU + l − 1 = l dimY + l − 1 = l(ln−2 − 1) + l − 1 = ln−1 − 1 just as
required. It remains to show that X is indeed an l - generic splitting variety for {a}.
This will be done in several steps.

2.3 Lemma. Let F/k be any field extension such that W (F ) 6= ∅. Then {a1, . . . , an} = 0
in KM

n (F ).

Proof. To specify an F - valued point x of W one may specify the underlying F -
valued point x̃ of U and a rational point x̂ in the fiber Vx̃ such that N(x̂) − an = 0.
(Note that Vx̃ ∼= Al

F .) The point x̃ corresponds to a cycle x1 + . . .+ xk on YF such that∑
[F (xi) : F ] = l. Then the point x̂ has ‘coordinates’ (λ1, . . . , λk) ∈ F (x1)× · · · ×F (xk)

and by assumption an = N(x̂) =
∏
NF (xi)/F (λi).

By construction Y has an F (xi) - valued point for each 1 6 i 6 k hence {a1, . . . , an−1} =
0 in KM

n−1(F (xi))/l. Thus in KM
n (F ))/l

{a1, . . . , an} =
∑

NF (xi)/F ({a1, . . . , an−1, λi} = 0.
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Applying the previous lemma to F = k(W ) = k(X) we conclude that X is a splitting
variety for {a}.

2.4 Theorem (V. Voevodsky). Assume that Bloch - Kato conjecture holds in weight
(n− 1). Let {a1, . . . , an−1} ∈ KM

n−1(k)/l be any non - zero symbol. Assume that k is l -
special and Y is a ν6n−2 splitting variety for the symbol {a1, . . . , an−1}. Then{

a such that {a1, . . . , an−1, a} = 0 in KM
n (k)/l

}
= (k×)lN(Ā0(Y,K1))

The inclusion ⊃ is straightforward in view of 1.20 applied to Y . The other one is non
- trivial and will (hopefully) appear in a later version of [MC/l].

Finally we are able to show that for every l - special field F that splits {a} X has an
F - valued rational point. Two cases are possible.

First case. F does not split {a1, . . . , an−1}. Then by 2.4 applied to YF we get
an ∈ (F×)lN(Ā0(YF ,K1)). Hence by the theorem 1.20 part 3, that holds for Y by
inductive assumption, there exists y ∈ YF such that [F (y) : F ] = l and λ ∈ F (y)× so
that an = alNF (y)/F (λ) = NF (y)/F (aλ). This data determines an F - valued point of W
thus the one of X.

Second case. (This argument is due to V. Voevodsky.) F splits {a1, . . . , an−1} hence
YF has a rational point. By the lemma 2.5 below YF has some l distinct rational points
y1, . . . , yl that determine an F -rational point y = y1 + . . . + yl of UF . This point along
with (1, . . . , 1, an) ∈ Vy determines an F - rational point in the fiber Wy. Hence WF has
a rational point. As above this data determines an F - valued point of W thus the one
of X.

2.5 Lemma. Let F be l - special, and Y be a smooth projective variety over F of
dimension at least 1. If Y (F ) 6= ∅ then #Y (F ) = ∞

Proof. We may assume that Y/F is a curve. Let y1, . . . , yk be distinct rational points
on Y . We need to exhibit one more point. Consider a divisor

∑k
1 niyi such that ni > 0,∑

ni > 2g−2, and (
∑
ni, l) = 1. By the Riemann - Roch theorem we can find a rational

function f such that (f)∞ =
∑k

1 niyi. Let (f)0 =
∑
mjzj . Note that all zj are different

from all yi and that
∑
mj [F (zj) : F ] =

∑
ni is prime to l. Hence for at least one j the

degree [F (zj) : F ] is prime to l. F has no finite extensions of degree prime to l thus zj
is another rational point.

Finally we will show (again using parts 2 and 3 of the Rost’s theorem 1.20) that the
construction described above produces a variety satisfying the claim of the main theorem
0.1 for a field k that is not necessary l-special.

Let k be any field of characteristic zero and {a} = {a1, . . . , an} ∈ KM
n (k)/l be any

non - zero n - symbol. The case of n = 2 is well - known and we assume that n > 2. Let
k′ denote a maximal extension of k of degree prime to l.

Let X1 be the Severi - Brauer variety of {a1, a2}. Let Xi for 2 6 i 6 n − 1 be
consecutively constructed from one another by means of the procedure described above.
We already know, among other properties, that Xi is a splitting variety for {a1, . . . , ai+1}
for each i.

2.6 Proposition. Xn−1 is a ν6n−1 variety.

Recall that a smooth projective variety X is said to be νm if d = dimX = lm− 1 and
degk sd(X) is a multiple of l but not of l2, were sd is d - th Milnor class and degk stands
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for the degree of a zero - cycle with respect to the base field k. Note that the property
to be νm therefore depends on the base field.

2.7 Lemma. Let X be a smooth projective variety over F .
1) Let F ′/F be any field extension such that XF ′ is irreducible. Then X is νm over

F if and only if XF ′ is νm over F ′.
2) Let F/F ′′ be a finite extension of degree prime to l. Then X is νm over F if and

only if X is νm over F ′′.

Proof. Obviously all the varieties under consideration have the same dimension. More-
over degF ′ sd(XF ′) = degF sd(X) proves the first claim, while degF ′′ sd(X) = [F :
F ′′] degF sd(X) proves the second one.

Note that the construction of splitting varieties given above is stable with respect
to an extension of scalars. In particular (Xi)k′ are splitting varieties for the non - zero
symbols {a1, . . . , ai+1} ∈ KM

i+1(k
′)/l. Since k′ itself is l - special we proceed as in 1.21

and find νi varieties X ′
i over k′ that fit into the diagrams

X ′
i

fi

||yyyyyyyy
gi

$$I
IIIIIIII

(Xi)k′ (Xn−1)k′ .

