Differentialtopologie

— Übungsblatt 10 —

Wintersemester 2019/2020

(Abgabe am 16.12.2019)

Aufgabe 10.1 (Die Topologie auf TM). Sei M eine differenzierbare Mannigfaltigkeit. Zeigen Sie, dass TM mit der in Satz 6.9 konstruierten Topologie ein Hausdorff Raum mit abzählbarer Basis ist. Beweisen Sie auch die behauptete Eindeutigkeit der Topologie.

Aufgabe 10.2 (Der Nullschnitt als Einbettung). Sei M eine differenzierbare Mannigfaltigkeit. Der Nullschnitt $z \colon M \to TM$ des Tangentialbündels ist definiert durch $z(p) = 0 \in T_pM$. Zeigen Sie, dass z eine differenzierbare Einbettung ist.

Aufgabe 10.3 (Approximation durch Einbettungen). Sei M eine kompakte, m-dimensionale differenzierbare Mannigfaltigkeit. Ferner sei $g \colon M \to \mathbb{R}^{2m+1}$ differenzierbar und $\epsilon > 0$ vorgegeben. Zeigen Sie, dass es eine differenzierbar Einbettung $f \colon M \hookrightarrow \mathbb{R}^{2m+1}$ gibt, so dass

$$|f(p) - g(p)| < \epsilon$$
 für alle $p \in M$.

Gehen Sie dabei wie folgt vor:

- (a) Sei $f_0: M \hookrightarrow R^n$ eine beliebige Einbettung. Zeigen Sie, dass $f_1 = (g, f_0): M \to \mathbb{R}^{2m+1+n}$ wieder eine Einbettung ist.
- (b) Zeigen Sie, dass für $x \in S^{2m+n}$ nahe bei $(0, \dots, 0, 1)$ die ersten 2m+1 Komponenten von $f_2 = f_x \circ f_1$ beliebig nah an g sind.
- (c) Wählen Sie ein x wie in (b), so dass f_2 eine Einbettung in \mathbb{R}^{2m+1} ist und iterieren Sie diesen Prozess, um die gesuchte Einbettung $f: M \to \mathbb{R}^{2m+1}$ finden.