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This text is a complement to the lectures at IAS, 2005.

Theorem DN follows from the Conner-Floyd theorem and Morel/Levine [3].

As for Morel/Levine, I refer here to Proposition 13.22, Theorem 13.23 and The-
orem 13.24 in [3]. Let X and Y be as in Theorem DN and denote by [X], [Y ] ∈ L
their (topological) cobordism classes.

Then Theorem 13.24 obviously implies Theorem DN in the special case when
[X] = [Y ].

In fact, one needs less: It suffices that [X]− [Y ] is contained in some ideal of the
Lazard ring which is generated by p and some elements xi ∈ L with 0 < dim xi < d
where d = pn − 1 (and dim X = rd). This is so, because the numbers td,r vanish
obviously on such an ideal.

However the assumptions on the action of G = pn on X and Y , together with the
argument using multi-fold connected sums along the fix points, plus the Conner-
Floyd theorem, show that [X]− [Y ] is contained in such an ideal.

The last argument works in the oriented bordism theory (for odd p) or in the
complex bordism theory.

The Conner-Floyd theorem in oriented bordism theory is perhaps bit simpler.
There is a complete proof in [2]. However it works only for odd p and it shows only
that [X]− [Y ] is contained in such an ideal in the oriented bordism ring π∗(MSO).
However, one has

π∗(MSO)⊗ Z[
1
2
] = L/Lodd ⊗ Z[

1
2
]

where Lodd is the ideal generated by odd-dimensional elements ([5]). It follows that
all the numbers td,r factor through π∗(MSO), because d = pn − 1 is even.

The Conner-Floyd theorem in complex bordism theory is proven in [4]. In or-
der to see why the “Conner-Floyd conjecture” considered by Mitchel implies the
Conner-Floyd theorem as we used it, you have to consult [1].
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