All these diagrams must be defined over some finite subextension k′′/k, that is they could
be obtained by an extension of scalars from k′′ to k′ from

X ′′
i

f ′i

{{xxxxxxxx
g′i

$$II
III

III
II

(Xi)k′′ (Xn−1)k′′ .

In particular each X ′
i = (X ′′

i )k′ hence by the lemma X ′′
i is νi over k′′ and thus it is νi

over k as well. Composing g′i with the projection (Xn−1)k′′ → Xn−1 we get the required
map X ′′

i → Xn−1 from a νi - variety to Xn−1 for each 1 6 i < n− 1. Similar argument
shows that Xn−1 itself is a νn−1 - variety. Thus X is ν6n−1.

2.8 Remark. It was noted by A. Vishik that using the Landweber-Novikov operations in
algebraic cobordisms one can prove that every νn−1 - variety is in fact a ν6n−1 - variety.
That fact makes the above argument unnecessary.

2.9 Proposition. The norm map N : Ā0(Xn−1,K1) → k× is injective.

Proof. Set E := k( l
√
a1). Since E splits {a1, a2} and char k = 0 the Severi - Brauer

variety X1 has infinitely many E - rational points. The argument preceding 2.5 shows
that each Xi has infinitely many E - rational points. Thus by corollary 1.7 kernel of N is
annihilated by [E : k] = l. On the other hand kerN vanishes after extension to k′ hence
the orders of all its elements are prime to l. Thus kerN = 1.

11



3 Rost degree formula

To prove the second claim of the theorem 1.20 we will develop a version of degree formula
invented by Markus Rost. With that goal in mind we begin by defining the degree for
zero - cycles on an open subscheme relative to the ambient projective variety.

Let S/k be any projective (not necessarily smooth) variety of the dimension d. The
degree homomorphism degS : CH0(S) → Z is nothing but the proper push - forward π∗
induced by the structure morphism π : S → Spec k. Let I(S) := degS CH0(S) denote
the subgroup of Z generated by the degrees of the closed points.

For a proper morphism i : S0 → S of projective varieties there is the usual commuta-
tive diagram of push - forwards

CH0(S0)
i∗ //

degS0   A
AA

AA
AA

A
CH0(S)

degS��~~
~~

~~
~

Z.

Let S/k be a projective variety, S0 ⊂ S be a closed subscheme, U = S \ S0 be the
complementary open subscheme, with the inclusion morphisms i and j respectively. From
the diagram

CH0(S0)
i∗ //

degS0

��

CH0(S)
j∗ //

degS

��

CH0(U) //

degU

��

0

I(S0) // Z // Z/I(S0)

we get a homomorphism degU : CH0(U) → Z/I(S0).
The following lemma summarizes the basic properties of the homomorphism degU .

3.1 Lemma.
1) Let S ⊃ S0 ⊃ S′0 be a projective variety and two of its closed subschemes, let U := S\S0

and U ′ := S \ S′0. Then
I(S′0) ⊂ I(S0) and
∀Z ∈ CH0(U ′) degU ′(Z) ≡ degU (Z|U ) mod I(S0).

2) Let f : S → S′ be a morphism of projective varieties, S′0 ⊂ S′ be a closed subscheme.
Set S0 := f−1(S′0), U

′ := S′ \ S′0, and U := S \ S0. Then I(S0) ⊂ I(S′0) and the diagram

CH0(U)
(f |U )∗ //

degU

��

CH0(U ′)

degU′

��
Z/I(S0) // Z/I(S′0)

commutes.
3) Let f : S → S′ be a morphism of projective varieties of equal dimension. Let S0 ⊂
S, S′0 ⊂ S′ be closed subschemes, and set U := S \ S0, U ′ := S′ \ S′0. Assume that
f−1(S′0) ⊂ S0 and hence f(U) ⊂ U ′. Finally assume that U ′ is smooth. Then for every
cycle Z ∈ CH0U

′

degU ((f |U )∗(Z)) ≡ deg f degU ′(Z) mod I(S0) + I(S′0).
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Proof. (Sketch) For 1) note that S′0 ⊂ S0 implies that U ⊂ U ′, I(S′0) ⊂ I(S0), so
all the claims make sense and follow from the definition. Similarly 2) follows from the
commutative diagram

CH0(S0) //

(f |S0 )∗

��

CH0(S) //

f∗

��

CH0(U) //

(f |U )∗

��

0

CH0(S′0) // CH0(S′) // CH0(U ′) // 0.

For 3) observe, first of all, that for Z ∈ CH0(U ′)

(f |U )∗(Z) = (f |f−1(U ′))∗(Z)|U

hence by 1)

degU (f |U )∗(Z) ≡ degf−1(U ′)(f |f−1(U ′))∗(Z) mod I(S0).

Thus replacing U by f−1(U ′) we may assume that U = f−1(U ′). Now f |U : U → U ′ is
proper and the projection formula yields

(f |U )∗((f |U )∗(Z)) = (deg f)Z ∈ CH0(U ′).

Finally according to 2) we get

(deg f) degU ′(Z) ≡ degU ′(f |U )∗((f |U )∗(Z))
≡ degU ((f |U )∗(Z)) mod I(S0) + I(S′0).

Next we construct an invariant for pseudo - Galois coverings.

3.2 Definition. Let p : X → S be a finite surjective morphism of integral schemes. Let
G be a finite group acting on X over S. The covering p is called pseudo - Galois provided
k(X)/k(S) is a Galois field extension and the natural map G → Gal (k(X)/k(S)) is an
isomorphism.

