Differentialtopologie

— Übungsblatt 5 —

Wintersemester 2019/2020

(Abgabe am 11.11.2019)

Aufgabe 5.1 (Sprünge im Rang). Gegeben seien $k, m, n \in \mathbb{N}$ mit $k \leq \min\{m, n\}$. Finden Sie eine differenzierbare Abbildung $f : \mathbb{R}^m \to \mathbb{R}^n$, so dass die Rangabbildung $p \mapsto \operatorname{rk}(f, p)$ in jeder Nullumgebung alle Werte aus $\{0, \ldots, k\}$ annimmt.

Aufgabe 5.2 (Rang 0). Sei $f: M \to N$ eine differenzierbare Abbildung. Ferner sei M zusammenhängend und es gelte $\mathrm{rk}(f,p) = 0$ für alle $p \in M$. Zeigen Sie, dass $f(M) \subset N$ eine Untermannigfaltigkeit ist.

(Hinweis: Überlegen Sie sich zunächst, wie groß f(M) ist. Danach sollte die Sache klar sein.)

Aufgabe 5.3. Sei $f: M \to M$ eine differenzierbare Selbstabbildung einer differenzierbaren Mannigfaltigkeit M. Ferner sei M zusammenhängen und es gelte $f \circ f = f$. Zeigen Sie, dass $f(M) \subset M$ eine Untermannigfaltigkeit ist.