3.3 Remark. Under conditions of the definition there is an induced birational morphism
p̄ : XG → S. If in addition S is normal then according to Zariski’s Main Theorem p̄ is
an isomorphism.

3.4 Remark. It is well known and easy to check that every diagram of the form

X ′ //

��

X

��
S′ // S

where vertical morphisms are Galois coverings with the same group G and the top hori-
zontal morphism is G - equivariant is in fact Cartesian.

3.5 Notation. Let Sunr ⊂ S be the open subscheme over which the morphism p is étale,
let Sram := S \ Sunr be the closed ramification subscheme.
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To simplify matters we only consider pseudo - Galois coverings with G = Z/l. We
assume that char k 6= l and that k contains a primitive root of unity. Furthermore we
choose an identification µl = Z/l.

The Kummer sequence 1 −→ µl −→ Gm
l−→ Gm −→ 1 induces an epimorphism

H1
et(Sunr, µl) →→ l

Pic(Sunr).
Finally starting with p we get an étale Galois covering p−1(Sunr) −→ Sunr, the cor-

responding element in H1
et(Sunr,Z/l) = H1

et(Sunr, µl), its image in
l
Pic(Sunr), and thus

an invertible sheaf L(X/S) on S.

3.6 Definition. Assume that p : X → S is a pseudo - Galois covering with the group
G = Z/l, S is projective, and the assumptions made above hold. Assume further that
there exists a closed subscheme Sbad ⊂ S such that

(a) I(Sbad) ⊂ lZ;
(b) Sgood := S \ Sbad is smooth;
(c) over Sgood the morphism p is étale.

This data determines an invertible sheaf L(X/S) ∈
l
Pic(Sgood) and a zero - cycle Z(X/S)

defined as c1(L(X/S))dimS ∈ CH0(Sgood). Finally we define the η - invariant of the
covering p as

η(X/S) := degSgood
(c1(L(X/S))dimS) ∈ Z/l.

3.7 Remark. η(X/S) does not depend on the choice of a closed subscheme Sbad. If S̃bad

is another such subscheme one could compute η using S̃bad ∪ Sbad and evidently get the
same result. η(X/S) depends on the choice of a primitive root of unity ζ ∈ µl. Once ζ
is replaced by ζs, L(X/S) gets replaced by L(X/S)⊗s, and η(X/S) by (sdimS )η(X/S).
This will not cause any difficulties as long as the same choice is maintained throughout.

3.8 Theorem (Markus Rost Degree Formula). Assume that k is a field of characteristic
zero, that X/S and X ′/S′ are two pseudo - Galois coverings with Galois groups G =
G′ = Z/l, that both S and S′ are projective of the same dimension d, and that η(X/S)
and η(X ′/S′) are defined. Then for any G - equivariant rational map g : X− → X ′

η(X/S) = deg g η(X ′/S′) ∈ Z/l.

Proof. Note that g induces a morphism from a neighborhood of the generic point of S
to S′. Hence there is a unique rational map f : S− → S′ compatible with g and clearly
deg f = deg g.

3.9 Lemma. Let X/S and X ′/S′ be pseudo - Galois coverings with the same group G
fitting into an equivariant diagram of morphisms and rational maps

X
g //_____

p

��

X ′

p′

��
S

f //_____ S′.

1) Assume that g is everywhere defined and that S is normal. Then f is everywhere
defined.
2) Assume that f is everywhere defined and that X is normal. Then g is everywhere
defined.
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Proof. 1) The morphism g induces a morphism ḡ : XG → X ′
G. Since S is normal p

induces an isomorphism p̃ : XG → S. Hence birational map f may be defined everywhere
by p̃′ ◦ ḡ ◦ (p̃)−1, where p̃′ : X ′

G → S′ is induced by p′.
2) Let X̃ be the normalization of S′ in k(X ′). Since X ′/S′ is finite there is a morphism

ρ : X̃ → X ′ over S′. Because X is normal g induces a morphism τ : X → X̃. Evidently
the morphism τ ◦ ρ represents the rational map g.

First we prove the special case of the theorem. Assume that g is everywhere defined
and that S is normal. By the lemma f is everywhere defined and we get the diagram of
morphisms

X
g //

p

��

X ′

p′

��
S

f // S′.

Replacing Sbad by Sbad ∪ f−1(S′bad) if necessary we may assume that Sbad ⊃ f−1(S′bad).
In the equivariant diagram

p−1(Sgood)
g|p−1(Sgood)

//

p

��

p−1(S′good)

p′

��
Sgood

f |Sgood // S′good

both vertical arrows are étale coverings with the same Galois group G. Hence the left
one is the pull - back of the right one and the diagram is Cartesian. In particular
L(X/S) = (f |Sgood

)∗L(X ′/S′). (Recall that both are in
l
Pic(Sgood).) Therefore Z(X/S) =

(f |Sgood
)∗(Z(X ′/S′)) in CH0(Sgood). Finally the part 3) of lemma 3.1 completes the proof

of this special case.
Now to the general case.

3.10 Lemma. Assume that X/S is any pseudo - Galois covering with the Galois group
G = Z/l. Let φ : S̃ → S be a birational morphism. Set X̃ to be the normalization of S̃
in the finite field extension k(X) ⊃ k(S) = k(S̃).
1) There exists a unique morphism ψ : X̃ → X that completes the diagram

Spec k(X̃)

��

Spec k(X)

��
X̃

ψ //

p̃ ��

X
p
��

S̃
φ // S

moreover ψ is G - equivariant and X̃/S̃ is a pseudo - Galois covering with the group G.
2)Assume in addition that S and S̃ are projective, S̃ is smooth and η(X/S) is defined.
Then η(X̃/S̃) is defined as well and η(X/S) = η(X̃/S̃) ∈ Z/l.

Proof. The first claim is trivial by construction.
To prove the second one we need to check the conditions (a), (b), and (c) of the defin-

ition 3.6. Set S̃bad := φ−1(Sbad) hence S̃good = φ−1(Sgood). Since I(S̃bad) ⊂ I(Sbad) ⊂ lZ
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condition (a) holds. Since S̃ is smooth so is S̃good hence (b). For (c) observe that S̃good is
smooth and hence normal, thus S̃good = (p̃−1(S̃good))G. In the following G - equivariant
diagram the right vertical arrow is an étale Galois covering. Moreover since the action
of G on p−1(Sgood) is free the action of G on p̃−1(S̃good) is free as well.

p̃−1(S̃good)
ψ //

p̃
��

p−1(Sgood)

p

��
S̃good

φ // Sgood

Hence p̃ : p̃−1(S̃good) → (p̃−1(S̃good))G = S̃good is an étale Galois covering too. Finally
the equality η(X/S) = η(X̃/S̃) in Z/l follows from the special case of the theorem.

Now letX, S, X ′, S′, g be as in the statement of the theorem. SetX ′′ to be the closure
of the graph of g inX×X ′. Two projections induce the birational morphism ψ′ : X ′′ → X
and the morphism g′ : X ′′ → X ′, so that g′ = g◦ψ′ as rational maps. Moreover G acts on
X ′′, and ψ′, g′ are equivariant. Set S′′ := (X ′′)G, choose a birational morphism S̃ → S′′

with S̃ smooth. Let X̃ be the normalization of S̃ in k(X) ⊃ k(S) = k(S̃) as in the lemma.
We have the diagram

X̃

��#
##

ψ

��

g̃

��

��

X ′′

ψ′
ss

yysss
g′

LL

&&LL
L

��

X g
//________

��

X ′

��

S̃

��#
##

φ

��

f̃

��

S′′

φ′
ss

yysss f ′
LL

&&LL
L

S
f

//________ S′

where φ is the obvious composition, ψ is the morphism that comes from the lemma,
morphism X̃ → X ′′ also comes from the lemma, g̃ is another composition, and the
remaining morphisms are the obvious ones.

Applying the lemma to X̃/S̃ and X/S we conclude that η(X̃/S̃) is defined and that

η(X̃/S̃) = η(X/S).

The coverings X̃/S̃ and X ′/S′ meet the conditions for the special case so

η(X̃/S̃) = deg g̃ η(X ′/S′).

Since deg g̃ clearly equals deg g these two relations complete the proof.

Now we compute the η invariant for coverings of the special type.

3.11 Definition. Let S/k be an arbitrary scheme, L be an invertible sheaf of OS -
modules and α ∈ Γ(S,L⊗l) be a global section. (Recall that we assume k to contain
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an l - th primitive root of unity.) Let A(L) := Spec (S∗(L#)) denote the line bundle
corresponding to L. The sheaf LA(L) has a canonical section T corresponding to the

diagonal embedding A(L) ∆−→ A(L) ×k A(L) = A(LA(L)). Finally let S( l
√
α) be the

Cartier divisor in A(L) defined by the global section T⊗l − α ∈ Γ(A(L), L⊗lA(L)).

If L is trivial over some open affine U ⊂ S, then α determines a regular function a on
U . Hence over U the scheme S( l

√
α) is given by the equation T l − a = 0 in U ×A1. In

particular S( l
√
α) → S is flat and finite of degree l.

3.12 Lemma. Assume that S is smooth and irreducible and that α 6∈ Γ(S,L)⊗l. Then
φ : S( l

√
α) → S is a pseudo - Galois covering with the group G = Z/l.

Proof. First we verify that S( l
√
α) is integral. This may be checked locally. Over an affine

U as above S( l
√
α) coincides with SpecA[T ]/T l − a where A = k[U ]. SpecA[T ]/T l − a

is integral if and only if T l − a ∈ A[T ] is irreducible. However if the latter polynomial
is reducible then a = bl for b ∈ k(U) = k(S) hence α = β⊗l for a rational section β
of L. Noting that l(β) = (α) and so β has no poles we conclude that β is regular, and
α ∈ Γ(S,L)⊗l, a contradiction.

Gm acts naturally on A(L) and so does µl ⊂ Gm. As is evident from the lo-
cal description S( l

√
α) is µl - invariant and moreover µl

∼−→ Gal (k(U( l
√
a))/k(U)) =

Gal (k(S( l
√
α))/k(S)). The identification µl = Z/l completes the proof.

Evidently the covering φ is unramified away from the vanishing subscheme of V (α)
of α. Thus the following corollary is almost straightforward.

3.13 Corollary. Assume that S is smooth, projective, and irreducible, and that α 6∈
Γ(S,L)⊗l. Assume further that I(V (α)) ⊂ lZ. Then η(S( l

√
α)/S) is defined and equals

deg(−c1L)dimS mod lZ.

Proof. Since φ is étale over Sgood := S\V (α) then η is defined. Since the invertible sheaf
corresponding to this covering is the dual sheaf L∨ then η(S( l

√
α)/S) = deg(c1L∨)dimS =

deg(−c1L)dimS .

4 Computations with b - classes

4.1 Definition. Let X/k be a smooth absolutely irreducible projective variety. The
group G = Z/l acts on the irreducible variety X l by cyclic permutations of factors. We
call the factor variety Cl(X) := (X l)G the l-th cyclic power of X.

4.2 Remark. Note that Cl(X) is a normal projective variety and that the projection
p : X l → Cl(X) is a pseudo - Galois covering with the group G. Let ∆ : X → X l

be the diagonal embedding of the fixed - point subscheme and ∆X be its image. Then
X l \∆X → Cl(X) \ p(∆X) is an étale Galois covering with the group G. In particular
Cl \ p(∆X) is smooth. We thus set Cl(X)bad := p(∆X).

4.3 Lemma. The morphism X
∆
↪→ X l p→ Cl(X) is a closed embedding identifying X

with p (∆X).

Proof. The statement is local with respect to X. For X = SpecA we need to show that

(A⊗l)G −→ A⊗l
mult−→ A
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is surjective. This is so because for every a ∈ A the composition maps (A⊗l)G 3
(1/l)

∑l
1(1⊗ · · · ⊗ a⊗ · · · ⊗ 1) to a. (Recall that char k = 0.)

It follows that Cl(X)bad is isomorphic to X hence ηl(X) := η(X l/Cl(X)) is defined
if and only if I(X) ⊂ lZ.

The invariant η2 may be computed via the following result.

4.4 Theorem (Rost). Let X/K be smooth absolutely irreducible projective variety of
dimension d. Then deg(cd(−TX)) ∈ 2Z. If in addition I(X) ⊂ 2Z then

η2(X) =
deg(cd(−TX))

2
mod 2Z.

Proof. See Merkurjev’s notes on degree formula [M].
We will be mostly interested in the case l > 2. Let c = 1 + c1 + · · · + cd : K0(X) →

CH∗(X), where d = dimX, be the total Chern class. We formally write c = (1 −
x1) . . . (1− xd) with deg xi = 1.

4.5 Definition. Total b - class of X is b = b(l) := (1− xl−1
1 ) . . . (1− xl−1

d ) =: 1 + b1 + ...

4.6 Remark. Note that the operation b : K0(X) → CH∗(X) is multiplicative that is
b(V ⊕ V ′) = b(V )b(V ′) and that b(L) = 1 − (−c1(L))l−1 for a line bundle L. By the
splitting principle these two properties completely determine b. Also note that bi = 0
unless l − 1|i and that bi = ci for l = 2.

4.7 Theorem (Rost). Let X/K be a smooth absolutely irreducible projective variety
of the dimension d. Let l be a fixed prime. Then deg(bd(−TX)) ∈ lZ. If in addition
I(X) ⊂ lZ then

ηl(X) =
deg(bd(−TX))

l
mod lZ.

In particular, ηl(X) = 0 mod lZ if d is not a multiple of l − 1.

Proof. See Rost’s ‘Notes on Degree Formula’ web page [CL].

4.8 Proposition. Assume that in conditions of the theorem d = ln − 1. Then

deg(bd(−TX)) = (−1)l(n−1) deg(sd(−TX)) mod l2Z.

In particular, if ηl is defined then

ηl(X) = ±deg(sd(−TX))
l

mod lZ.

Proof. It is enough to prove the statement over the algebraic closure of k. Essentially
one may either assume that k = C and use the topological complex cobordism theory or
use the algebraic cobordism theory of Morel and Levin [LM].

Let Ω = MU∗ be the Lazard ring of bordism classes. We need to show that the
following map is the zero map.

Ωd // Z/l

[X] � // deg(bd(−TX))
l

− (−1)l(n−1) deg(sd(−TX))
l

18



After localization outside l the component Ωd is additively generated by decomposable
elements and the class of any hypersurface of degree l in P d+1.

Case of decomposable [X]. Suppose X = X1×X2 with d1 := dimX1, d2 := dimX2 <
d. Because sd(Y ) = 0 whenever dimY < d we get

sd(−TX) = sd(−TX1×X2) = sd(p∗1(−TX1)⊕ p∗2(−TX2))
= p∗1(sd(−TX1)) + p∗2(sd(−TX2)) = 0

Since the total b - class is multiplicative and commutes with pull - backs

bd(−TX) = bd(−TX1×X2) =
∑
i+j=d

p∗1(bi(−TX1))p
∗
2(bj(−TX2))

= p∗1(bd1(−TX1))p
∗
2(bd2(−TX2))

because all other terms vanish by dimensional reasons. Recall however that by the
theorem 4.7 each factor is a multiple of l hence the product vanishes in Z/l. We see that
[X1 ×X2] indeed maps to zero.

Case of a hypersurface. Let X ⊂ P d+1 be a hypersurface of degree l. The ideal sheaf
I of X is isomorphic to OP d+1(−l) hence the normal sheaf N = (I|X)∨ is isomorphic to
OP d+1(l)|X From the two usual exact sequences

0 // OP d+1 // OP d+1(1)d+2 // TP d+1 // 0

0 // TX // TP d+1 |X // N // 0.

we conclude that [−TX ] = V |X ∈ K0(X) where

V := [OP d+1(l)]− (d+ 2)[OP d+1(1)] + [OP d+1 ] ∈ K0(P d+1).

Therefore sd(−TX) = sd(V ) . X and bd(−TX) = bd(V ) . X.
Let H = c1(OP d+1(1)) be the class of a hypersurface in CH1(P d+1). Then (recall

d = ln − 1) we get sd(V ) = (lH)d − (ln + 1)Hd = (ld − ln − 1)Hd so sd(−TX) =
(ld− ln− 1)(Hd . X) hence deg(sd(−TX)) = (ld− ln− 1) deg(Hd . X) = (ld− ln− 1)l and
finally we conclude that

deg(sd(−TX))
l

= −1 mod lZ.

Next we observe that bd(V ) . X is the 0 - degree component of b(V ) . X. We may write
b(V ) = (1 + (lH)l−1)/(1 + H l−1)l

n+1. It follows that deg(bd(−TX))/l is the coefficient
at Hd in b(V ) and we only need to know it modulo l. Since

b(V ) =
(1 + (lH)l−1)

(1 +H l−1)ln+1
=

1
(1 +H(l−1)ln)(1 +H l−1)

mod l

b(V ) has the same coefficient at Hd as 1/(1 +H l−1) and we conclude that

deg(bd(−TX))
l

= (−1)1+l+...l
n−1

= (−1)n(l−1)

and we are done.
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5 The Chain Lemma

Let J be an invertible sheaf on X. A non - zero l - form γ : J⊗l → OX may be viewed
as an element of Γ(X, J⊗(−l)). Let U ⊂ X \ V (γ) be an open subscheme trivializing J
and let u ∈ Γ(U, J) be a non - vanishing section. Then γ = au⊗(−l) for an appropriate
a ∈ Γ(U,O×X). Since a is well defined up to an l− th power the form γ gives rise to a well
- defined element γU ∈ Γ(U,O×X)/Γ(U,O×X)l.

Choose x ∈ X \V (γ). The above construction applied to neighborhoods of x provides
an element γx ∈ O×x /(O

×
x )l. Denote by γ(x) ∈ k(x)×/(k(x)×)l the corresponding element.

Choosing x to be the generic point we get γ(X) ∈ k(X)×/(k(X)×)l assigned to the form
γ. By abuse of notation we will write just γ instead of γ(X) since no confusion will occur.

Let J1, . . . , Jn be invertible sheaves equipped with non - zero l - forms γ1, . . . , γn re-
spectively. To this collection of sheaves and forms we can assign the symbol {γ1, . . . , γn} ∈
KM
n (k(X))/l.

5.1 Theorem (Rost’s Chain Lemma). Let {a1, . . . , an} ∈ KM
n (k)/l be a non-trivial

n-symbol. Then there exists a smooth projective cellular variety S/k and a collection
of invertible sheaves J = J1, J

′
1 . . . , Jn−1, J

′
n−1 equipped with non -zero l - forms γ =

γ1, γ
′
1, . . . , γn−1, γ

′
n−1 respectively satisfying the following conditions.

1. dimS = l(ln−1 − 1) = ln − l;

2. {a1, . . . , an} = {a1, . . . , an−2, γn−1, γ
′
n−1} ∈ KM

n (k(S))/l,
for each 2 6 i 6 n−1 {a1, . . . , ai−1, γi} = {a1, . . . , ai−2, γi−1, γ

′
i−1} ∈ KM

i (k(S))/l,
and in particular {a1, . . . , an} = {γ, γ′1, . . . , γ′n−1} ∈ KM

n (k(S))/l;

3. γ 6∈ Γ(S, J)⊗(−l), as is evident from (2);

4. for any s ∈ V (γi) or V (γ′i) the field k(s) splits {a1, . . . , an};

5. I(V (γi)), I(V (γ′i)) ⊂ lZ for all i, as follows from (4);

6. deg(c1(J)dimS) is relatively prime to l.

Proof. See Markus Rost’s ‘Notes on Degree Formula’ web page and also [R].
Our first application of the Chain Lemma is

5.2 Proposition. Let X be an absolutely irreducible l - generic splitting variety for a
non-zero symbol {a} = {a1, . . . , an} ∈ KM

n (k)/l of the dimension d = ln−1 − 1. Then X
is a νn−1 - variety.

Proof. We adopt all the notation from the statement of the Chain Lemma. By con-
struction k(S)( l

√
γ) splits {a}. Let F∞ be a maximal extension of k(S) of degree prime

to l. Then F∞( l
√
γ) is l-special and also splits {a}. Hence there exists a morphism

SpecF∞( l
√
γ) → X over k. Since X is of finite type this morphism may be factored

through SpecF ( l
√
γ) → X for a certain finite subextension k(S) ⊂ F ⊂ F∞. Start-

ing with the embedding k(S) ⊂ F we choose a model for F and then resolve singu-
larities to obtain a smooth projective variety S̃ equipped with a dominant morphism
h : S̃ −→ S of a degree prime to l, and a rational map φ : S̃( l

√
γ)− → X. (Since

k(S̃( l
√
γ)) = k(S̃)( l

√
γ) = F ( l

√
γ).)
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Let σ be a generator of G = Z/l = µl. By construction we get an equivariant diagram
of pseudo - Galois coverings

S̃( l
√
γ)

(φ,φσ,...,φσl−1) //_________

��

X l

��
S̃ //__________ Cl(X)

with the bottom map induced by the top one. Note that dimS = dimCl(X). We will
apply Rost’s degree formula to this diagram.

First observe that by the Chain Lemma the form γ is not an l-th power and I(V (γ)) ⊂
lZ hence η(S̃( l

√
γ)/S̃) is defined and

η(S̃( l
√
γ)/S̃) = deg(c1(h∗(J))dim S̃)

= deg(h∗(c1(J))dimS)

= deg(h∗(h∗(c1(J))dimS))

= deg hdeg(c1(J)dimS).

Note that both factors are prime to l by the construction and by the Chain Lemma
respectively.

Next recall that by the proposition 4.8

η(X l/Cl(X)) = ±sd(−TX)
l

mod lZ.

Finally by the Degree Formula

deg hdeg(c1(J)dimS) = deg g
sd(−TX)

l
mod lZ

where g := (φ, φσ, . . . , φσl−1). We readily conclude that neither of the factors on the right
is a multiple of l. In particular X is νn−1.

5.3 Remark. For a variety X/k let kc(X) denote the field of constants of X that is the
algebraic closure of k in k(X). It is well known, and easy to verify, that X is absolutely
irreducible if and only if kc(X) = k. Also note that a rational map X− → Y induces an
embedding kc(Y ) ↪→ kc(X).

5.4 Proposition. Assume that k is l - special field. Then every l - generic splitting
variety X/k for a symbol {a} is absolutely irreducible.

Proof. Let Y be an absolute irreducible l - generic splitting variety X/k for {a} that
exists according the first part of 1.20. Then there exists an extension F/k(Y ) of degree
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prime to l and a point SpecF → X. Fields involved form a diagram of embeddings

F

k(Y )

prime to l �����

kc(X).

///////////

k

-----------
power of l

~~~~~

Since Y is absolutely irreducible k(Y ) ⊗k kc(X) is a subfield of F . Thus degree count
shows that kc(X) = k and X is absolutely irreducible.

The second claim of the theorem 1.20 now follows from the above two propositions.
The second application of the Chain Lemma will be concerned with the so - called

“multiplication principle”.
Consider the variety S of the Chain Lemma. Let s ∈ S \

⋃n−1
1 (V (γi) ∪ V (γ′i))

be a rational point. Specialization of {γ(S), γ′1(S), . . . , γ′n−1(S)} from KM
n (k(S))/l to

KM
n (k(s))/l amounts to evaluation hence

{a1, . . . , an} = {γ(s), γ′1(s), . . . , γ′n−1(s)} in KM
n (k)/l.

In particular k( l
√
γ(s)) splits the symbol {a}. (It may be shown that specialization to a

rational point of S provides a universal way to rewrite the symbol.)

5.5 Theorem. Let k be l - special. Let E/k be a cyclic extension of degree l splitting
{a}. Then there is a rational point s ∈ S such that k( l

√
γ(s)) = E.

Proof. Recall that there is a dominant morphism of smooth projective varieties S̃ → S
of degree prime to l along with an equivariant diagram of pseudo - Galois coverings

S̃( l
√
γ)

g=(φ,φσ,...,φσl−1) //_________

��

X l

��
S̃ //__________ Cl(X).

Moreover deg g is prime to l and, a fortiori g is dominant. Using the resolution of
singularities we can find a birational morphism Ŝ → S̃ from a smooth projective variety
such that the composition Ŝ → S̃− → Cl(X) is everywhere defined. Then the previous
diagram induces the following one

Ŝ( l
√
γ)norm

ĝ //

��

X l

��
Ŝ

f̂ // Cl(X)

that is also equivariant and consists of pseudo - Galois coverings. Indeed, the normal-
ization does not change these properties. The bottom map is everywhere defined by
construction and so is the top one by lemma 3.9.
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On the other hand, since E is also l - special and splits {a} there is an E - valued
point ψ : SpecE → X that gives rise to the diagram

SpecE
(ψ,ψσ,...,ψσl−1) //

��

X l

��
Spec k // Cl(X).

Let the rational point z ∈ Cl(X) be the image of the bottom map. Since the diagonal of
X l has no rational points z belongs to both the smooth locus of Cl(X) and the unramified
locus of X l → Cl(X). Hence the diagram is Cartesian and the fiber over z consists of a
single E - rational point of X l.

Since f̂ is a dominant morphism of degree prime to l and z is smooth, using lemma
1.18 we can lift z to a rational point ŝ ∈ Ŝ. Note that V (γ) has no rational points, and
that S̃( l

√
γ) → Ŝ is unramified away from V (γ). Therefore the fiber over ŝ is the same in

both Ŝ( l
√
γ) and Ŝ( l

√
γ)norm. Moreover since the diagram in question is Cartesian locally

near z this fiber is a single point with the residue field k( l
√
γ(ŝ)) = E. Set s to be the

image of ŝ under the projection Ŝ → S. Since both ŝ and s are rational we conclude that
k( l

√
γ(s)) = k( l

√
γ(ŝ)) = E.

As an easy corollary we get following statement, also referred to as Chain Lemma.

5.6 Theorem. Let k be l - special and E1, . . . , En be cyclic splitting fields of degree l for
a non-trivial symbol {a1, . . . , an} ∈ KM

n (k)/l. Then there exist a′1, . . . , a
′
n ∈ k× such that

{a1, . . . , an} = {a′1, . . . , a′n} and that Ei splits {a′1, . . . , a′i} for each 1 6 i 6 n.

Proof. Using induction on j we will show that we can rewrite the given symbol so that
the last condition holds true for 1 6 i 6 j.

The case of j = 1 is settled by the previous theorem.
Induction step from j−1 to j. Applying the assumption to E2, . . . , Ej we may rewrite

the symbol so that E2 splits {a1}, . . . , Ej splits {a1, . . . , aj−1}.
By the previous theorem we may find a rational point s ∈ S such that E1 = k( l

√
γ(s)).

We set a′1 := γ(s), a′2 := γ′1(s), . . . , a′n := γ′n−1(s). Then E1 splits {a′1} and for each
1 < i 6 j the field Ej splits {a1, . . . , aj−1} hence also splits {a1, . . . , aj−1, γ

′
j−1} =

{γ(s), γ′1(s), . . . , γ′j−1} = {a′1, . . . , a′j}.
Observe that the third part of the theorem 1.20 would be an immediate corollary of

the following two statements. (Recall that we assume k to be l - special and X to be
ln−1 − 1 dimensional l - generic splitting variety for an n - symbol {a}.)

5.7 Proposition (Multiplication Principle). Let [x, λ], [x′, λ′] ∈ Ā0(X,K1) be such that
[k(x) : k] = [k(x′) : k] = l. Then there exist x′′ ∈ X, λ′′ ∈ k(x′′)× such that [k(x′′) : k] = l
and [x, λ] + [x′, λ′] = [x′′, λ′′].

5.8 Proposition (Norm Principle). Let [x, λ] ∈ Ā0(X,K1) be such that [k(x) : k] = lm,
where m > 1. Then there exist xi ∈ X, λi ∈ k(xi)× such that [k(xi) : k] < [k(x) : k] for
all i and [x, λ] =

∑
i[xi, λi].

Below we give a proof of multiplication principle leaving out the norm principle till
the spring term [R].
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We may rewrite {a} = {a′1, a′2, . . . } so that k(x) splits {a′1} and k(x′) splits {a′1, a′2}.
Let D :=

(
a′1,a

′
2

k

)
be the cyclic algebra and let Y := SB(D) be its Severi-Brauer variety.

The following two facts in one form or another are well established in the folklore so
we only sketch their proofs.

5.9 Lemma. Multiplication principle holds for Y .

Proof. Let [y, λ] in Ā0(Y,K1) be such that [k(y) : k] = l. Then k(y) may be identified
with a maximal subfield of D and moreover N([y, λ]) = Nrd (λ) ∈ k×. Recall that
according to [MS]

N : A0(Y,K1)
∼−→ Nrd (D×) ⊂ k×

is an isomorphism. (Thus in this special case Ā0(Y,K1) = A0(Y,K1).)
Let [y′, λ′] be the other summand. Form λλ′ in D× and choose y′′ ∈ Y such that

λλ′ ∈ k(y′′). Since N([y, λ])N([y′, λ′]) = λλ′ = N([y′′, λλ′]) and N is an isomorphism we
conclude that

[y, λ] + [y′, λ′] = [y′′, λλ′].

5.10 Lemma. Let f : Z̃ → Z be a dominant morphism of smooth projective varieties of
the degree relatively prime to l. Then f∗ : Ā0(Z̃,K1) → Ā0(Z,K1) is an isomorphism.

Proof. Recall that the base field k is assumed to be l - special. Hence for each generator
[z, λ] of Ā0(Z,K1) one can find, according to 1.18, a point z̃ ∈ Z̃ that maps to z so that
k(z̃) = k(z). Thus f∗([z̃, λ]) = [z, λ] and we conclude that f∗ is surjective.

To prove the injectivity we first show that the composition f∗f∗ coincides with mul-
tiplication by deg f .

Choose any generator [z̃, λ] of Ā0(Z̃,K1). Let z = f(z̃). As above one can find z̃′

in the fiber over z having the residue field k(z̃′) = k(z). According to the corollary 1.5
we get [z̃, λ] = [z̃′, Nk(z̃)/k(z)(λ)]. Thus replacing one by the other we may assume that
z̃ and z = f(z̃) have isomorphic residue fields. Consider any open U ⊂ Z over which f
is finite. One can show that Ā0(Z,K1) and Ā0(Z̃,K1) are generated by points from U
and Ũ := f−1(U) respectively. Hence we may assume that z̃ ∈ Ũ . In this case the fiber
of f over z is finite and consists of points z̃1 = z̃, . . . , z̃k. Finally an explicit computation
shows that

f∗f∗([z̃, λ]) = f∗([z, λ]) =
k∑
1

[z̃i, λ] =
k∑
1

[z̃, Nk(z̃i)/k(z)(λ)]

=
k∑
1

[z̃, λ[k(z̃i):k(z)]] =
( k∑

1

[k(z̃i) : k(z)]
)
[z̃, λ] = (deg f)[z̃, λ].

In particular we conclude that ker f∗ is annihilated by deg f . On the other hand the
diagram

Ā0(Z̃,K1)
f∗ //

N

��

Ā0(Z,K1)

N

��
k×

= // k×

24



along with the corollary 1.7 demonstrates that ker f∗ ⊂ kerN is annihilated by the
degree of any closed point that is by some power of l. Since (degf, l) = 1 we conclude
that ker f = 0 that is f∗ is injective as well.

To prove the multiplication principle for the generic splitting variety X above we first
note that k(Y ) splits {a}. Therefore we can construct a smooth projective variety Ỹ
along with a dominant morphism p : Ỹ → Y of degree relatively prime to l such that
there exists a morphism π : Ỹ → X.

Let y, y′ ∈ Y be such that k(y) = k(x), k(y′) = k(x′). According to 5.9 one can find
another point y′′ ∈ Y of degree l and λ′′ ∈ k(y′′)× such that [y, λ] + [y′, λ′] = [y′′, λ′′]
in Ā0(Y,K1). Points y, y′, y′′ may be lifted as in the proof of 5.10 to ỹ, ỹ′, ỹ′′ ∈ Ỹ with
the same residue fields and moreover [ỹ, λ] + [ỹ′, λ′] = [ỹ′′, λ′′] in Ā0(Ỹ ,K1). Pushing
ỹ, ỹ′, ỹ′′ down to X we finally get z, z′, z′′ such that k(z) = k(ỹ) = k(y) = k(x), similarly
k(z′) = k(y′), and k(z′′) = k(y′′), and with the sought after relation

[x, λ] + [x′, λ′] = [z, λ] + [z′, λ′] = [z′′, λ′′].

Epilogue

Vigilant reader may have noticed that the expression “Norm Varieties” does not appear
anywhere in the text. Let us point out that the term norm variety was coined to describe
a variety given by an equation N(x) = a where N is any norm map, while x and a are
whatever circumstances dictate. Hence both the splitting varieties constructed from the
symmetric powers and the varieties S( l

√
α) deserve that name. Which ones the paper is

entitled after is anybody’s guess.
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26


